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1. Introduction 

Thin-wall workpieces are usually low rigidity and complex shapes, which results in great 

challenges in machining. The machining accuracy, both geometric accuracy and surface 

integrity, plays a significant role in achieving overall product’s functional performance. 

Machining is a key process since it is easy to result in deflection and chatter[1, 2]. In stable 

machining, surface dimensional error due to the workpiece deflection affects machining 

precision[1, 3]. In unstable machining, the chatter becomes a critical problem for high 

surface quality. Currently, the existing methods for predicting the cutting forces, deflections 

and stability can be divided into experimenting and modeling. The direct trial-and-error 

approach is often expensive and time consuming. Producing the right profile in such parts 

increasingly depends on specialized CAD/CAE/CAM packages for defining appropriate 

cutting strategies and tool paths[4-7]. However, most of the existing techniques and models 

are based on idealised geometries and do not take into account factors such as variable 

cutting force, part/tool deflection, machining stability[8].  

In many cases, the parameters of milling system are uncertain derived from the 

measurement errors, system nonlinear behavior, use or not use of coolants and other 

environmental noise. In addition, the stability boundaries are highly sensitive to the milling 

system parameter uncertainties. Therefore it is questionable that the usefulness of stability 

Lobes for estimating the milling stability obtained by applying deterministic parameters. 

Nominal machining parameters from the deterministic machining parameters optimization 

cannot guarantee the stability of milling process and lead to an actual maximization of 

material removal rate(MRR) and minimization of surface location error (SLE1). In practice, 

                                                                 
1 Surface location error is defined as the error in the placement of the milling cutter teeth when the surface is generated. 
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the cutting forces that statically and dynamically excite the tool and part, reducing the 

validity of the CAD/CAE/CAM output and leading to additional machining errors. For 

example, it induces chatter and large deformation in thin-wall workpiece, and very high 

cutting temperature which causes excessive thermal expansion specifically under dry 

machining conditions. Finite element analysis (FEA) has been widely adopted in numerical 

simulation of the machining process. FEA-based simulation, considering physical factors, 

such as material properties, tool geometry etc., is required to accurately predict the 

deflection and stability. Normally, the aim of cutting parameters optimization is to improve 

the part quality, maximize MRR and the constraint conditions are to keep the spindle speed 

below a predifined one and require the cutting process stable.  

The cutting force and the part deflection are usually solved by an iterative simulation 

algorithm. Wang et al[9] studied force-induced errors, and developed a quasi-static error 

compensation method. Law et al.[10] calculated the cutting force from the measured milling 

torque, and integrated both the force and deflection models to develop a compensation 

methodology. However, currently the force modeling research has been mainly focused on 

theoretical rigid force models or mechanistic force models [11]. Budak and Altintas[12] 

considered the peripheral milling of a very flexible cantilever plate that incorporate a 

mechanistic force model and finite element methods. Feng and Menq [13, 14] developed a 

cutting force model taking into account the engaged cut geometry, the undeformed chip 

thickness distribution and the effect of the cutter axis offset. Budak et al.[15] proposed an 

oblique cutting mechanics model, in which the oblique cutting force are obtained from 

orthogonal cutting force. Ratchev et al.[16] proposed a flexible force model to study the tool 

deflection based on an extended perfect plastic layer model. They considered the end-

milling cutter as a cantilever with the force acting at the cutter tip centre position[11]. 

However, the dynamic effect and the generated heat during machining were not considered, 

and the tool and the workpiece were assumed to deform to their static equilibrium position 

at any milling instant[1, 17]. Spence et al.[18] indicated that most existing machining 

simulation techniques were geometric and ignored the physical aspects of the process. 

Therefore, for making an appropriate choice of the cutting parameters and the operation 

sequence, deep understanding of the induced cutting deformation and the heat transfer is 

necessary. In the recent past, various techniques have been developed for studying the 

force- and temperature-induced aspects of machining, but separately. There is still a lack of 

a comprehensive milling simulation model which, taking into account the effects of the tool-

path, and the cutting variables, simulates the thermomechanical aspects of machining[19]. 

Their applicability to model force in machining of thin-wall workpiece is limited due to the 

variability of material properties, cutting force, non-linear dependency on tool immersion 

angle and chip thickness[11]. Increased attention is being focused on the development of a 

computationally efficient milling process model, well capable to perform thermomechanical 

analysis of the metal cutting process.  

Although there are many mechanisms of instability or chatter as mentioned in Wiercigroch 

and Budak[20], instability due to regeneration of surface waviness is by far the primary 

cause of instability. The stability analysis of the milling system can be performed only by 
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applying approximated numerical methods since there is no closed solution to time-delay 

differential equation of milling dynamics. Alternatively it can be carried out by means of 

time-domain simulations[21], in the frequency domain[22] or by applying methods based on 

delay differential equation theory, such as the semi-discretization method[23] and the time 

finite element approach (TFEA)[24]. Budak and Tekeli[25] proposed a method to determine 

the optimal combination of depths of cut, so that chatter free material removal rate is 

maximized, with application on a pocketing example and significant reduction in the 

machining time is obtained. Altintas and Merdol[26] developed a generalized process 

simulation and optimization strategy for increasing MRR while avoiding machining errors 

and considering the chatter, and spindle's torque or power limits. However, the works of 

milling stability and cutting parameters optimization were addressed little to take into 

account the parameters uncertainties. Duncan et al.[27] used the Monte Carlo method to 

determine the associated uncertainties in the stability limit at each spindle speed. However 

the estimated stability intervals are too large to supply a useful advice to the parameters 

selection in an actual milling process. Kuidi[28] studied the robust optimization of SLE and 

MRR in milling process with uncertainties. The deterministic optimization formulation was 

modified to account for the axial depth uncertainty. But the uncertainties of Lobe diagram 

and SLE, which determine the milling stability and part quality were not taken into account. 

And the detailed optimization procedures are absent. Totis[29] used a new probabilistic 

algorithm for a robust analysis of stability in milling process, which performs the stability 

analysis on an uncertain model. The main objection to the general use of probabilistic 

analysis techniques is that non-deterministic properties cannot always be exactly 

represented using the probabilistic concept. Indeed, probabilistic methods cannot deliver 

reliable results unless sufficient experimental data are available to validate the assumptions.  

In this chapter, we describe the force and temperature-induced error prediction and stabilty 

analysis of milling process by using the finite element method. Firstly a thermo-mechanical 

analysis is established to predict the force- and temperature-induced deflection. Then, TFEA 

is adopted as the deterministic model to obtain SLE and milling stability Lobe diagram. The 

uncertainties of modal shape parameters of spindle-tool system are investigated and 

sensitivity analysis is used to evaluate the upper and lower bounds of SLE and stability 

Lobe diagram. Finally, the formulation of robust spindle speed optimization is given to 

minimize the maximal SLE in a milling process and constraint condition is to maximize 

spindle speed and keep the machining parameters below the lower bound of Lobe diagram. 

With two optimization results, derived from robust and deterministic optimization 

formulations, experimental verifications are given.  

2. Flexible thermo-mechanical model for error prediction 

The surface error is induced by the deflection of tool and workpiece. Most of the existing 

techniques are based on idealized geometric profile and do not take into account 

tool/workpiece deflection, which results in a significant deviation between the planned and 

machined workpiece profiles[11]. This chapter focuses on deflection of thin-wall workpieces 
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induced by cutting force and temperature. Reliable quantitative predictions of the cutting 

force and temperature components are essential for determining geometric errors of 

machined workpieces. Force predictions are required for arriving at constrained 

optimization strategies in computer-aided process planning[15].  

2.1. Flexible force model for thin-wall workpiece 

The research in the area of cutting covers a very wide range, since there are many 

independent influencing factors, including the cutting parameters, material properties, 

properties of the machine–tool–workpiece system, and tool geometry. A general model for 

the determination of cutting forces in ball-end milling operations was presented in 

reference[30]. The mathematical model represents the relations between the cutter and the 

workpiece, the change of chip thickness and the milling cutter rotation angle. The cutting 

forces are divided into several parts which depends on the number of cutting edges, cutting 

edge length and milling cutter rotation angle. Figure 1 shows the schematic diagram of a 

cutter of a ball-end milling and its configuration parameters.  

 

Figure 1. Constant lead spiral cutting edge for ball-end milling 

The following is the main idea how to calculate it [31, 32]. The lag between the tip of the 

flute at 0z   and at axial location z  is[30] 

 0
0

tan
z

i
R

   (1) 

where, 0R  is the radius of the hemispherical part, 0i  is the helix angle of the cutting edge. A 

point on the flute j  at height z  is referenced by its angular position in the global coordinate 

system, 

 
2

( ) ( 1)j
f

z j
N

       (2) 

where fN  is the number of flutes,   is the tool rotation angle. 
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The angle position in the direction of z-axis from the center of the hemispherical part to the 

point on the cutting edge can be written as 
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The tangential, radial and binormal components are calculated as[15, 32, 33], 
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where, ( , , ) sin sinn zbt f      is the uncut chip thickness normal to the cutting edge,  

and varies with the position of the cutting point, tcK , rcK , acK ( 2/N mm ) are the  

shear specific coefficients, teK , reK , aeK ( /N mm ) are the edge specific coefficients.  

 2 2 2 2
0 0'( ) ( ) cotdS R R R i d      ( mm ) is the length of each discrete elements of the  

cutting edge, zbf  is the feeding per tooth, arcsin( ( ) )bR R   , and db  ( mm ) is the 

differential length of cutting edge. In many mechanistic models for the milling process, the 

milling force coefficients tcK , rcK , acK , teK , reK , aeK are established from specially devised 

milling tests (e.g. average cutting force coefficient model) followed with linear regression 

analysis. Usually there are two methods to predict the parameters which are mechanistic 

evaluation and prediction from an oblique cutting model[15].  

The cutting forces in Eq.(4) are modeled in terms of two fundamental phenomena, an edge 

force component due to rubbing or ploughing at the cutting edge, and a cutting component 

due to shearing at the shear zone and friction at the rake face[15]. The cutting force model 

including explicitly the ploughing component can obtain more precise prediction accuracy. 

Once the tangential ( , )tF z , radial ( , )rF z , and axial ( , )aF z  cutting force at the tooth-

workpiece contact point are determined, the resultant forces in Cartesian coordinates are 

obtained by introducing the transformation matrix[32], 
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Then one can get [32] 
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Since the cutting force coefficients ( tcK , rcK , acK ) may be dependent on the local chip 

thickness, the integrations given above should be calculated digitally by evaluating the 

contribution of each discrete cutting edge element at dz  intervals. There are many models to 

calculate the coefficients, such as bi-linear force model, exponential chip thickness model, 

high-order force model, and semi-mechanistic model. Budak et al[15] presented the cutting 

transformation model.  
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where,   is shear stress at the shear plane, n  and n  are normal shear and friction angles 

in oblique cutting respectively, n  is normal rake angles, c  is chip flow angle in the rake 

face,   is friction angle at the rake face. For example, when Cutter radius is 3mm, Feed is 

0.02mm/rev, Depth of cutting is 0.02m, the cutting force can be calculated as Figure 2.  

 

Figure 2. Predicted cutting forces for slot cutting tests 

Most of reported papers in the area of cutting force- induced error belongs to those caused 

by large deformation of thin-wall workpieces under load[34, 35]. Peripheral milling of 
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flexible components is rather complicated due to periodically varying cutting-forces. These 

forces statically and dynamically excite the tool and workpieces, which leads to significant 

and often unpredictable deflections. Static deflections produce dimensional profile errors, 

and dynamic displacements lead to poor surface finish quality and machining stability 

problems in addition to dimensional profile errors[16, 36]. In the known condition of cutting 

force, the deflection of the thin-wall workpiece can be calculated through finite element 

analysis in real time.  

There are two kinds of force model, theoretical rigid force model and adaptive theoretical 

flexible force model. High complexity is associated with modeling of cutting forces in 

machining due to the variable tool/workpiece deflection and changing tool immersion 

angle. To address this complex dependency an interactive approach integrating an extended 

perfect plastic layer force model is adopted to link force prediction with workpiece 

deflection modeling[8]. The predicted profile of the workpiece is utilized to identify the 

“real” material volume that is removed during machining, instead of the “ideal” one 

defined by the “static” NC simulation packages [11]. In milling a thin-wall workpiece, the 

differential cutting force on the engaged infinitesimal tool cutting edge varies with the 

cutting depth that is effected by workpiece deflection[17]. The force is calculated by taking 

into account the changes of the immersion angle, φ, of the engaged teeth. As soon as the 

deflection, yu  and the coordinate (x, y, z) of point, a, are known (Fig. 4), the instant 

immersion angle   in milling after deflection can be calculated using[1]  

 
1

( ( , ) ( , ))
( , ) cos

r yR h z t U z t
t z

R


 
   (10) 

where R  is the cutter radius, and rh  is the designed milling depth in the workpiece 

thickness direction, while yu  is the deflection in the corresponding point predicted through 

FEA. Ratchev et al[3, 11] proposed a flexible force model for machining dimensional form 

error prediction of thin-wall components. Here, the thermal deflection is introduced into the 

the flexible force model to consider the temperature effects. 

FEA softwares are used to calculate the deflection caused by the cutting force at each 

sampling point through the following equation, 

    K U F     (11) 

where K    is the stiffness matrix of the workpiece,   , ,
T

x y zU U U U     and 

  , ,
T

x y zF F F F     are nodal displacements of workpiece and the external cutting force 

acting on the tool-workpiece transient contact surface, respectively. As the boundary 

conditions are specified, the nodal displacements can be obtained through solving the 

above equations.  
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2.2. Thermo-mechanical analysis for thin-wall workpiece 

The errors are usually caused by excessive deformation at the interface due to the cutting 

force and temperature, so they have to be considered simultaneously. With the recent 

developments in machining automation, various cutting temperature measurement 

techniques, including tool-work thermocouple, embedded thermocouple, and infrared 

pyrometer, emerged[37-41]. The aforesaid experimental techniques have been widely 

applied in machining due to its simplicity. Lin[42] and Kwon[43] studied the transient 

interfacial temperature and heat dissipation in the workpiece during a slot milling process. 

Fang and Zeng[44] utilized FEM to develop a 3D model of the oblique cutting process for 

the prediction of temperature distribution in the workpiece, tool and chip. Temperature 

distribution in the workpiece was estimated for a simple single pass slot milling operations 

in only a few reported works[45, 46]. However, these studies ignore the structural analysis 

for predicting part deformations under coupled thermomechanical loading conditions.  

The milling techniques still face to a severe problems of inducing very high cutting 

temperatures causing excessive thermal expansion of the workpiece, especially in dry 

machining. The cutting parameters, namely, cutting speed and feed rate, have the greatest 

influence on the cutting temperature. For analyzing the phenomenon of heat dissipation into 

the workpiece and its influence on part deformation, a 3D model of the transient milling 

process was developed based on commercial FEM program, such as Abaqus, Ansys and 

Comsol. These systems allow: (1) creating 3D FEM models of the fixture–workpiece 

configurations, (2) applying appropriate materials for the workpiece, (3) applying 

appropriate machining boundary conditions, and (4) performing transient thermal and 

structural analysis where the transient temperature distribution profiles are applied along 

with the cutting forces to predict part deflections.  

If the thermal conductivity ( K ) and heat capacity ( pC ) of the work material is higher, then 

the generated heat is more readily conducted into workpieces and causes thermal 

expansions which produce severe irregularities. The cutting force more easily induces large 

deformation in the workpiece. In return, the deformation resulted from the cutting force and 

the generated heat will change the cutting parameters. However, most models are based on 

idealized geometries and do not take into account the factors, such as variable cutting force, 

thermal load, part/tool deflection, etc[1]. Before calculating the temperature distribution, 

cutting temperature at the interface need to be predicted. For speed-, and feed-dependent 

boundary conditions in machining, the thermal source problem in machining thin-wall 

workpiece is very difficult to be solved analytically. Therefore, the temperature prediction at 

the interface is usually achieved by non-linear empirical modeling approaches. The average 

interface temperature, as measured by the tool-work thermocouple, is[47] 

 0.5 0.2 0.4
, ( ) 1700avg interfaceT C V d f   (12) 

where V  is cutting speed (m/s), d  is depth of cut (mm), and f  is feed (mm/rev). The above 

empirical model of the interface temperature is developed for turning of 4140 Steel alloy 
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with tungsten carbide tools. The relation of cutting temperature and feed is plotted in Fig.3 

where the temperature at the interface is very high. 

 

Figure 3. Cutting temperature versus cutting feed, depth of cut 0.763mm, cutting speed 3m/s 

The temperature variations are related to the heat source movement, heat source intensity, 

and thermal resistance coefficient. The fundamental generalized problem to be solved 

analytically is the heat conduction in a thin infinite plate with a convective and radial 

boundary condition on the face. The time-dependent heat transfer process is governed by 

the following differential equation[48], 
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 (13) 

where, h kw  , h  is the convection coefficient of heat transfer, k  is the thermal 

conductivity of the material, w  is the plate thickness,   is the thermal diffusivity of the 

material, and ( , )g r t  is the internal heat generation rate per unit volume, the variable r  is 

the radial distance from the heat source. 

 

Figure 4. Temperature-effected machining: (a) Top view;(b) Side view 

The dynamic non-uniform temperature distribution roots in time/position-dependent 

thermal deformations. Eq.(13) is to be solved by finite element method here. Ref. [48] 

proposed another computational methods. There are two basic thermal error modes, 
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namely, thermal expansion and thermal bending. Figure 4 is the schematic diagram of 

machining results due to temperature effects. Figure 4a-4b show the deflections from the top 

and side views respectively. It can be observed from Figure 4 that the machining 

topography will be very complex when the temperature effects are considered. In return, the 

thermal expansion and thermal bending affect the cutting force. It is a complex, back and 

forth cycle, which has to be simulated by interactive algorithm. 

2.3. Interactive algorithm for thermo-mechanical analysis 

The cutting forces depend on the chip thickness which is a function of the tool immersion 

angle. The tool immersion angle is a function of the part deflection which itself depends on 

the cutting forces[47]. The deflection is determined by the cutting force, as well as 

temperature distribution. The cutting forces depend on the chip thickness which is a 

function of the tool immersion angle, and the machining temperature is a function of the 

cutting speed, depth of cut and the feed. An iterative procedure is used to determine the 

milling error. The predicted deflection from CAE is used to identify the practical material 

volume that is removed during machining instead of the ideal one defined by CAM. The 

thermo-mechanical analysis is outlined in Figure 5. While milling a thin-wall workpiece, as 

soon as the cutter is engaged, the workpiece deflects to a new position, and the cutting 

temperature also changes at the same time. In more detail, the tool-workpiece intersection 

line can be used as an example to explain the impact on the cutting force and deflection[16]. 

 

Figure 5. Flowchart of complex surface machining based on thermo-mechanical analysis 

Although commercial FEA softwares are also used to simulate manufacturing processes, 

they cannot be solely used to simulate multi-step cutting processes of thin-wall parts. The 

main difficulty is that material removal and remeshing of part model are very complex for 

the multi-step processes, and all these FEA softwares do not integrate an appropriate 

theoretical force model for workpiece/tool deflection prediction, so varieties of models and 

software are involved[1]. There is a need to link the mainstream commercial FEA software 

with force prediction models, thermal prediction models and material removal models in 

order that data exchange among them can be achieved.  
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2.4. Error definition and thermo-mechanical deflection 

The surface dimensional error is the normal deviation of the actual machined surface from 

the desired machined surface. For example, at point P  in Figure 6, the corresponding 

surface dimensional error is , ,P t P f Pe    , where ,t P  and ,f P  are the normal projections 

of the temperature- and force-induced deflection corresponding to Point P , respectively. 

For the convenience of study, the distance between the initial surface to be machined and 

the desired machined surface is named as the nominal radial depth of cut symbolized by 

NR . In actual machining, to ensure that the surface dimensional error does not violate the 

tolerance, AR  is often specified to be different from NR ( A NR R )[3]. In this case, 

, ,P t P f Pe     has to be adjusted to the calculation of surface dimensional error 

 , ,P t P f P N Ae R R      (14) 

Note that NR  and AR  are the nominal and specified radial depth of cut, respectively. For a 

certain surface generation line, the steps adopted to calculate the error distributions can be 

found in Ref.[3].  

 

Figure 6. Definition of the surface dimensional error 

2.5. Examples of thermomechanical models 

For simplification the part is assumed to be a thin-wall rectangular workpiece. The required 

machined profile is a flat surface parallel to the plane OXY . During milling, the workpiece 

deflection in its thickness direction has a significant impact on forming the surface profile 

error. The contributions of the workpiece deflection in the feed direction and the tool axial 

direction can be ignored. Therefore, the investigations focus only on error prediction in y-

axis direction. The simulations were based on clamped-free-free-free cantilever plates with 

dimension 3150 120 5mm  and Aluminium alloy 6063 T83. The quasi-static cutting force is 

treated as a moving-distributed load acting on the workpiece-tool contact zone in the 

milling process. To compute the workpiece/tool response to the cutting force, the continuous 

machining process was simulated by multi-step cutting processes[18]. Comsol is employed 

to estimate the force- and temperature-induced deflection. 
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The input to finite element model is the chip-related cutting force and temperature, and a set 

of parameters describing material properties, boundary conditions and other constraints. In 

order to simplify the complex simulation, we employ an assumption that the instantaneous 

stiff variation due to material removal will be not taken into account. To compute the 

workpiece response, the continuous machining process was simulated by multi-step cutting 

processes. During machining, the tool moves along the machining surface. Here, we took a 

different approach that uses a moving coordinate system fixed at the tool axis. After making 

the coordinate transformation, the heat transfer problem becomes a stationary convection-

conduction problem in COMSOL. With the workpiece undergoing deformation, the cutting 

force is also changing considerably. These changes is taken into account by computing the 

cutter on a moving mesh attached to the workpiece. 

2.5.1. Machining based on a designed tool path 

The results based on the rigid force model are discussed. Supposed that the force is 
20.23 /N mm , the temperature is 1200℃, and the two loads act on the interface workpiece 

and cutter at neighborhood of 75x mm  of the workpiece. It can be noted that the 

maximal deflections are 0.348mm and 0.384mm in Figure 7-10 in the positive direction 

and 1.5mm in the passive direction, respectively. Figure 9 is the force-induced and 

temperature-induced deflection of the top edge of the workpiece. It can be observed that 

the deflections at 75x mm  in the two figures have different directions. The force-

induced deflection is along the positive direction, however the temperature-induced 

deflection along the passive direction. In reported studies, the force-induced and the 

temperature-induced deflection are investigated dividually, which will leads large error 

in machining. 

 

Figure 7. Deflection results of the rigid force model 
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Figure 8. Thermal deflection results 

 

 

Figure 9. Deflection of the top edge of the workpiece due to force and temperature 

2.5.2. Machining based on flexible force model 

Figure 10 is the results based on the flexible force model. The maximal deflection is 

0.278mm. Comparing with Figure 7, one can observe that the max stress and the max 

deflection in Figure 10 are all smaller. The simulation shows the deflection of workpiece 

affect the cutting force, and the cutting force also affect the deflection in return. We can get 

the following conclusion: (1) if the workpiece is machined based on CAM, there exists large 

errors, and (2) the prediction from the flexible force model is smaller than that from the rigid 

force model. Obviously, the flexible force model is closer to the real machining that the rigid 

force model. The temperature is not considered in both models. 
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Figure 10. Stress and deflection results of the flexible force model 

2.5.3. Machining based on thermo-mechanical analysis 

The results plotted in Figure 11 and Figure 12 are based on the thermo-mechanical analysis. 

The maximal deflection in Figure 11 is 0.527mm. It is larger than the deflection in the rigid 

force model and the flexible force model, but smaller than the sum of 0.278mm of the 

flexible force model and 0.384mm of the temperature-induced deflection. So the thermo-

mechanical model is not a simple combination of the flexible force model and the thermal 

deflection. The temperature has heavy effect on the deflection that the curve in Figure 12 is 

very similar with the curve in Figure 9. In practical error compensation, there will overcut or 

undercut if the force and the temperature studied separately. In order to reduce the 

machining error, it is important to reduce the cutting temperature during machining.  

 

Figure 11. Deflection results of the thermo-mechanical analysis 
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Figure 12. Deflection of the top edge of the workpiece due to thermo-mechanical action 

3. Stability analysis of machining of thin-wall parts [49] 

3.1. Milling dynamics 

The standard two degree of freedom milling process is shown in Fig.1. The tool is assumed 

to be compliant relative to the rigid workpiece. The vibration is excited by the summation of 

cutting force. The governing equation of motion has the following form 

 0( ) ( ) ( ) ( ) ( ( ) ( )) ( )ct t t t b t t t b     Mx Cx Kx K x x f   (15) 

where, 
0 0 0

, , 
0 0 0

x x x

y y y

m c k

m c k

     
       
          

M C K  and F  are the modal mass, damping, 

stiffness, and cutting force matrices, respectively. The terms ,x ym , ,x yc , ,x yk and ,x yF  are the 

corresponding components in the flexible directions of the system. b  is the axial depth of 

cut. 60 N    is the tooth passing period in seconds, in which N  is the number of teeth 

on the cutting tool and   the spindle speed in rpm. ( ) ( ) ( )
T

t x t y t   x  is the dynamic 

response vector and ( ) ( )t t  x x  the dynamic chip thickness, as shown in Figure 13. 

h

( ) ( )h t t   x x

xk

xc

yk yc

 

Figure 13. Dynamic chip thickness 
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cK  is a matrix given as follows, which represents the component of cutting forces that 

depend on the position vector 

 
2 2

2 2
1

( ) [ ( )]
N

t n t n
c j

j t n t n

K sc K s K c K sc
t g t

K s K sc K sc K c




    
  

   
K  (16) 

where tK  and nK  are the tangential and normal cutting force coefficients components, 

respectively. sin ( )js t , cos ( )jc t  and the function [ ( )]jg t  acts as a switching function, 

which is equal to 1 if the thj  tooth is active and 0 if it is not cutting. 

 
 1     ( )

[ ( )]
 0     otherwise

e j a

j

t
g t

  


   


 (17) 

where e  and a  are the angles where the thj  tooth enters and exits the cut, respectively. 

For down-milling operation, a  , for up-milling, 0e  . Note that the entry and exit 

angles may vary due to heavy vibrations of the tool. This effect is neglected here, and the 

angles e  and a  are approximated by constant values as it is usually done in the literature. 

( )o tf  is the stationary cutting force vector ( zf  is the feed per tooth): 

 
2

2
( ) t n

o z

t n

K sc K s
t f

K s K sc

 
  

   
f  (18) 

3.2. Deterministic model for predicting milling stability and calculating SLE 

Here the TFEA is introduced for brevity as a basis for the further uncertain analysis. The 

initial work of applying TFEA to the delay equations can be found in Ref. [5]. The main idea 

of TFEA is that the dynamic behavior of the milling process is governed by TFEA as a 

discrete linear map which relates the vibration response while the tool tooth is engaged in 

the cut, which depends on previous tooth passages and therefore includes the time delay  , 

to free vibration while the tooth is not engaged in the cut. The dynamic map is expressed as 

 
1n n

q q

q q


          
      

A B
 

 (19) 

where A is the state transition matrix, the size of which depends on the number of time 

finite elements and polynomial order representing one time period. B  is a vector that 

depends on the process parameters. q  and q  are the sets of x  and y positions and 

velocities for all nodal times in one tooth passage, respectively. Stability of the milling 

process is determined from the eigenvalues of A , i.e. ( ) A . The maximum magnitude of 

the map eigenvalues is described by 

 max( ) max k
k

 A  (20) 
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where k  denotes the thk  eigenvalue of the dynamic map matrix A , which is a function of 

the cutting conditions. Unstable conditions exist if  

 max( ) 1 A  (21) 

The stability boundary is defined by the boundary curve of axial depth b  and spindle speed 

 . A combination of b and   values below the stability boundary, limb , gives stable 

cutting conditions, whereas a combination above the stability boundary leads to an unstable 

cut. The stability boundary corresponds to the cutting conditions at which  

 max lim( ( , )) 1b  A  (22) 

When the milling process is stable, SLE can be obtained from fixed points of the dynamic 

map as given in Eqs. (21): 

 

1 *n n
q q q

q q q


                
            

 (23) 

Substituting Eqs.(23) into Eqs.(19) gives the solution of fixed point map: 

 

*

1( )
q

q
     

  
I A B


 (24) 

The solution of fixed point displacement can be obtained and used to specify SLE as a 

function of cutting parameters. 

 

Figure 14. Nyquist plot of FRF of spindle-tool system with uncertainty regions[51] 
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3.3. Upper and lower bounds of Lobe diagram and SLE 

Since the uncertainties occur in the experimental modal analysis, the measured values for 

the structural parameters given in Eq.(15) are different from the actual ones. Much 

experiments had been done so that the errors can be observed, see Ref.[50, 51]. A detailed 

study was carried out in the work[51] to discuss the modal test. As shown in Figure 14, 

Nyquist plot of FRF of the spindle-tool system with uncertainty regions was given. 

In this section, we address the uncertainty problems in model parameters, which are 

modeled as the interval parameters as follows: 

 ( ) ( ) ( ) ( ) ( ( ) ( )) ( )I I I
c ot t t t b t t t b     M x C x K x K x x f   (25) 

where parameters M , C  and K are assumed to be bounded in the intervals and can be 

stated as: 

       I I I  M M C C K K  (26) 

The problem can be formulated as given the uncertainties as shown in Eqs.(26) how to 

estimate the stability of the milling system and SLE (Eqs.(25)). Noted the linear transform 

matrix A  given in Eq.(19), the right eigenvalue problem can be stated as 

 Au u  (27) 

where   is the eigenvalue and u  the corresponding eigenvector. The accompanying left 

eignenvalue problem is 

 T A v v  (28) 

Combined Eqs.(27) and (28), we can obtain 

 T Tv Qu v u  (29) 

For a parameter z , i.e., a spindle-tool modal parameter or a part geometrical one, the 

sensitivity of system eigenvalue with respect to z , z   can be expressed as follows 

 
T

Tz z

 


 
v A

u
v u

 (30) 

where z A , the derivative of the matrix A  is obtained by the central difference method. 

So the sensitivity expression in Eq.(30) can be treated as a semi-analytical one[52]. It should 

be noted that 

 
2 '

max max max    (31) 

where '
max is the complex conjugate of max , then 
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'
'max max

max max
max

max2
z z

z

 
 



 
  


 (32) 

Substituting Eq.(30) into Eq.(32), we can get the explicit expression for max z  . More 

details of sensitivity of stability boundary, especially the error analysis can be referred with 

the reference[52]. When there is a perturbation for the milling system parameter z , i.e., 

z z z , the increment of max  is 

 max z
z


 





 (33) 

Denote max
U  and max

L  the upper and lower bounds of the eigenvalues of milling systems, 

respectively. They read 

 
max max max

min max max

max{ ,   }

min{ ,   }

U

L

    

    

  

  
 (34) 

Then the upper and lower bounds of the milling stability Lobes, Uc  and Lc  can be obtained 

as follows 

 max lim

max lim

 when  ( , ) 1

  when  ( , ) 1

U L

L U

c b

c b





  


 
 (35) 

The central difference method used for the sensitivity analysis of system eigenvalues can be 

also applied to the sensitivity analysis of SLE. Thus we get the upper and lower bound of 

SLE, i.e. U
SLEf  and L

SLEf . The detailed discussions are omitted here. 

3.4. Robust machining parameters optimization 

In general, a deterministic cutting parameters optimization problem can be stated as 

follows: 

 

 
max

0

min  ( , ),  

( ( , )) 1
s.t.  

SLEf b

b

 

  
  

A  (36) 

where the optimization objects are to minimize SLE and maximize the spindle speed, and 

constraint conditions are to keep the milling process stable and the spindle speed is less than 

the predefined one, which is set by the spindle system and tool suppliers. Since there are 

uncertainties between the real structure and the model, the predicted performance including 

the milling stability and SLE will not be guaranteed. When the uncertainties exist, as given 

in Section 5, the optimized machining parameters, i.e. axis depth b and spindle speed   
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obtained from the deterministic optimization formulation (36) cannot guarantee the stability 

of the milling process, and minimization of SLE and maximization of spindle speed cannot 

be achieved. As a comparison, we give a formulation of robust machining parameters 

optimization as follows: 

 

 
max

0

min  max ( , ),

( ( , )) 1
s.t.  

SLE

U

f b

b

 

  

  

A   (37) 

where the optimization object is to minimize the maximal SLE and maximize the spindle 

speed, and constraint conditions are to keep the machining parameters b and   below the 

lower bound of Lobe diagram given by max( ( , )) 1U b  A  and the spindle speed is less than 

the predefined one. The formulation of robust machining parameters optimization ensures 

the machining process stable and can lead to minimization of SLE under uncertainties. 

3.5. Implementation of robust optimization formulation 

The robust optimization formulation presented in Eqs.(37) can be transformed into the 

sequential optimization ones, that is: 

 max

0

min  max ( , )

( ( , )) 1
s.t.  

  1,2,

for series of 

SLE

U

i

i

f b

b

i k





  

   

  

A


 (38) 

The optimization problem given in Eq.(38) is solved by the augmented Lagrangian function 

method. The basic idea of this method is that it transforms the nonlinear optimization 

problem into an unconstrained optimization one by introducing a penalty function, named 

augmented Lagrangian function[53]. The augmented Lagrangian function ( , ; )AL x    

achieves these goals by including an explicit estimate of the Lagrange multipliers   in the 

objective. The augmented Lagrangian function can be defined as 

 2 2
1 1 2 2 1 2

1
( , ; ) ( ) [ ] ( )

2A SLEL f c c c c   


    x x  (39) 

where 1 2, , ( ),
T

ib c l c       x x , ( )l x  is a cubic polynomial curve to interpolate the 

obtained Lobe diagram. It can be easily to obtain the differentiation of the augmented 

Lagrangian function with respect to the machining parameters, ( , ; )AL  x x . Then we can 

obtain the following algorithmic framework. 

Algorithm: the augmented Lagrangian function method. 

Step 0: Given initial points 0x and 0 , 0 0  , tolerance 0  ; 

Step 1: Find an approximate minimizer kx  of ( , ; )A k kL  x , i.e. arg  min ( , ; )k A k kL  x x ; 
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Step 2: If ( , ; )A k kL    x x , set 1k k  and update Lagrange multipliers 

1 ( )k k i k kc x      1,2i   to obtain 1k   and go to Step 1; else exit and report the 

minimizer *x . 

3.6. Experimental verification 

In this section, experiments of cutting parameters optimization are carried out to verify the 

numerical optimization modeling results. First the modal shape parameters of the spindle-

tool system are identified, with up and lower bounds, and then the optimization modeling 

results are presented by using the system parameters as input parameters. As a 

comparison, the deterministic optimization results are also presented. With the optimized 

machining parameters obtained from the robust optimization formulation and 

deterministic one, cutting experiments are implemented to check if the optimized cutting 

parameters are really “optimized”, which means there is no chatter arising with the 

optimized spindle speed. 

3.6.1. System parameters identification 

The system parameters as input variables to the optimization formulations are the 

structural dynamics parameters, i.e. modal shape parameters of the spindle-tool system. 

An impact hammer test is implemented to obtain the structural dynamics parameters of 

spindle-tool system. To obtain a reasonable interval, normally the repeated modal hamper 

impact experiments (see Fig.3) are necessary. Based on these experimental results, the 

modal parameters are identified by a Rational Fraction Polynomial (RFP) method[54], as 

given in Figure 16 and Figure 17. The mean values with upper and lower bounds for the 

modal parameters are given as follows (Table 1), which are derived from the repeated 

modal hamper impact experiments. xM and yM (kg) are the modal mass in x and y 

directions, respectively. x and y (kg/s) are the modal damping coefficients in x and y 

directions, respectively. xK and yK (MN/m) are the modal stiffness, in x and y directions, 

respectively.  

 

Figure 15. Experiment setup for modal shapes of spindle-tool system 
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Figure 16. Fitting of mode parameters of tool system in X-axis 

 

Figure 17. Fitting of mode parameters of tool system in Y-axis 

xM
 yM  x y  xK yK  

0.7769E-2 

0.7473E-2 

0.7709E-2 

0.6499E-2 

4.0385% 

4.1938% 

6.0179% 

5.3940% 

0.6723E6 

0.6437E6 

0.6868E6 

0.5664E6 

Table 1. Modal parameters of spindle-tool system 

The tool for the simulation and experiments is a 10mm cylindrical cutter with 4-tooth and 

the cutter parameters are shown in Table 2. 

 

Radius 

(mm) 

Number of tooth Helix angle 

(degree) 

Edge length 

(mm) 

Total length 

(mm) 

Material 

10 4 30 8.5 33 Hard alloy 

Table 2. Cutter parameters 
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3.6.2. Modeling results 

In the experiment of machining of an impeller blade(single blade), the upper limit of the 

spindle speed is 20000rpm. The cutting depth is 0.560mm, which is derived from the 

geometry of the semi-finished and finished workpieces and the given tool path[55]. 

In table 1, we have presented the upper and lower bounds of the modal shapes parameters 

of spindle-tool system with mean values. The deterministic Lobe diagram is calculated by 

the TFEA[24]. Using the proposed method given in Section 4, we can obtain the upper and 

lower bounds of the boundary curve of Lobe diagram and SLE, as given in the upper part of 

fig.8. After the lower bound of the Lobe diagram and upper bound of SLE have been 

obtained, they are selected as the constraint conditions in the robust optimization 

formulations given as: 

 
max

min  max ( , )

( ( , )) 1
s.t.  for series of 20000

  1,2,

SLE

U

i
i

f b

b

i k





    
   

A


 (40) 

As a comparison, the mean values of the modal shapes parameters and SLE are adopted in 

the deterministic ones, stated as: 

 max

min  ( , )

( ( , )) 1
s.t.  for series of 20000

  1,2,

SLE

i
i

f b

b

i k




       

A


 (41) 

We solve the sequential optimization formulations as shown in Eqs. (40)-(41) by setting the 

spindle speed 20000 100 * ( 1),   1,2, 51i i i      . That means we are interested in the 

spindle speed interval from 15000rpm to 20000rpm, and in this interval the optimization 

formulations are solved for 51 times. Augmented Lagrangian function method is adopted to 

solve the above two constrained optimization problems and the detailed procedures are 

given in Section 6. The modeling results are shown in Table 3. 

 SLE Spindle speed 

Deterministic optimization [1.88E-5m, 2.08E-5m] 17900 rpm 

Robust optimization 1.99E-5 m 19100 rpm 

Table 3. Comparison of the optimization results 

3.6.3. Experiment of machining stability 

The cutting experiments of impeller blade milling are implemented in Mikron HSM 600U, a 

five-axis NC machining center. Experiment setup including the machining setup and 

Labview signal acquisition interface are shown in Figure 18. First, we prepare two semi-

finished blades, using the same workpiece geometry, tool path as well as machining 

parameters to ensure that the two blades are almost the same. Then the two semi-finished 

blades are used for the following finish milling with different spindle speeds. 
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The optimized spindle speeds derived from the robust and deterministic optimization 

formulations are used respectively to check the chatter occurrence. When the first blade is 

machined with spindle speed 19100 rpm, we observe that the milling process is stable and 

the quality of resulted workpiece is quite good, as shown in Figure 19(R). Then the second 

blade is machined and the spindle speed is set at 17900rpm, and the noise level dramatically 

becomes very high, which indicates the energy of the vibration at the frequencies related to 

chatter increases, see lower part of Figure 20. And we can see that chatter deteriorates the 

quality of the workpiece, as shown in Figure 19(L). 

Spindle speed (rpm) Resonance (Hz) Resonance source 

17900 1480 natural frequency of structures 

19100 1271 spindle revolution frequency 

Table 4. Resonances of sound pressure signal from different spindle speeds 

Further frequency response function (FRF) analysis of sound pressure signal indicates that 

when the spindle speed is at 17900 rpm, the resonance is about 1480Hz, which is 

approaching the first modal shape frequency of the spindle-tool system given by 
2

0 1 2   . This indicates the occurrence of chatter. And when the speed is 19100rpm, 

the resonance is about 1271Hz, which is the spindle revolution frequency and its higher 

harmonics 60k n , with k   and n  is the number of the tooth. We list the results in 

Table 4. From Table 4, we can see that the FRF analyses also suggest the chatter occurrence 

when the spindle speed is at 17900rpm and no chatter at 19100rpm. 

 

Figure 18. Experiment setup, (L)Machining setup (R)Labview signal acquisition interface 

 

Figure 19. Comparison of finished blades using different spindle speeds, (L) from deterministic 

optimization (R) from robust optimization 
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Figure 20. Signal of sound pressure with different spindle speeds. (U) Upper and lower bounds of Lobe 

diagram (L) Signal of sound pressure 

4. Conclusions 

In machining thin-wall workpieces, the temperature and force-induced deflection contribute 

significantly to the surface error. The proposed methodology is based on coupling effects 

between cutting forces and temperature and their induced deflection during machining. 

There is still a knowledge gap in identifying the impact of deflection on the process of metal 

removal, and hence there are not systematic approaches to modeling, prediction of the 

component errors due to thermo-mechanical deflection in thin-wall structures. And we 

develop a robust spindle speed optimization formulation. The quantitative analysis on how 

the uncertainties in milling process affect the milling stability and SLE are presented. 

Comparing with the traditional deterministic spindle speed optimization formulation, our 

model can take into account the uncertainties, i.e. modal shape parameters of spindle-tool 

system and the resulted optimized spindle speed ensures the milling stability. 
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