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Perfectly Matched Layer for Finite Element

Analysis of Elastic Waves in Solids

Koji Hasegawa and Takao Shimada

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/46162

1. Introduction

Numerical analysis of scattering and propagation of elastic waves in solids gives insight into

physical phenomena under operation of ultrasonic devices such as electromechanical filters

and resonators, nondestructive testing with ultrasonic waves and seismic prospecting. To take

anisotropy of solids and complex structures of composite solids into account, commercial

simulator based on the finite element method are available. Numerical models for finite

element analysis (FEA) must be bounded and infinite half spaces of models should be replaced

with finite domains and absorbing boundary conditions.

Perfectly matched layer (PMLs) is one of popular absorbing boundary conditions for

truncating the computational domain of open regions without reflection of oblique incident

waves. In 1994, Berenger invented a PML for electromagnetic waves in the finite difference

time domain (FD-TD) method by a splitting field method.[1] Because fields in Berenger’s

PML do not satisfy the Maxwell’s equations, two concepts have been introduced for

implementation in the finite element method (FEM) of electromagnetic wave problems:

the analytic continuation or the complex coordinate stretching[2, 3](CCS) and anisotropic

PMLs.[4] Nowadays PMLs for electromagnetic waves are widely used in the FD-TD method

and the FEM.

Extension of PMLs to elastic waves in isotropic solids in the Cartesian coordinate first

appeared in 1996.[5, 6] In the cylindrical and spherical coordinates, PMLs were presented by

using splitting field method in isotropic solids in 1999[7] and by using analytic continuation

in anisotropic solids in 2002.[8] Recently validity and usefulness of PMLs derived from the

analytic continuation in piezoelectric solids was demonstrated. [9–11] Hastings et. al.[5]

reported better performance of PMLs by the FD-TD method than the second-order absorbing

boundary condition (ABC) of Peng and Toksöz: in the range of the incident angle from 0◦ to

80◦ , reflection powers of S- or P-wave, which is excited by a pure S- or P-wave line source

©2012 Hasegawa and Shimada, licensee InTech. This is an open access chapter distributed under the
terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.
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and propagating in a two-dimensional infinite isotropic solid modeled by a rectangular solid

with its opposite sides attached sponge mediums and other sides imposed ABC or loaded

PMLs, from the PML side are suppressed below -45 and -80 dB with 8 and 16 grid spaces of

the PML region, respectively. On the other hand, reflection power level at the computational

domain edge imposed ABC is in the range of -90 dB to -10 dB. This implies that PMLs yield

more superior approximation of perfect matching than the ABC with thickening PML and

increasing the number of grid spaces.

We recommend that readers who are unfamiliar with PMLs consult Basu and Chopra[12]

about explanations and finite element (FE) implementation of PMLs for time-harmonic

elastodynamics, Michler et al.[13] about derivation of material constants of PML in FE method

by analytic continuation, and Taflove and Hagness[14] about PMLs for electromagnetic waves

in FD-TD method.

Although PML is one of attractive artificial materials, two questions of PMLs derived from the

analytic continuation are left: why are the particle displacements in the complex coordinate

identical to those in the real coordinate and why must we multiply stress tensors by the

Jacobian of the coordinate transformation?

For replying to the questions, we will examine a derivation of PMLs for elastic waves

in the Cartesian, the cylindrical and the spherical coordinates from the differential form

on manifolds. Our results reveal that the components of stress tensors and the particle

displacement vectors in the analytic continuation are not transformed to the real space.[15]

In addition, the rule for determining PML parameters in the Cartesian coordinate holds in the

cylindrical and spherical coordinates.[16]

Mathematical models of PMLs, which are given by differential equations and boundary

conditions, are exactly perfect matching medium. In numerical models, however, discretizing

PMLs changes phase velocities of propagating waves and generates reflection waves from the

PML region.[17] Furthermore, approximation of infinite regions with finite thick layers also

generates reflection waves from the PML terminal.[1, 17, 18]

Estimating matching performance and optimizing parameters of PMLs in a numerical domain

are required before solving problems. Chew and Jin investigated dependence of PML’s

performance on attenuation parameters of FE analysis of electromagnetic wave problems.[18]

For FD-TD method Collino and Monk also carried out such an investigation.[19] Recently,

Bermúdez et al. investigated absorbing functions for time harmonic Helmholtz equations in

the Cartesian and cylindrical coordinates under the condition of ignoring reflection caused

by FE-discretization and showed the advantages of non-integrable absorbing functions over

conventional functions of power series.[20, 21]

Most of these investigations of optimizing attenuation parameters of PML employed

numerical analysis of scattering problems in the two dimensions such as plane or cylindrical

wave scattering problems. For tackling optimization problem of PML parameters, plane wave

scattering problem is appropriate because required resource of computation is small. For

FEA, Chew and Jin[18] modeled scattering of plane waves as electromagnetic field analysis

in the thick layer in the one dimension. But this model has not been applied to elastic wave

scattering.

180 Finite Element Analysis – Applications in Mechanical Engineering
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In this chapter, we also examine PML performance of FE-models in the frequency range with

scattering problems of elastic waves in an isotropic solid as field analysis in the thick layer in

the one dimension. To the best of our knowledge, quantification of reflection power generated

by FE-discretization has not attracted attention. Recently, for electromagnetic waves, we

reported that the reflection power caused by discretization can be computed by the equivalent

transmission line with its impedance and propagation constant determined by discretized

wave numbers.[15] Because, for elastic waves, the transfer matrix is popular, we explain the

reflection from PMLs by the transfer matrix of elastic waves, and confirm that numerical

results of FE-models may be predicted by replacement of propagation constants of elastic

waves in PML with discretized wave numbers.

2. Derivation of perfectly matched layers for elastic waves by using

complex coordinate stretching and differential form

2.1. Differential form

A particle displacement vector u, particle velocity vector v, density of momenta P, stress

tensor ¯̄T and displacement gradient tensor ¯̄F are given as follows:

u = ui ∂

∂xi
, (1)

v = vi ∂

∂xi
, (2)

P =
1

3!
Pi

αβγ

∂

∂xi
⊗ dxα ∧ dxβ ∧ dxγ, (3)

¯̄T =
1

2
Ti

αβ

∂

∂xi
⊗ dxα ∧ dxβ, (4)

¯̄F = Fi
α

∂

∂xi
⊗ dxα = du, (5)

where ∂
∂xi and dxi(i = 0, 1, 2) are the contravariant and covariant basis vectors, ⊗ and ∧

represent the tensor product and the cross product, respectively. d is the exterior differential

operator. Newton’s equation of motion is

d ¯̄T =
∂P

∂t
. (6)

Changing the coordinate gives relations of tensor components: for a tensor with a tensor type

of the contravariant of rank 1 and the covariant of rank q, V = V i
Xα1···αq

∂
∂Xi ⊗ dXα1 ∧ · · · ∧

dXαq = Vk
xβ1 ···βq

∂
∂xk ⊗ dxβ1 ∧ · · · ∧ dxβq , the relation of tensor components is

V i
Xα1···αq

=
∂Xi

∂xk

∂xβ1

∂Xα1
· · · ∂xβq

∂Xαq
Vk

xβ1 ···βq
. (7)
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Using CCS[2, 3, 8] given by Xi =
∫ xi

s̃i(τ)dτ =
∫ xi

s̃iR(τ) + js̃iI(τ)dτ with the two real

functions s̃iR(τ) and s̃iI(τ) , we have the relation

V i
Xα1···αq

= s̃i(x
i)
[

s̃α1(x
α1 ) · · · s̃αq(x

αq)
]−1

V i
xα1···αq

. (8)

Here j is the imaginary unit.

2.2. PMLs in the Cartesian, the cylindrical and the spherical coordinates

In the complex coordinate stretching (CCS), we consider that the real coordinate (x0, x1, x2)
is (x, y, z), (r, θ, z) or (r, θ, φ) for the Cartesian, the cylindrical or the spherical coordinate,

respectively. Assuming that the same constitutive equations in the real Cartesian, cylindrical

and spherical coordinate exist in the complex coordinate, (X0, X1, X2), we have

Pc = ρv c, (9)

Tc
ij = CijklS

c
kl

= Cijkl(Fc
kl + Fc

lk)/2

= CijklF
c
kl. (10)

Here, the superscript c denotes the value in the complex coordinate and the mass density

ρ and the stiffness Cijkl (i, j, k, l = X0, X1, X2) are the values corresponding to original

material parameters, mass density and stiffness constants, of its PML in the Cartesian, the

cylindrical and the spherical coordinates. Using eq. (8) to eqs.(2)-(5), and recalling that the

base differentials dξ, dη and dζ of the general orthogonal coordinate system (ξ, η, ζ) are dual

to the unit vectors ξ̂
hξ

,
η̂
hη

and ζ̂
hζ

, we have

vc
i = sivi (no summation), (11)

Pc
i =

si

s0s1s2
Pi (no summation), (12)

Tc
ij =

sisj

s0s1s2
Tij (no summation), (13)

Fc
ij =

si

sj
Fij (no summation). (14)

Here si =
hc

i
hr

i
s̃i with hr

i and hc
i being scale factors of general orthogonal coordinate systems

(x0, x1, x2) and (X0, X1, X2), respectively. Note that the scale factors hi are given by follows:

in the cylindrical coordinate (r, θ, z) h0 = 1, h1 = r, h2 = 1 , and in the spherical coordinate

(r, θ, φ) h0 = 1, h1 = r, h2 = r sin θ. In addition, in the Cartesian coordinate, h0 = h1 = h2 = 1.

The quotient rule and eqs. (9)- (14) yield PML material constants: the mass density ρPML is

ρPML = s0s1s2ρ (15)
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and the stiffness is

CPML
ijkl =

s0s1s2sk

sisjsl
Cijkl (no summation). (16)

Here, s0 = s̃0, s1 = s̃1
R
r , s2 = s̃2 in the cylindrical coordinate system (r, θ, z) with its complex

coordinate (R, Θ, Z), and s0 = s̃0, s1 = s̃1
R
r , s2 = s̃2

R sin Θ
r sin θ in the spherical coordinate system

(r, θ, φ) with its complex coordinate (R, Θ, Φ). In addition, si = s̃i in the Cartesian coordinate

system.

Eqs. (15) and (16) show that PML parameters for elastic waves in solids in the cylindrical and

spherical coordinates may be calculated by the same procedure in the Cartesian coordinate.

2.3. Derivation of PML constants by the analytic continuation

For simplicity, we present a procedure of deriving material constants in only cylindrical

coordinates by the analytic continuation[8] below. Note that in spherical coordinates the same

procedure may be applied. We recommend that the reader who is interesting in the procedure

consult Zheng and Huang.[8]

First we consider Newton’s equation of motion. In a cylindrical coordinate (r, θ, z) , the

governing equations are

−ρω2ur =
1

r

∂

∂r
(rTrr) +

1

r
(

∂Trθ

∂θ
+ r̂ • ∂θ̂

∂θ
Tθθ) +

∂Trz

∂z
, (17)

−ρω2uθ =
1

r

∂

∂r
(rTθr) +

1

r
(θ̂ • ∂r̂

∂θ
Trθ +

∂Tθθ

∂θ
) +

∂Tθz

∂z
, (18)

−ρω2uz =
1

r

∂

∂r
(rTzr) +

1

r

∂Tzθ

∂θ
+

∂Tzz

∂z
. (19)

Here, we use phasor notation. The time dependences of the fields are exp(jωt) where ω is

angular frequency. Applying CCS with a complex coordinate (R, Θ, Z), multiplying the CCS

equations by s0s1s2 and using the assumption of uc
i = ui, R̂ = r̂, Θ̂ = θ̂ and Ẑ = ẑ, we get the

governing equations in the PML:

−ρPMLAω2ur =
1

r

∂

∂r
(rs1s2Tc

rr) +
1

r
(

∂(s0s2Tc
rθ)

∂θ
+ r̂ • ∂θ̂

∂θ
(s0s2Tc

θθ)) +
∂(s0s1Tc

rz)

∂z
, (20)

−ρPMLAω2uθ =
1

r

∂

∂r
(rs1s2Tc

θr) +
1

r
(θ̂ • ∂r̂

∂θ
(s0s2Tc

rθ) +
∂(s0s2Tc

θθ)

∂θ
) +

∂(s0s1Tc
θz)

∂z
, (21)

−ρPMLAω2uz =
1

r

∂

∂r
(rs1s2Tc

zr) +
1

r

∂(s0s2Tc
zθ)

∂θ
+

∂(s0s1Tc
zz)

∂z
. (22)

Here, the mass density of PML is defined as ρPMLA = s0s1s2ρ. When we rewrite components

of stress tensors in the PMLs as TPMLA
ij = s0s1s2

sj
Tc

ij, we may identify eqs.(20)∼(22) to

eqs.(17)∼(19).
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Next we consider the displacement gradient ∇uc = [Γc
kl] in the complex coordinate (R, Θ, Z).

Using definition du = ∇u • (x̂ihidxi) and the assumption of uc
i = ui, R̂ = r̂, Θ̂ = θ̂, Ẑ = ẑ,

and applying CCS with a complex coordinate (R, Θ, Z), we have the relation:

∇uc =

⎡

⎢

⎢

⎢

⎢

⎣

∂uc
R

∂R
1
R

(

∂uc
R

∂Θ
+ R̂ · ∂Θ̂

∂Θ
uc

Θ

)

∂uc
R

∂Z

∂uc
Θ

∂R
1
R

(

Θ̂ · ∂R̂
∂Θ

uc
R +

∂uc
Θ

∂Θ

)

∂uc
Θ

∂Z

∂uc
Z

∂R
1
R

∂uc
Z

∂Θ

∂uc
Z

∂Z

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

1
s0

∂ur
∂r

1
s1

1
r

(

∂ur
∂θ + r̂ · ∂θ̂

∂θ uθ

)

1
s2

∂ur
∂z

1
s0

∂uθ
∂r

1
s1

1
r

(

θ̂ · ∂r̂
∂θ ur +

∂uθ
∂θ

)

1
s2

∂uθ
∂z

1
s0

∂uz
∂r

1
s1

1
r

∂uz
∂θ

1
s2

∂uz
∂z

⎤

⎥

⎥

⎥

⎦

. (23)

Hence we have Γc
kl =

1
sl

Γkl .

Using the quotient rule and the constitutive equation, Tc
ij = CijklΓ

c
kl, we get the constitutive

equation of the PML in the real coordinate (r, θ, z): TPMLA
ij = s0s1s2

sjsl
CijklΓkl. Therefore, we may

define the stiffness of the PML derived by the analytic continuation: CPMLA
ijkl = s0s1s2

sjsl
Cijkl.

2.4. Comparison with PML material constants derived from differential forms

and the analytic continuation

By the analytic continuation, Zheng and Huang[8] derived the mass density and stiffness of

PML in the cylindrical and spherical coordinates: ρPMLA = s0s1s2ρ and CPMLA
ijkl = s0s1s2

sjsl
Cijkl.

The mass density agree with our result, eq. (15), because multiplying the stress tensors by

the Jacobian of the coordinate transformation, s0s1s2 , adjusts the mass density. We note that

the form of eq. (15) is also derived from eq. (6) with the tensor type of mass density being

covariant of rank 3, i.e. 3-form. The stiffness is different from eq. (16) because in the analytic

continuation, the manipulation of the coordinate transformation corresponding to the part of

stress tensor and the particle displacement vector, contravariant of rank 1, is excluded. This

fact can be confirmed by the derivation procedure presented in the previous section for the

cylindrical coordinate:we put TPMLA
ij = s0s1s2

sj
Tc

ij and use the assumption ui = uc
i .

To show a difference between PML material constants, we consider an isotropic solid with

following stiffness constants in the Cartesian coordinate (x0, x1, x2): Cijkl = λδijδkl + μ(δikδjl +
δilδjk). Here, λ and μ are the Lamé constants of an isotropic solid, the subscripts i, j, k and l

denote the xi-, xj- , xk- and xl-axis, respectively, and δij is the Kronecker delta. Components

of stiffness tensors derived from the differential form and analytic continuation, CPML
ijkl and

CPMLA
ijkl , respectively, are given by

CPML
ijkl =

[

(
λ

s2
i

δijδkl+
μ

s2
j

δikδjl+
μ

s2
i

δilδjk

]

s0s1s2 (no summation), (24)
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i j

Tij

s0s1s2

CPML
ijkl :differential form CPMLA

ijkl :analytic continuation

0 0 1
s2

0
[(λ + 2μ)u0,0 + λ(u1,1 + u2,2)] (λ + 2μ) u0,0

s2
0
+ λ

s0
( u1,1

s1
+ u2,2

s2
)

1 1 1
s2

1
[(λ + 2μ)u1,1 + λ(u2,2 + u0,0)] (λ + 2μ)

u1,1

s2
1
+ λ

s1
(

u2,2

s2
+

u0,0

s0
)

2 2 1
s2

2
[(λ + 2μ)u2,2 + λ(u0,0 + u1,1)] (λ + 2μ)

u2,2

s2
2
+ λ

s2
(

u0,0

s0
+

u1,1

s1
)

1 2 μ
(

u1,2

s2
2
+

u2,1

s2
1

)

μ
s2

(

u1,2

s2
+

u2,1

s1

)

2 1 μ
(

u1,2

s2
2
+

u2,1

s2
1

)

μ
s1

(

u1,2

s2
+

u2,1

s1

)

2 0 μ
(

u2,0

s2
0
+ u0,2

s2
2

)

μ
s0

(

u2,0

s0
+ u0,2

s2

)

0 2 μ
(

u2,0

s2
0
+ u0,2

s2
2

)

μ
s2

(

u2,0

s0
+ u0,2

s2

)

0 1 μ
(

u0,1

s2
1
+

u1,0

s2
0

)

μ
s1

(

u0,1

s1
+

u1,0

s0

)

1 0 μ
(

u0,1

s2
1

+ u1,0

s2
0

)

μ
s0

(

u0,1

s1
+ u1,0

s0

)

Table 1. Components of a stress tensor in a PML material of an isotropic solid in the Cartesian
coordinate.

CPMLA
ijkl =

[

λ

sisk
δijδkl+

μ

s2
j

δikδjl+
μ

sisj
δilδjk

]

s0s1s2 (no summation). (25)

Table 1 shows all components of the stress tensor computed with CPML
ijkl and CPMLA

ijkl . CPMLA
ijkl

gives T̃ij �= T̃ji (i �= j) and we predict that rotational forces may be observed. With CPML
ijkl ,

however, we have a symmetric stress tensor, Tij = Tji (i �= j).

3. Reflection from PMLs discretized for finite element models in the

frequency domain

We consider a plane elastic wave propagating in a half infinite isotropic solid attached with

its PML backed with a vacuum region as shown in Fig.1. Here θ is the incident angle, θp and

θs are propagation angles of P-waves and SV- or SH-waves, L is thickness of the PML, ki and

kr,m (m = 0, 1, 2) are wave vectors of the incident wave and reflected P-, SV- and SH-waves,

respectively.

We use the phasor notation and assume that the time dependences of all fields are exp(jωt),
where j is the imaginary unit and ω is the angular frequency.

When the stiffness component of the isotropic solid Cijkl (i, j, k, l = x, y, z) is given by Cijkl =
λδijδkl + μ(δikδjl + δjlδik) where λ and μ are the Lamé constants and δij is the Kronecker delta,

the stiffness component of its PML CPML
ijkl is

CPML
ijkl = (

λ

s2
i

δijδkl +
μ

s2
j

δikδjl +
μ

s2
i

δilδjk)sxsysz. (26)

185Perfectly Matched Layer for Finite Element Analysis of Elastic Waves in Solids
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P-wave

θ
ki

kr,0

x=0 x=L

Isotropic solid PML vacuum

L

θp

θskr,1or kr,2

x

y

z

SV- or SH-wave

Figure 1. Reflection by the plane boundary between an isotropic solid and its PML.

Here si (i = x, y, z) is a coordinate stretching factor of i-direction.[2] The mass density of the

PML ρPML is given by

ρPML = sxsyszρ. (27)

Here ρ is the mass density of the isotropic solid. For examining absorbing performance of

PMLs in the x direction, taking an assumption of considering fields being consisted by plane

waves propagating on the x-y plane, we have a differential equation in one variable x: from

Newton’s equation of motion and constitutive equation we get the differential equation in the

PML

CPML
ijkl

∂

∂xj

(

∂uk

∂xl

)

= −ω2ρPMLui (28)

where ui is the component of the particle displacement in the i-direction (i = x, y, z).

In this case, we may choose the coordinate stretching factor as follows:

sx = 1 − jsxI(x),

sy = sz = 1. (29)

Here sxI(x) is the imaginary part of sx and therefore a real function, which controls absorbing

performance of propagating waves in PMLs.

Boundary conditions at the interface of isotropic solid and PML, x = 0, are the nonslip

condition and the continuous condition of the normal component of the stress:[15]

ui(−0) = siui(+0), (30)

Tix(−0) =
sisx

sxsysz
Tix(+0), i = x, y, z. (31)

At the terminal of PML, x = L, the boundary condition is

sisx

sxsysz
Tix(L) = 0, i = x, y, z. (32)

186 Finite Element Analysis – Applications in Mechanical Engineering
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3.1. Numerical procedure

3.1.1. Finite element analysis

Because finite element formulation of a thick plate with line elements as shown in Fig. 2 is

well known and we use COMSOL MultiPhysics for FEA, we explain the Robin condition at

x = 0 and a formula for reflection coefficients. In the half isotropic solid, the field distribution,

h

1 2 n n+1

Figure 2. Line element with (n+1)-nodes.

components of the particle displacement and stress, can be expressed by superposition of

incident and reflected plane waves:

u(r) = ∑
l

Rlul(r)e
−jkr,l·r + uie

−jki·r. (33)

Where Rl , kr,l, ul(l = 0, 1, 2) and ui are reflection constants, the wave vector, the particle

displacement vectors of reflection P-, SV- and SH-waves and the incident wave respectively,

which are given by the solutions of the Christoffel equation for the isotropic solid. When

r = 0, we have

[u(−0)] = [L]

⎡

⎣

R0

R1

R2

⎤

⎦+ [ui(−0)], (34)

[L] =

⎡

⎢

⎢

⎣

x̂ · u0 x̂ · u1 x̂ · u2

ŷ · u0 ŷ · u1 ŷ · u2

ẑ · u0 ẑ · u1 ẑ · u2

⎤

⎥

⎥

⎦

, (35)

[u(x)] = [x̂ · u(x) ŷ · u(x) ẑ · u(x) ]T (36)

where the superscript T denotes transpose and î(i = x, y, z) is the unit vector of the i-direction.

Derivative of (33) with respect to x is

∂

∂x
u = ∑

l

(−jkr,l · x̂)Rlule
−jkr,l·r + (−jki · x̂)uie

−jki·r, (37)

and for r = 0 we have

⎡

⎣

R0

R1

R2

⎤

⎦ = [K]−1

⎛

⎜

⎜

⎜

⎝

jki · x̂

⎡

⎣

x̂ · ui(−0)
ŷ · ui(−0)
ẑ · ui(−0)

⎤

⎦+

⎡

⎢

⎢

⎢

⎣

∂x̂·u
∂x |x=−0

∂ŷ·u
∂x |x=−0

∂ẑ·u
∂x |x=−0

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

. (38)
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Here

[K] = −j

⎡

⎢

⎢

⎣

kr,0 · x̂x̂ · u0 kr,1 · x̂x̂ · u1 kr,2 · x̂x̂ · u2

kr,0 · x̂ŷ · u0 kr,1 · x̂ŷ · u1 kr,2 · x̂ŷ · u2

kr,0 · x̂ẑ · u0 kr,1 · x̂ẑ · u1 kr,2 · x̂ẑ · u2

⎤

⎥

⎥

⎦

. (39)

Using eqs.(34) and (38), we have

[u(−0)] = [L][K]−1

⎡

⎢

⎢

⎢

⎣

∂x̂·u
∂x |x=−0

∂ŷ·u
∂x |x=−0

∂ẑ·u
∂x |x=−0

⎤

⎥

⎥

⎥

⎦

+
(

[I] + jki · x̂[L][K]−1
)

⎡

⎢

⎢

⎣

x̂ · ui(−0)

ŷ · ui(−0)

ẑ · ui(−0)

⎤

⎥

⎥

⎦

. (40)

Equation (31) yields

∂[u]

∂x

∣

∣

∣

∣

x=−0

= [Ci1]
−1[Ct1]

∂[u]

∂x

∣

∣

∣

∣

x=+0

, (41)

[Ci1] =

⎡

⎢

⎣

λ + 2μ 0 0

0 μ 0

0 0 μ

⎤

⎥

⎦
, (42)

[Ct1] =

⎡

⎢

⎣

λ + 2μ 0 0

0 μ 0

0 0 μ

⎤

⎥

⎦
, (43)

[Ct1] =

⎡

⎢

⎣

λ + 2μ 0 0

0
sy

sx
μ 0

0 0 sz
sx

μ

⎤

⎥

⎦
. (44)

Substituting eqs. (30) and (41) into eq. (40), we get the Robin condition:

[L][K]−1[Ci1]
−1[Ct1]

∂[u]

∂x

∣

∣

∣

∣

x=+0

− [s][u(+0)]

= −
(

[I] + jkix [L][K]−1
)

[ui(−0)]. (45)

After we solve the distributions of the particle displacements in the PML by COMSOL

MultiPhysics, the reflection coefficients Rl(l = 0, 1, 2) are computed with the following
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Order of finite element Discretized wave number β̃PML

1 1
h cos−1

[

6−2(βPMLh)2

6+(βPMLh)2

]

2 1
2h cos−1

[

15−26(βPMLh)2+3(βPMLh)4

15+4(βPMLh)2+(βPMLh)4

]

3 1
3h cos−1

[

2800−11520(βPMLh)2+4860(βPMLh)4−324(βPMLh)6

2800+1080(βPMLh)2+270(βPMLh)4+81(βPMLh)6

]

4 1
4h cos−1

[

19845−148680(βPMLh)2+134064(βPMLh)4−28800(βPMLh)6+1280(kPMLh)8

19845+10080(βPMLh)2+3024(βPMLh)4+768(βPMLh)6+256(βPMLh)8

]

Table 2. Discretized wave number in PML.

relation derived from eq. (34):

⎡

⎣

R0

R1

R2

⎤

⎦ = [L]−1

⎛

⎝

⎡

⎣

sx 0 0

0 sy 0

0 0 sz

⎤

⎦ [u(+0)]− [ui(−0)]

⎞

⎠ . (46)

Here u(+0) and ui(−0) are particle displacements at PML’s incident side given by FEA

solution and known incident field vector of displacements.

3.1.2. Discretized wave number

The finite element approximation of the propagating elastic fields changes the propagation

constant given by the Christoffel equation, which is called the intrinsic wave number βPML,

to discretized wave number β̃PML. Table 2 shows discretized wave numbers for nodal finite

elements with the polynomial interpolate function as shown in Fig.2 after Scott[22]. Here β

and h are the x-component of the intrinsic wave number of P-, SV- or SH-wave propagating

in the PML and equal interval between nodes, respectively. Figure 3 shows the difference

of the discretized wave number and the intrinsic wave number as the function of the x-axis

propagation constant.

3.1.3. Transfer matrix analysis

Because the structure shown in Fig.1 is a layered structure where the propagation constants in

the isotropic solid and its PML are given as the intrinsic wave numbers and discretized wave

numbers respectively, we can compute the reflection coefficient by the transfer matrix.

In this section, we consider the fields composed of P- and SV-waves propagating on the x-y

plane with the same y-component ky of the P- and SV-wave numbers only since SH-waves

are not coupled with P- or SV-waves and SH-wave scattering problem is straightforward.

Assuming that field distributions do not vary in the z-direction, we have the particle

displacements in the solid:[15]

ux,m = e−jkyy

(

4

∑
i=1

Ai,m
fx,i

sx
e−jkx,isxx

)

, (47)
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Figure 3. Phase error and attenuation error as a function of 2π/(βh) for 1st-, 2nd-, 3rd-, and 4th order
elements.

uy,m = e−jkyy

(

4

∑
i=1

Ai,m fy,ie
−jkx,isx x

)

. (48)

Here, kx,i is the x-component of the intrinsic wave number for the isotropic solid and the

discretized wave number for the PML, the subscripts i = 1 and i = 3 denote P-waves

propagating to +x- and −x-direction respectively, i = 2 and i = 4 denote SV-waves

propagating to +x- and −x-direction respectively, and Ai,m(i = 1, 2, 3, 4, m = 0, 1) is the

amplitude at x = 0 in the isotropic solid (m = 0) or PML (m = 1). fx,i and fy,i are shown in

Table 3. Here θp and θs are angles between the x-direction and the wave vectors of P-waves or

SV-waves as shown in Fig. 1. In the isotropic region, we set sx = 1.

i 1 2 3 4
fx,i cos θp − sin θs − cos θp sin θs

fy,i sin θp cos θs sin θp cos θs

Table 3. Displacement directions of P- and SV-waves, fx,i and fy,i.

Using the boundary conditions at x = 0 and x = L, and eliminating Ai,1, we get the relation

[

A3,0

A4,0

]

=

[

X31 X32

X41 X42

] [

X11 X12

X21 X22

]−1 [
A1,0

A2,0

]

(49)

where [X] is the square matrix with four columns and rows given by

[X] = [Y0]
−1[s][Y1][T(L)][Y1]

−1[s]−1. (50)
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Here,

[s] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

sx 0 0 0

0 sy 0 0

0 0
sx

sysz
0

0 0 0
1

sz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (51)

[Y0] =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Y11,0 Y12,0 Y13,0 Y14,0

Y21,0 Y22,0 Y23,0 Y24,0

Y31,0 Y32,0 Y33,0 Y34,0

Y41,0 Y42,0 Y43,0 Y44,0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (52)

Y1i,0 = fx,i, (53)

Y2i,0 = fy,i, (54)

Y3i,0 = −j
(

kx,i(λ + 2μ) fx,i + kyλ fy,i

)

, (55)

Y4i,0 = −j
(

kyμ fx,i + kx,iμ fy,i

)

, (56)

[Y1] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Y11,1 Y12,1 Y13,1 Y14,1

Y21,1 Y22,1 Y23,1 Y24,1

Y31,1 Y32,1 Y33,1 Y34,1

Y41,1 Y42,1 Y43,1 Y44,1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (57)

Y1i,1 = fx,i/sx , (58)

Y2i,1 = fy,i, (59)

Y3i,1 = −j

(

kx,isx
1

sx
(λ + 2μ)

fx,i

sx
+ ky

1

sx
λ fy,i

)

, (60)

Y4i,1 = −j

(

kysxμ
fx,i

sx
+ kx,isx

1

sx
μ fy,i

)

, (61)

[T(x)] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

e−jkx,1sxx 0 0 0

0 e−jkx,2sxx 0 0

0 0 e−jkx,3sxx 0

0 0 0 e−jkx,4sxx

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (62)
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The reflection coefficients at the boundary x = 0, we obtain (A3,0/A1,0 and A4,0/A1,0) with

A2,0 = 0 when the incident wave is the P-wave and in the case of SV-wave incidence we obtain

(A3,0/A2,0 and A4,0/A2,0) with A1,0 = 0.

3.2. Computed results

Figure 4 shows the computed results of the reflection coefficient dependence on 2π/(βh)

in the case of the SH-wave incidence with incident angle θ = 0, the attenuation coefficient

sxI(x) = 0.1 and normalized thickness ksL = 24π. Here ks is the intrinsic wave number of the

SH-wave in the isotropic solid. Decreasing the interval between adjacent nodal points h, the

reflection coefficient approaches the value estimated by the truncation effect which caused by

the reflection at the PML end terminal and can be estimated by attenuated waves in the PML,

20 log10(exp(2ks Ls2I)) = 20 × 4.8π log10 e = 131dB. A higher order element causes lower

reflection because of a better approximation of the intrinsic wave number. Figure 5 shows

dependence on the incident angle. Smaller intervals of finite element nodes, ksh = 0.1π,

gives a better approximation than ksh = 0.2π. Increasing the incident angle, β decreases

and the approximation of the intrinsic wave number with discretized wave number becomes

better. Hence, the reflection by FE-discretization decreases. However, incident angle becomes

larger than the angle such as about 63.5 degrees for 1st order element, reflection increases

because decreasing β yields decreasing of wave attenuation in PMLs and the reflection by the

truncation effect increases. Figures 4 and 5 show that the results of the transfer matrix agree

well those of FEA and we confirm that the reflection of the FE-model of the PML may be

explained with the discretized wave number and the truncation effect.

We consider an isotropic solid and its PML with the Poisson ratio σ=0.3 in this section.
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Figure 4. Dependence of SH-wave perpendicular incidence on 2π/(βh) for ks L = 24π and sxI(x) = 0.1.
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Figure 5. Dependence of reflection coefficients of the SH-wave perpendicular incidence with the
attenuation coefficient sxI(x) = 0.1 and normalized thickness ks L = 24π on 2π/(βh). Here N is the
number of FEs.
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Figure 6. Dependence of reflection coefficients on 2π/(βh) in the case of perpendicular P-wave incident,
ks L = 24π and sxI(x) = 0.1.

Next, we consider P-wave or SV-wave scattering problems. Figure 6 shows the computed

result of the reflection coefficient dependence on 2π/(βh) in case of the P-wave perpendicular

incidence with the attenuation coefficient sxI(x) = 0.1 and normalized thickness ksL = 24π.

Because the result of the SV-wave perpendicular incidence is the same result of the SH-vave

perpendicular incidence owing to a symmetry of the problem, Fig. 4 also shows the result

of SV-wave incidence with the attenuation coefficient sxI(x) = 0.1 and normalized thickness

ks L = 24π. Both cases also approaches the value estimated by the truncation effect, -70.0dB

and -131dB. Note that the wave number of the P-wave is
√

μ/(λ + 2μ) =
√

2/7 times of

the SV-wave wave number. Dependencies of P- and SV-wave reflections on P- and SV-wave

incident angle are shown in Figs. 7 and 8, respectively. Reflection coefficients of incident

waves computed by the transfer matrix except the range that is larger than the critical

angle, about 32.3 degrees, of SV-wave incidence are good agreement with the results of FEA.

However, reflection coefficients of converted waves from incident waves are smaller for the

SV-wave excited by the incident P-wave and larger for the P-wave than the results of FEA. We

still can not explain this discrepancy.

Increasing sxI , the reflection coefficient of P-wave in case of the P-wave incidence decreases

in the incident angle range that is larger than 59 degrees. In the lower range, the reflection

does not decrease because FE-discretization effect dominates the reflection. In the case of

SV-wave incidence, we confirm that the P-wave converted from the SV-wave is amplified in

the incident angle range that is lager than the critical angle when P-wave’s wave number

is zero in the isotropic region because of PML’s intrinsic characteristics for non-propagating

waves.
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(b) sxI(x) = 0.2.
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Figure 7. Dependence on P-wave incident angle θi for ksh = 0.2π and ks L = 24π.
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Figure 8. Dependence on SV-wave incident angle θi for ksh = 0.2π and ks L = 24π.

4. Conclusions

In this chapter, first, PMLs in the Cartesian, the cylindrical and the spherical coordinates

for elastic waves in solids were derived from differential forms on manifolds. Our results

show that PML parameters in any orthogonal coordinate system for elastic waves in solids

may be determined by the same procedure in the Cartesian coordinates. Next, scattering of

elastic waves in an isotropic solid was analyzed by field analysis in the thick layer in the one

dimension. Numerical results show that the reflection from PMLs by the transfer matrix of

elastic waves approximates the numerical results of FE-models successfully. We concluded

that the reflection by FE discritization may be explained by FE-approximation of the intrinsic

wave number.
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