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1. Introduction 

Selective hydrogenation reactions are industrially used for the partial hydrogenation of 

unsaturated organic compounds in order to form more stable products or intermediate 

materials for different processes. The production of final organic products of high added 

value or intermediate compounds for the synthesis of fine chemicals is both of industrial 

and academic importance [1]. Alkenes are much appreciated products used in the food 

industry (flavours), the pharmaceutical industry (sedatives, anesthetises, vitamins) and in 

the perfumes industry (fragrances). They are also used for the production of biologically 

active compounds [2], resins, polymers and lubricants, etc. 

The partial hydrogenation of acetylenic compounds using homogeneous or heterogeneous 

metallic catalysts provides a very viable and economically feasible way for the obtaining of 

these olefinic compounds. Selective catalysts and optimum operational conditions are 

necessary in order to avoid the complete hydrogenation of the unsaturated bond. Certain 

transition metals anchored on different solids have demonstrated to be very active and 

selective catalysts for this type of reaction. They also have the advantage that they can be 

operated under milder reaction conditions. It is well documented that palladium is a highly 

active catalyst for hydrogenation [3]. In this sense, Lindlar catalyst (Pd/CaCO3, 5 wt % of Pd 

modified with Pb(OAc)2) has been used since 1952 as an excellent commercial catalyst for 

this type of reactions [4]. The argued reasons for the differences in reactivity of Pd indicate 

that when the metal is electron deficient it becomes less active because alkynes are more 

weakly adsorbed [5].  

During decades a lot of research has been carried out modifying this type of catalysts in 

order to increase the activity and selectivity: different supports as alumina, coal, silica [5-7] 

have been tried while modified palladium [8], or nanoparticles of Pd have also been 
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investigated [9-11]. In a recent work of our group very high activities and selectivities of W 

monometallic and W-Pd bimetallic catalysts were found during the partial hydrogenation of 

a long chain terminal alkyne [12]. In this contribution it was reported that important 

variations in the activity and selectivity were produced when the employed pretreatment 

conditions were changed. The published reports do not give a clear explanation of the effect 

of each metal.  

Providing an economic, active and selective metallic catalyst for the production of alkenes 

via selective hydrogenation is a very important challenge. Besides the bibliography on the 

kinetics of the reaction of heavy alkynes is scarce [13-15]. In this sense, the kinetic study of 

the liquid phase hydrogenation reaction of 1-heptyne using monometallic nickel and 

palladium catalysts anchored on -alumina made in the current work had three principal 

objectives: i) to gain knowledge about the reaction system, ii) to obtain kinetic expressions 

which enable the design of partial hydrogenation reactors, and iii) to give an explanation of 

the catalytic effect of different metals. The kinetic modelling was used in this work to shed 

light on these issues. 

2. Experimental 

2.1. Catalyst preparation 

The catalysts were prepared by the incipient wetness technique using Ketjen CK300 γ-Al2O3 

as support (cylinders of 1.5 mm, calcined at 823K during 4 h, 180 m2 g-1 BET surface area). To 

study the influence of metals, acidic solutions with pH=1 were prepared using NiCl2 (Merk 

Cat. No. 806722), and Pd(NO3)2 (Fluka, Cat. No. 76070) to prepare the monometallic 

catalysts. The concentration of the solutions was adjusted in order to obtain metal loading of 

4 and 0.4 wt % of Ni and Pd, respectively. The impregnated solids were dried during 24 h at 

373 K and then they were calcined in an air flow at 823 K during 3 h. Prior to reaction, the 

catalysts were reduced in hydrogen flow (105 mL min-1) during 1 h at 673 K for Ni/Al2O3 

and at 573 K for Pd/Al2O3. 

2.2. Characterization 

2.2.1. Chemical analysis 

The metal loadings of the catalysts were determined by digesting the samples and then 

analyzing the liquors by inductively coupled plasma analysis (ICP) in an OPTIMA 2100  DV 

Perkin Elmer equipment. 

2.2.2. X-Ray Photoelectron Spectroscopy (XPS) 

XPS determinations were made in Multitech UniSpecs XR-50 equipment with a dual Mg/Al 

X-ray source. A SPECS PHOIBOS 150 hemisphere analyzer was used in the Fixed Analyzer 

Transmission mode (FAT). The samples were treated ex situ  with a hydrogen flow during 1 

h at the corresponding reduction temperature and in situ in the load camera of the 
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instrument with a H2/Ar (5% v/v) flow during 10 min. The spectra were obtained using pass 

energy of 30 eV and a Mg anode operated at 200 W. During the tests the pressure was less 

than 2 10-12 MPa. 

2.2.3. X-Ray Diffraction (XRD) 

X-Ray Diffraction (XRD) measurements of the samples were obtained using a Shimadzu XD-

D1 instrument with CuKα radiation (λ = 1.5405A˚) in the 15 < 2θ < 85° at a scan speed of 1° 

min−1. Samples were powdered and reduced under a hydrogen flow, then they were 

immediately put into the chamber of the equipment and the data acquisition was started. 

2.2.4. Temperature Programmed Reduction (TPR) 

The tests were performed in an Ohkura 2002 S apparatus equipped with a thermal 

conductivity detector. A cold water trap was placed before the thermal detector to condense 

water. Before the TPR tests the samples were dried in situ at 673 K for 30 min in an oxygen 

flow (AGA purity 99.99%). After that the samples were cooled down up to 298 K in an argon 

flow. Then the temperature was increased up to 1223 K at 10 K min-1 in a H2/Ar (5% v/v) gas 

flow. 

2.2.5. Hydrogen chemisorption 

Hydrogen chemisorption was performed by means of the dynamic pulse method using a 

Micromeritics Auto Chem II apparatus equipped with a thermal conductivity detector. 0.2 g 

of the samples were reduced 1 h in situ at the above mentioned temperatures using a H2/Ar 

(5% v/v) flow. The samples were degassed in situ for 2 h under an argon flow (AGA, 99.99%) 

at a temperature equal to that of the corresponding reduction step and then cooled down to 

room temperature. In the case of the palladium catalysts they were cooled down to 373 K to 

make the formation of palladium hydride negligible [16]. After that the chemisorption of 

hydrogen was performed until total saturation of the samples. 

2.3. Catalytic tests 

The partial hydrogenation of 1-heptyne was carried out in a stainless steel stirred batch 

reactor equipped with a magnetically coupled stirrer with two blades in counter-rotation 

that was operated at 800 rpm. The inner wall of the reactor was completely coated with 

PTFE lining in order to prevent the catalytic action of steel reported by other authors [17]. 

The tests were performed using the following conditions: partial pressure of H2 equal to 1.4, 

1.9, 2.4 bar; reaction temperature: 293, 303, 323 K; initial 1-heptyne concentration of 0.1019, 

0.1528, 0.2038 mol L-1; particle size: fractions of 60 or 120 mesh and 1500 μm. 1-heptyne 

(Fluka, Cat. No. 51950, >98%), the reactant, was dissolved in toluene (Merck, Cat. No. 

TX0735-44, >99%). 75 mL of the stock solution and catalyst samples of 0.3 g of Ni/Al2O3 and 

0.03 g of Pd/Al2O3 previously reduced in hydrogen for 1 h at 673 and 573K, respectively, 

were used in the different catalytic tests.  
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The evolutions of reactant and products concentrations with reaction time were followed by 

Gas Chromatography using a flame ionization detector (FID) and a capillary column 30 m 

J&W INNOWax 19091N-213. 

3. Results and discussion  

3.1. Catalysts characterization 

The metal loadings of the catalysts determined by ICP were 3.5 and 0.35 wt % of Ni and Pd, 

respectively. 

For the monometallic Ni/Al2O3 catalyst no hydrogen consumption was detected during the 

chemisorption analysis, in total accordance with previously reported results [18]. For the 

Pd/Al2O3 catalyst a chemisorption value of 18 μmol H2 gcat-1 was measured. 

Figures 1 and 2 show the XPS spectra of Ni 2p3/2 and Pd 3d for Ni/Al2O3 and Pd/Al2O3 

catalysts, respectively. It can be seen that the monometallic nickel catalyst presents two  
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Figure 1. XPS Ni 2p3/2 spectra of Ni/Al2O3. 

 

Figure 2. XPS Pd 3d spectra of Pd/Al2O3 
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peaks, with maximums at 855.4 eV and 862.6 eV. The former can be associated to Ni2+ 

species [19-22]; the other peak corresponds to the shake up of Ni(II) [25,28,29]. According to 

the literature, the maximum BE of the Pd 3d5/2 peak of the monometallic palladium catalyst 

at 334.9 eV, with its 3d3/2 doublet  peak at 340.1 eV, corresponds to Pd0 [18-19,22-23].  

The XRD difractograms of the catalysts only present the -alumina peaks at 2θ = 37.7, 46.0 

and 67.0º [24-26]. For this reason the difractograms are not shown. Because of the low 

amount of Pd or Ni on the Pd/Al2O3 or Ni/Al2O3 catalysts, the crystalline phases of 

palladium or nickel were undetectable. Several authors stated that high charges of nickel 

(>>15 wt %) are necessary to observe the peaks at 2θ = 43.3°; 63.0°; 75.5° and 79.5° of NiO 

[27,28].  

Figure 3 shows the TPR traces of the studied catalysts. The TPR trace of the Pd monometallic 

catalyst had a main hydrogen consumption peak at 287 K, which can be attributed to the 

reduction of PdO species and to the formation of palladium hydrides [29]. This catalyst also 

has an inverted reduction peak at 339 K that could be related to the decomposition of the β-

PdH phase [20,21,24]. As these species interact weakly with the support the palladium 

hydrides are completely eliminated during reduction. Figure 3 also shows the profile of 

reduction of Ni/Al2O3 catalyst, the principal reduction peak begins at 700 K, finishes over 

900 K and presents a maximum at 802 K which corresponds to the reduction of NiO (Ni2+ 

species) interacting with the alumina [30]. The second peak of minor intensity is observed at 

higher temperatures (>1000 K), and corresponds to the reduction of nickel aluminates [31-

32]. At the reduction temperature used during the preparation of the catalysts, the obtained 

TPR spectra suggest the presence of species Ni2+ and Pd0 on Ni/Al2O3 and Pd/Al2O3 catalysts, 

respectively. These results are in total agreement with the XPS results. 
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Figure 3. TPR traces of the Ni/Al2O3 and Pd/Al2O3 catalysts. 

It must be noted that the characterization techniques suggest that, after the pretreatment 

conditions employed during the preparation of the catalysts, only one type of active site is 

present on each catalytic system. 
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3.2. Catalytic results 

3.2.1. Partial hydrogenation of 1-heptyne 

Before considering kinetic expressions or comparing catalyst performances it is necessary to 

check whether the selected reaction system proceeds in kinetic regime. The possibility of 

external and internal diffusional limitations during the catalytic tests was thus 

experimentally assessed. 

3.2.1.1. Experimental verification of the absence of external and internal mass transfer limitations 

In order to eliminate external diffusional limitations, experiences were carried out using 

different stirring speeds in the range of 180-1400 rpm. It was found that at stirring rates higher 

than 500 rpm, 1-heptyne conversion values remained constant, indicating that external gas-

liquid limitations were absent. A stirring rate of 800 rpm was therefore chosen for all the kinetic 

tests. On the other hand and in order to ensure that the catalytic results were not influenced by 

external and intraparticle mass transfer limitations, the catalyst pellets were milled to samples 

of different particle size: a fraction bigger than 100 mesh (<150 μm), a fraction of 60-100 mesh 

(250-150 μm) and pellets of 1500 μm (not milled). The obtained values of 1-heptyne conversion 

were the same for the two milled fractions indicating the absence of internal diffusional 

limitations. Then particles with sizes smaller than 250 μm were used in all tests. 

3.2.1.2. Catalytic activity results 

The catalytic activity results for the partial hydrogenation of 1-heptyne are shown in Figures 

4 and 5, where it is represented the variation of 1-heptyne (CA) and 1-heptene (CB) 

concentration as a function of the reaction time for the Ni/Al2O3 and Pd/Al2O3 catalysts. 

It can be clearly seen that Pd is more active than Ni, even when using one tenth of the catalyst 

mass of the Ni catalyst. Reasons for the differences in reactivity can be found in the literature. 

Most authors report that when the metal is more electron deficient it becomes less active 

because alkynes are more weakly adsorbed [5,33]. Nothing however is commented about the 

role of hydrogen. The published reports do not give a clear explanation of the effect of each 

metal and for this reason kinetic modelling was used in this work to shed light on these issues. 
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Figure 4. CA vs. reaction time. PH2 =1.4 bar, C0A= 0.1528 mol L-1, T= 323 K, 800 rpm, Wcat= 0.3 gNi/Al2O3 or 

0.03 g Pd/Al2O3, S/Ni = 64 and S/Pd = 29385. 
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Figure 5. CB vs. reaction time.   PH2 =1.4 bar, C0A= 0.1528 mol L-1, T= 323 K, 800 rpm, Wcat= 0.3 gNi/Al2O3 or 

0.03 g Pd/Al2O3, S/Ni = 64 and S/Pd = 29385. 

4. Kinetic modeling 

4.1. Reaction network 

A series-parallel reaction network was proposed for partial hydrogenation of 1-heptyne [14], 

as indicated in Figure 6.a. This is composed of three hydrogenation reactions that can be a 

priori considered reversible. The equilibrium constant for each of the previous reactions 

were calculated using Joback’s group contribution method [34]. The values at 323 K were 

calculated as K1=3.35 1021, K2=1.87 1035 and K3=5.58 1013. These values indicate that the 

individual reactions in Figure 6.a can be considered as irreversible. The experimentally 

obtained values of total conversion of 1-heptyne confirmed this prediction.  

 

Figure 6. Reaction scheme for 1-heptyne (a) reversible hydrogenation and (b) irreversible hydrogenation. 

Experimentally, it is observed that while 1-heptyne is present in the reaction medium, 1-

heptene concentration always increases, showing higher concentration than n-heptane. 
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After all 1-heptyne was consumed, 1-heptene concentration begins to decrease very slowly 

and n-heptane concentration equally increases. These profiles are consistent with two 

reaction schemes: i) two parallel irreversible reactions (steps 1 and 3), and ii) series-parallel 

irreversible reactions, with a k1/k2 value higher than 100. The latter considerations, allows us 

to disregard step 2. Therefore a simplified network of parallel reactions for 1-heptyne 

hydrogenation can be assumed in Figure 6.b.  

4.2. Langmuir-Hinshelwood-Hougen-Watson (LHHW) models 

Models of heterogeneous reactions were outlined using the Langmuir-Hinshelwood-

Hougen-Watson formalism (LHHW models). Taking into account the previously presented 

characterization results of Ni/Al2O3 and Pd/Al2O3, in all the models only one type of active 

sites was considered to be present. Six different models with their respective basic 

hypotheses are presented in Table 1. The elementary steps with H2 dissociative or non-

dissociative adsorption reaction mechanism are presented in Table 2. 
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Table 2. Elementary steps with H2 dissociative or non-dissociative adsorption reaction mechanism. 

4.3. Mass balances 

The following mass balances for components in the liquid phase were considered for the 

reaction scheme of Figure 6.b, for 1-heptyne (A), 1-heptene (B) and n-heptane (C): 

 A 1 3dC dt  r r/     (15) 

 B 1dC dt  r/   (16) 
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  C 3dC dt  r/    (17) 

initial conditions were: t = 0 min, C0A = 0.1528 mol L-1, C0B = C0C = 0 mol L-1. 

4.4. Numerical resolution and statistics 

The system of differential equations (15)-(17) was solved numerically using the Runge-

Kutta-Merson algorithm. The model parameter estimation was performed by a non-linear 

regression, using a Levenberg-Marquardt algorithm which minimized the objective 

function:  

  2n
CALC

i , j i , j
j

SCD C C   (18) 

where i , jC  and CALC
i , jC  are the experimental and the predicted concentration values, 

respectively, “i" is the chemical compound and “j” is the reaction time.  

The model adequacy and the discrimination between models were determined using the 

model selection criterion (MSC), according to the following equation: 
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 

         (19) 

where iC  is the average relative concentration; p is the amount of parameters fitted and n is 

the number of experimental data. In order to compare different models, the selected one is 

that leading to the highest MSC value. 

The Standard Deviation (S) was calculated with the following equation: 

 

 2
2

n
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j
C C

S s
n p
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
  (20) 

4.5. Model discrimination 

The first main requisite for appropriateness of a model should be that of physical 

significance. A priori this means that the model parameters adopt feasible real values. A 

second requisite is that of adequate statistical confidence, i.e. the parameters should lie in 

one as small as possible confidence interval.  

The practical criteria for the selection of the kinetic models were: 

1. The estimated values of the parameters must be positive and different from zero. 

2. The upper and lower extremes of the confidence interval (95%) must be positive. 
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3. The amplitude of the confidence interval must be lower than the value of the estimated 

parameter. 

The final model is selected from the set of models complying the above 1 to 3 conditions, as 

the model with the lowest SCD, the summation of squares of the deviations. Another 

condition is that the standard deviation is smaller than the value of the parameter. If 

differences are not big, then the model selection criterion (MSC) should be used. 

Appropriate models should have a MSC value greater than 4. 

4.6. Kinetic models for the reaction 

Preliminary tests were performed in order to check the influence of the different variables 

on the reaction rate. These results will be used later in the model selection stage. The 

variables screened were the partial pressure of hydrogen, the initial concentration of 1-

heptyne and the reaction temperature. In order to analyze the influence of each variable a 

pseudo homogeneous reaction model was proposed in which the reaction rate was assumed 

to follow a potential law. The initial reaction rate should thus be written as: 

 0 0
2A A Hr k.(C ) .(P )    (21) 

An Arrhenius dependent was supposed for the specific constant of reaction: 

 
AE

R.Tk A.e



   (22) 

4.6.1. Influence of the partial pressure of hydrogen 

Several tests were performed at varying hydrogen partial pressures (1.4, 1.9 and 2.4 bar) 

keeping all other variables constant (C0A= 0.1528 mol L-1, T= 303 K, 800 rpm, Wcat= 0.3 g 

Ni/Al2O3 or 0.03 Pd/Al2O3). The partial pressure of hydrogen was calculated as the 

difference between the total pressure and the partial pressure of the solvent, since the partial 

pressures of 1-heptyne and the products was negligible. The pressure of the solvent at 303 K 

was determined using Antoine’s equation (0.048 bar). 

Experimental values of conversion of 1-heptyne as a function of time are plotted in Figures 

7.a and 7.b. Both Figures show that as PH2 rises, 1-heptyne total conversion increases for 

Ni/Al2O3 catalyst, but decrease for Pd/Al2O3. The reaction order with respect to hydrogen (β) 

was calculated from the linearized form of equation (21). 

  0 0
2A A Hln(r ) ln k. C .ln(P )


    

 (23) 

The initial reaction rates of 1-heptyne were calculated by polynomial differentiation of the 

traces of Figures 7.a and 7.b and extrapolation to zero reaction time. From the plot of ln(r0A) 

vs. ln(PH2), shown in Figures 8.a and 8.b, reaction order in hydrogen of 1.3 and -2.6 were 

calculated for Ni/Al2O3 and for Pd/Al2O3, respectively. The results indicate that: a) for  
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Figure 7. Effect of PH2 on the catalytic activity for (a) Ni/Al2O3 and (b) Pd/Al2O3. C0A= 0.1528 mol L-1, 

T=303 K, 800 rpm, Wcat= 0.3 gNi/Al2O3 or 0.03 g Pd/Al2O3, S/Ni = 64 and S/Pd =29385. 

Ni/Al2O3 catalyst, high hydrogen partial pressures are beneficial for the reaction kinetics, 

probably both adsorption and surface reaction elementary steps could be enhanced; and b) 

an increase in the partial pressure of hydrogen negatively affects the reaction rate for 

Pd/Al2O3. 

 

Figure 8. Initial reaction rate as a function of hydrogen pressure for (a) Ni/Al2O3 and (b) Pd/Al2O3. 

C0A=0.1528 mol L-1, T=303 K, 800 rpm, Wcat= 0.3 gNi/Al2O3 or 0.03 g Pd/Al2O3 , S/Ni = 64 and  S/Pd =29385. 

4.6.2. Influence of the initial concentration of 1-heptyne 

Catalytic tests were performed varying the initial concentration of 1-heptyne: 0.1019, 0.1528 

and 0.2038 mol L-1, keeping all the rest of the variables constant (PH2=1.4 bar, T= 303 K, 800 

rpm, Wcat = 0.3 g Ni/Al2O3 or 0.03 Pd/Al2O3). 

The obtained values of conversion of 1-heptyne as a function of time are plotted in Figures 

9.a and 9.b. It can be seen that for both catalysts the catalytic activity is decreased when the 

initial concentration of 1-heptyne is increased.  
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Figure 9. Effect of C0A on the catalytic activity for (a) Ni/Al2O3 and (b) Pd/Al2O3. PH2=1.4 bar, T=303 K,  

800 rpm, Wcat= 0.3 gNi/Al2O3 or 0.03 g Pd/Al2O3, S/Ni = 42, 64 and 85, S/Pd =19596, 29335 and 39192. 

 

Figure 10. Initial reaction rate of 1-heptyne concentration for (a) Ni/Al2O3 and (b) Pd/Al2O3. PH2=1.4 bar, 

T=303 K, 800 rpm, Wcat= 0.3 gNi/Al2O3 or 0.03 g Pd/Al2O3, S/Ni = 42, 64 and 85, S/Pd =19596, 29335 and 39192. 

The value of the reaction order in 1-heptyne (α) can be calculated along the lines described 

in the previous section: 

  0 0
2A H Aln(r ) ln k. P .ln(C )

    
   (24) 

The graph of ln(r0A) vs. ln(C0A), Figures 10.a and 10.b, yields value of order of reaction of 1-

heptyne equal to -0.22 and -1.5 for Ni/Al2O3 and Pd/Al2O3, respectively. The results indicate 

that an increase in the initial concentration of 1-heptyne is detrimental to the reaction rates. 

4.6.3. Influence of the reaction temperature 

Catalytic tests were performed varying the reaction temperature: 293, 303 and 323 K, and 

keeping the rest of the variables constant (PH2=1.4 bar, C0A = 0.1528 mol L-1, 800 rpm, Wcat = 

0.3 g Ni/Al2O3 or 0.03 Pd/Al2O3). 
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The experimental values of conversion of 1-heptyne as a function of time at different 

temperature values are plotted in Figures 11.a and 11.b. As expected the activity of the 

catalyst is increased while the reaction temperature is raised up. 

 

Figure 11. Effect of T on the catalytic activity for (a) Ni/Al2O3 and (b) Pd/Al2O3. PH2=1.4 bar, 800 rpm, 

Wcat= 0.3 gNi/Al2O3 or 0.03 g Pd/Al2O3, S/Ni = 64 and S/Pd = 29385. 

When equation (21) is linearized a value of “apparent” activation energy (EA) can be got, as 

indicated in Eq. (25): 

  0 0
2

A
A H A

E
ln(r ) ln A. P .(C )

R.T

    
  (25) 

The initial reaction rates of 1-heptyne were calculated as in the previous sections. The value 

of the apparent activation energy were obtained from the plots presented in Figure 12 of 

ln(r0A) as a function of 1/T. The calculated values were 24 and 18 KJ mol-1 for Ni/Al2O3 and 

Pd/Al2O3, respectively. These values have not a real physical meaning and are only 

apparent. 

 

Figure 12. Temperature dependence of the reaction rate for (a) Ni/Al2O3 and (b) Pd/Al2O3. PH2=1.4 bar, 

T=303 K, 800 rpm, Wcat= 0.3 gNi/Al2O3 or 0.03 g Pd/Al2O3, S/Ni = 64 and S/Pd = 29385. 
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4.6.4. Model discrimination for Ni/Al2O3 catalyst 

Models II, III, V and VI of Table 1 were discarded because they could not explain the 

negative and positive orders in 1-heptyne and hydrogen obtained experimentally. The 

parameters estimated for the models I and IV are indicated in Table 3. A statistical analysis 

was performed to discriminate between the different models, by means of the selection 

criteria described in Section 4.5. The results of this analysis are detailed in Table 3. It can be 

concluded that the best fit is achieved with model I- B. In this model the value of P2 is equal 

to zero, indicating that n-heptane is not adsorbed. The model IV-D also shows a good fit of 

the experimental data, but a pseudo homogeneous kinetic expression is obtained with 

different reaction orders than those previously calculated.  
 

Mo-

del 

Op-

tion 
Estimated parameter (*) SCD MSC

Para-

meter

Para-

meter 

sign 

Discrimination 
Viabi-

lity 

I 

A 

P1 = 4.4823237168.14985673 

P2 = 3.44577501 335.92334499 

P3 = 

0.00012112225870.00003376836

2.1.10-3 3.7 

P1 

P2 

 

P3 

(+) 

(+) 

(+) 

IC   0,  CL   VE 

IC   0,  CL   VE 

 

IC   0,  CL   VE 

Not 

viable 

B 

P2 = 0 

P1 = 5.931084340.97784253 

P3 = 

0.0001137204720.000026730661

2.10-3 4.5 

P2=0 

P1 

 

P3 

 

(+) 

 

(+) 

 

IC > 0,  CL <  VE 

 

IC > 0,  CL <  VE 

Viable 

IV 

A 

KA= 8.34221367355.9610964 

KB= -1097.261877313.33134 

KC= 2384.3931612837.26474 

P12= 0.006544811170.15591798 

2.47.10-4 5.17

KA 

KB 

KC 

P12 

(+) 

(-) 

(+) 

(+) 

IC   0,  CL   VE 

IC   0,  CL   VE 

IC   0,  CL   VE 

IC   0,  CL   VE 

Not 

viable 

B 

KA= -6.364432523.54535551 

KB= 0 

KC= -17.123787350.0933591 

P12= 7.82119826.10-51.570645.10-3

2.47.10-4 5.23

KA 

KB= 0

KC 

P12 

(-) 

 

(-) 

(+) 

IC   0,  CL   VE 

 

IC   0,  CL   VE 

IC   0,  CL   VE 

Not 

viable 

C 

KA= -5.148583640.29479977 

KB= 0 

KC= 0 

P12= 0.0006130579243.87.10-5 

2.47.10-4 5.21

KA 

KB= 0

KC= 0

P12 

(-) 

 

 

(+) 

IC <  0,  CL >  VE 

 

 

IC < 0,  CL > VE 

Not 

viable 

D 

KA= 0 

KB= 0 

KC= 0 

P120 

A pseudohomogeneous model is 

obtained. 

  

KA= 0

KB= 0

KC= 0

P120 

 

  

Viable 

Reaction conditions: PH2=1.4 bar,  T=323 K,  wcat=0.3 g, stirring rate=800 rpm, C0A=0.1528 mol.L-1, S/Ni = 64.  

(*) 95% confidence interval. IC: confidence interval; CL: confidence level; VE: estimated parameter value 

Table 3. Estimated parameters and model discrimination for Ni/Al2O3. 

Figure 13 contains experimental values of the concentration of 1-heptyne, 1-heptene and n-

heptane along with theoretical values (solid line) estimated with model I-B, as a function of 
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time. A good fit between the two sets of values can be seen. The same regression with model 

I-B was done with experimental data obtained at other reaction temperatures in the 293-323 

K range. In all cases and as a consequence of the fit, parameters different from zero were 

obtained for a confidence interval of 95% and with values of the MSC parameter greater 

than 4.0. The thermodynamic consistency of the P1 and P3 parameters was graphically 

evaluated by plotting lnP1 and lnP3 as a function of 1/T. In both cases a straight line was 

obtained (Figure 14) indicating that the constants have an Arrhenius dependence on 

temperature. 
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Figure 13. Fit of the experimental data of Ci as a function of time with model I-B for Ni/Al2O3 catalyst. 

PH2=1.4 bar, C0A=0.1528 mol L-1, 323 K, Wcat=0.3 g, S/Ni = 64. 
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Figure 14. Temperature dependence of parameters P1 and P3 for Ni/Al2O3 catalyst 

The slopes of the straight lines correspond to the values of the enthalpies of adsorption of 1-

heptyne and 1-heptene and the value of the energy of activation for the dissociative 

adsorption of hydrogen on the active sites. Considering the definition of P1 and P3, the 

following equations can be obtained: 
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 1
B AB B

A A

H HK A
P .Exp

K A R.T

     
     

  
 (26) 

 
 2 2

22 2 2 2
3 2 2

2H AH H S H H S

A A

E . HC .k .C C .A .C
P .Exp

R.TK A

     
           

  (27) 

In equations (26) and (27) the enthalpies of adsorption of 1-heptyne and 1-heptene were 

expressed in absolute values. The obtained values from the slopes of the lines in Figure 14 

were: 

 117 91 KJ molB AH H .          (28) 

 1
2 2 58 KJ molH AE . H       (29) 

Considering that BH ≈ 0, in accord with the experimental results, a value of the enthalpy 

of adsorption for 1-heptyne can be obtained from equation (28): AH   -17.91 KJ mol-1. 

Introducing this value in equation (29) a value of EH2 of 22.2 KJ mol-1 can be estimated.  

From the results it could be concluded that: 

1. Model I-B that supposes dissociative adsorption of hydrogen as the rate-controlling step 

of reaction and a single type of active sites with total coverage, is the one that best fits 

experimental data with statistical and thermodynamic consistency.  

2. The model does not allow to directly obtain the enthalpies of adsorption of 1-heptyne 

and 1-heptene and the activation energy for the adsorption of hydrogen. 

3. From equation (28) it can be inferred that the enthalpy of adsorption of 1-heptyne is 

greater than that of 1-heptene, in agreement with the information available in the 

literature on the partial hydrogenation of alkynes [34]. 

4. This model also supposes that the alkane is not adsorbed. If we additionally suppose 

that the enthalpy of adsorption of 1-heptene is negligible, in accordance with 

experimental results, a value of the enthalpy of adsorption of 1-heptyne and activation 

energy for the H2 adsorption can be obtained from eqs. (28) and (29).  

Then, it can be concluded that the dissociative adsorption of H2 is the rate limiting step for 

the Ni/Al2O3 catalyst, and that the active sites are preferentially occupied by 1-heptyne.  

4.6.5. Model discrimination for the Pd/Al2O3 catalyst 

Models I, II, IV and V of Table 1 were discarded because they could not explain the negative 

orders in 1-heptyne and hydrogen obtained experimentally. The parameters estimated for 

the models III and VI are indicated in Table 4. A statistical analysis was performed to 

discriminate between the different models, by means of the selection criteria described in 

Section 4.5. The results of this analysis are detailed in Table 4; these results indicate that 

model III-C gives the best fit of the experimental data. In this model the value of the 
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parameters P4 and P5 are equal to zero. Therefore the only species being adsorbed on the 

Pd/Al2O3 catalyst are 1-heptyne and hydrogen. 

 

Mo-

del 

Op-

tion 
Estimated parameter (*) SCD MSC

Para-

meter

Para-

meter 

sign 

Discrimination 
Viabi-

lity 

III 

A 

P4 =  -53.08660553399.8626255 

P5 =   221.3489717134.846189 

P7 =   28.7488806370.8944874 

P10 =  4.68720094147.04798306 

P11 =  1.9215935860.33982722 

2.2.10-4 5.206

P4 

P5 

P7 

P10 

P11 

(-) 

(+) 

(+) 

(+) 

(+) 

IC   0,  CL   VE 

IC   0,  CL   VE 

IC   0,  CL   VE 

IC   0,  CL   VE 

IC   0,  CL   VE 

Not 

viable 

B 

P4 =  0 

P5 =  73.3086809919.4831331 

P7 =  23.0235065284.1617705 

P10 =  2.7560322879.34470502 

P11 =  1.1297818532.52404635 

2.2.10-4 5.266

 

P5 

P7 

P10 

P11 

 

(+) 

(+) 

(+) 

(+) 

 

IC   0,  CL   VE 

IC   0,  CL   VE 

IC   0,  CL   VE 

IC   0,  CL   VE 

Not 

viable 

C 

P4 =  0                                P5 =  0 

P7 =  0.5542285000.330992359 

P10 = 0.03687780350.0032648682

P11 = 0.01509404730.0014453604

9.1.10-5 6.23

 

P7 

P10 

P11 

 

(+) 

(+) 

(+) 

 

IC  0,   CL   VE 

IC   0,  CL   VE 

IC   0,  CL   VE 

Viable 

VI 

A 

KB = -16.3714023661.1021023 

KC =  48.41328462509.3986254 

P13 =  6.35365882135.97712018 

P15 =  7.14818320324.0314528 

P16 =  2.1326332447.39641486 

P17 =  0.87414365419.422821246

2.2.10-4 5.145

KB 

KC 

P13 

P15 

P16 

P17 

(-) 

(+) 

(+) 

(+) 

(+) 

(+) 

IC   0,  CL   VE 

IC   0,  CL   VE 

IC   0,  CL   VE 

IC   0,  CL   VE 

IC   0,  CL   VE 

IC   0,  CL   VE 

Not 

viable 

B 

KB =  0 

KC =  53.73942846350.0751416 

P13 =  3.53653444247.34456656 

P15 =  19.82314331876.7295967 

P16 =  1.7112967050.9810815 

P17 =  0.70203972620.910298274

2.2.10-4 5.206

 

KC 

P13 

P15 

P16 

P17 

 

(+) 

(+) 

(+) 

(+) 

(+) 

 

IC   0,  CL   VE 

IC   0,  CL   VE 

IC   0,  CL   VE 

IC   0,  CL   VE 

IC   0,  CL   VE 

Not 

viable 

C 

KB =  0                             KC =  0 

P13 =  2.9394173918.79975681 

P15 =  1.8678261310.08702077 

P16 =  0.5413420905.18514542 

P17 =  0.2216424482.121511182 

2.2.10-4 5.26

 

P13 

P15 

P16 

P17 

 

(+) 

(+) 

(+) 

(+) 

 

IC   0,  CL   VE 

IC   0,  CL   VE 

IC   0,  CL   VE 

IC   0,  CL   VE 

Not 

viable 

D 

KB =  0       KC =  0         P13 =  0 

P15 =  0.6104457950.825496865 

P16 =  0.03571509180.0052744265

P17 =  0.01464128330.0023224598

2.2.10-4 5.327

 

P15 

P16 

P17 

 

(+) 

(+) 

(+) 

 

IC   0,  CL   VE 

IC   0,  CL   VE 

IC   0,  CL   VE 

Not 

viable 

E 

KB =  0    KC =  0    P13 =  0   P15 =  0

P16 =  0.03205488390.0012299287

P17 =  0.01309650760.0007651406

2.4.10-4 5.303

 

P16 

P17 

 

(+) 

(+) 

 

IC   0,  CL   VE 

IC   0,  CL   VE 

Viable 

Reaction conditions: PH2=1.4 bar,  T=323 K,  wcat=0.03 g, stirring rate=800 rpm, C0A=0.1528 mol.L-1,  S/Pd = 29385. 

 (*) 95% confidence interval. IC: confidence interval; CL: confidence level; VE: estimated parameter value. 

Table 4. Estimated model parameters and model discrimination for Pd/Al2O3 
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The heterogeneous model VI-E also produces a good fit of the experimental data but its 

parameters KB, KC, P13 and P15 are equal to zero, thus transforming into a pseudo 

homogeneous reaction rate expression in which the reaction orders in 1-heptyne and 

hydrogen are positive. This is not in agreement with the observed results, so this model was 

discarded. 

Figure 15 contains values of concentration of 1-heptyne, 1-heptene and n-heptane as a 

function of time, experimentally (symbols) or theoretically obtained (solid line) with the III-

C model. There is an excellent fit. 
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Figure 15. Fit of the experimental data of Ci as a function of time with model III-C for Pd/Al2O3 catalyst. 

PH2=1.4 bar, T=323 K, 800 rpm, Wcat= 0.03 g, S/Pd = 29385. 
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Figure 16. Temperature dependence of parameters P7, P10 and P11 for Pd/Al2O3 catalyst 

The same fit with model III-C was repeated with experimental data at other reaction 

temperatures in the 293-323 K range. In all cases and as a consequence of the fit, parameters 
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were obtained with values different from zero in a confidence interval of 95% and with 

values of the MSC parameter greater than 4.0. The thermodynamic consistence of 

parameters P7, P10 and P11 was evaluated by plotting lnP7, lnP10 and lnP11 as a function of 1/T. 

In all cases straight lines were obtained confirming the hypotheses of Arrhenius dependence 

with respect to temperature (Figure 16).  

The slopes of the straight lines obtained correspond to the enthalpies of adsorption of 1-

heptyne and H2 and the energies of activation of the surface reactions of hydrogenation. 

Taking into account the definition of the parameters P7, P10 and P11 (Table 1) the following 

equations can be obtained:  

 H2 H2 A
7

H2 H2

1 K K C K
P

K C

( . . ).

.


       (30) 

Supposing that H2 H21  K K C. . (this assumption is made for the purpose to estimate some 

values of the involved constants).  

The previous equation is reduced to: 

 
H2 A

A A
7

H2 H2 H2 H2

1
H H

K A 2
P Exp

R.TK C A C

.

.
. .

          
 
  

  (31) 

 
3 3 1 A H2

1 A S 1 A S
10

H2 H2 H2 H2

1
- E H H

k K C A A C 2
P Exp

R.TK C A C

.
. . . .

.
. .

          
 
  

   (32) 

 
3 3 3 A H2

3 A S 3 A S
11

H2 H2 H2 H2

1
- E H H H

k K K C A A A C 2
P Exp

R.TK C A C

.
. . . . . .

.
. .

            
 
  

   (33) 

In equations (31), (32) and (33) the enthalpies of adsorption of 1-heptyne and H2 are 

expressed in absolute values. The values of the respective slopes were calculated as follows: 

 H2 1
A

H
H 18 02 KJ mol

2
. 

      (34) 

 H2 1
1 A

H
E H 36 6 KJ mol

2
. 

       (35) 

 H2 1
3 A

H
E H H 2 18 KJ mol

2
. 

         (36) 
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The enthalpy of H2 adsorption on Pd has been reported in Ref. [35] (-75.31 KJ mol-1), then 

from equation (34): AH  19.64 KJ mol-1. Replacing eq. (34) into eq. (35): 1E   18.58 KJ 

mol-1. From equations (34) and (36): 

 1
3E H 15 84 KJ mol  .       (37) 

From the results it can be concluded that:  

5. Model III-C that poses the surface chemical reaction as the limiting step is the one that 

best fits the experimental data. The model also poses the dissociative adsorption of H2 

and the competition with 1-heptyne for the active sites. The model presents statistical 

and thermodynamic consistency.  

6. The model enables obtaining directly the values of the enthalpies of adsorption of 1-

heptyne and the activation energy for the hydrogenation of 1-heptyne to 1-heptene (E1). 

Neither the calculation of the activation energy for the hydrogenation of 1-heptyne to n-

heptane (E3).  

7. The model indicates that 1-heptyne and H2 are the only species adsorbed on the active 

sites. The enthalpy of adsorption of 1-heptyne over Pd (-19.64 KJ mol-1) is not much 

different from the value reported by Semagina et al [36] for the hydrogenation of 1-

hexyne over Pd nanoparticles. 

8. Equation (34) shows that the enthalpy of adsorption of hydrogen is higher than that of 

1-heptyne over the Pd/Al2O3 catalyst. This suggests that there are not thermodynamic 

limitations for the adsorption of H2. This was confirmed by the tests of hydrogen 

chemisorptions as Pd is able to chemisorb an important amount of H2 at room 

temperature, suggesting that there is not a kinetic impediment as that observed for Ni. 

Consequently, the dissociative adsorption of hydrogen is fast and then the controlling 

step is the surface chemical reaction.  

9. The value obtained for the activation energy of the hydrogenation reaction of 1-heptyne 

to 1-heptene (E1) turned out to be quite low (18.58 KJ mol-1). This coincides with the fact 

that the reaction can proceed at low temperatures.  

10. The kinetic modelling of the reactions over the Ni and Pd catalysts gives an explanation 

of the different reactivity of the catalysts. Pd is more active than Ni for partial 

hydrogenation reactions because there is a kinetic limitation for the adsorption of 

hydrogen on Ni. Hydrogen is more strongly chemisorbed on Pd, so there is a great 

coverage of the surface by H2, therefore making the surface reaction step as the rate-

controlling one. 

5. Conclusions 

Pd/Al2O3 was more active and selective than Ni/Al2O3 for the partial hydrogenation of 1-

heptyne to 1-heptene. 

In order to analyze the influence of the different variables (hydrogen partial pressure, initial 

concentration of 1-heptyne and reaction temperature) on the reaction rate a pseudo 
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homogeneous model was proposed based on power law kinetics. Reaction orders for 

hydrogen and 1-heptyne were obtained as well as the apparent activation energy. For the 

Ni/Al2O3 catalyst, reaction orders of 1.3 in hydrogen and -0.22 in 1-heptyne, and apparent 

activation energy of 24 KJ mol-1 were obtained. For the Pd/Al2O3 catalyst, reaction orders of -

2.6 and -1.5 in hydrogen and 1-heptyne, respectively, and apparent activation energy of 18 

KJ mol-1 were obtained.  

In order to elucidate the role of Ni and Pd on the reaction rate, the kinetic data were fitted 

with six different heterogeneous LHHW models. The results obtained indicate that for the 

Ni/Al2O3 catalyst the controlling step is the dissociative adsorption of hydrogen over the 

metal active sites and the reaction rate can be expressed by: 

 
3

2
1A B

P
r

C P .C



 

If it is assumed that the adsorption enthalpy of 1-heptene can be considered negligible, a 

value of -17.91 KJ mol-1 is obtained for the adsorption enthalpy of 1-heptyne. In the same 

way, the value of activation energy for the hydrogen adsorption is 22.2 KJ mol-1.  

For the Pd/Al2O3 catalyst the controlling steps are the surface hydrogenation reactions  

(1-heptyne to 1-heptene and 1-heptyne to n-heptane). The corresponding reaction rates  

are: 
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Using a value for the adsorption enthalpy of hydrogen on Pd reported in literature, a value 

of -19.64 KJ mol-1 is obtained for the adsorption enthalpy of 1-heptyne (HA) over Pd. 

Besides, the value obtained for the activation energy for the hydrogenation reaction of 1-

heptyne to 1-heptene (E1) was 18.58 KJ mol-1. This coincides with the fact that the reaction 

can proceed at low temperatures.  

The different activity levels of the Pd/Al2O3 and Ni/Al2O3 catalysts are due to a kinetic 

limitation for the adsorption of hydrogen on Ni. In the case of Pd this limitation does not 

exist. 
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Notation 

: order of reaction with respect to 1-heptyne. 

: order of reaction with respect to hydrogen. 

A: Arrhenius preexponential factor. 

AA: preexponential factor of the heat of adsorption of 1-heptyne. 

AB: preexponential factor of the heat of adsorption of 1-heptene. 

AH2: preexponential factor of the heat of adsorption of hydrogen. 

A1: preexponential factor of the specific reaction rate constant, k1. 

A3: preexponential factor of the specific reaction rate constant, k3. 

CA0: initial concentration of 1-heptyne (mol L-1). 

CA: concentration of 1-heptyne (mol L-1). 

CB: concentration of 1-heptene (mol L-1). 

CC: concentration of n-heptane (mol L-1). 

CH2: concentration of hydrogen in the liquid phase (mol L-1). 

CS: concentration of free sites. 

EA: apparent activation energy (KJ mol-1). 

EH2: activation energy for the hydrogen adsorption (KJ mol-1). 

E1: activation energy of the reaction of hydrogenation of 1-heptyne to 1-heptene (KJ mol-1). 

E3: activation energy of the reaction of hydrogenation of 1-heptyne to n-heptane (KJ mol-1). 

H: reaction heat (KJ mol-1)  

HH2: absolute value of the enthalpy of hydrogen adsorption (KJ mol-1). 

HA: absolute value of the enthalpy of adsorption of 1-heptyne (KJ mol-1). 

HB: absolute value of the enthalpy of adsorption of 1-heptene (KJ mol-1). 

k: specific reaction rate constant. 
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K:  equilibrium constant (equation (6)). 

KA: adsorption constant for 1-heptyne. 

KB: adsorption constant for 1-heptene 

KC: adsorption constant for n-heptane  

KH2: adsorption constant for hydrogen 

kA: direct rate specific constant for 1-heptyne adsorption. 

kH2: direct rate specific constant for H2 dissociative adsorption. 

k’H2: direct rate specific constant for H2 non disociative adsorption. 

k1: direct rate specific constant for 1-heptyne to 1-heptene surface hydrogenation reaction. 

k3: direct rate specific constant for 1-heptyne to n-heptane surface hydrogenation reaction. 

PH2: partial pressure of hydrogen (bar). 

R: ideal gas universal constant (0.082 L.atm.mol-1.K-1). 

r1: rate of step 1 (mol L-1.h-1). 

r3: rate of step 3 (mol L-1.h-1). 

r0A: 1-heptyne initial hydrogenation rate (mol L-1.h-1). 

T: absolute temperature (K) 

t: time. 
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