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1. Introduction

Thermodynamics is the science of energy conversion. It involves heat and other forms of
energy, mechanical one being the foremost one. Potential energy is the capacity of doing
work because of the position of something. Kinetic energy is due to movement, depending
upon mass and speed. Since all objects have structure, they possess some internal energy
that holds such structure together, a kind of strain energy. As for work, there are to kinds
of it: internal and external. The later is work done on “something". The former is work
effected within something, being a capacity. Heat is another king of energy, the leit-motif of
thermodynamics. Thermodynamics studies and interrelates the macroscopic variables, such
as temperature, volume, and pressure that are employed to describe thermal systems and
concerns itself with phenomena that can be experimentally reproducible.

In thermodynamics one is usually interested in special system’s states called equilibrium ones.
Such states are steady ones reached after a system has stabilized itself to such an extent that
it no longer keeps changing with the passage of time, as far as its macroscopic variables
are concerned. From a thermodynamics point of view a system is defined by its being
prepared in a certain, specific way. The system will always reach, eventually, a unique state
of thermodynamic equilibrium, univocally determined by the preparation-manner. Empiric
reproducibility is a fundamental requirement for physics in general an thermodynamics in
particular. The main source of the strength, or robustness, of thermodynamics, lies on the fact
does it deals only with phenomena that are experimentally reproducible.

Historically, thermodynamics developed out the need for increasing the efficiency of early
steam engines, particularly through the work of the French physicist Nicolas Sadi-Carnot
(1824) who believed that a heat engine’s efficiency was to play an important role in helping
France win the Napoleonic Wars. Scottish physicist Lord Kelvin was the first to formulate a
succint definition of thermodynamics in 1854: “Thermodynamics is the subject of the relation
of heat to forces acting between contiguous parts of bodies, and the relation of heat to electrical
agency". Chemical thermodynamics studies the role of entropy in the process of chemical
reactions and provides the main body of knowledge of the field. Since Boltzmann in the 1870’s,
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statistical thermodynamics, or statistical mechanics, that are microscopic theories, began to
explain macroscopic thermodynamics via statistical predictions on the collective motion of
atoms.

1.1. Thermodynamics’ laws

The laws of physics are established scientific regularities regarded as universal and invariable
facts of the universe. A “law" differs from hypotheses, theories, postulates, principles,
etc., in that it constitutes an analytic statement. A theory starts from a set of axioms from
which all laws and phenomena should arise via adequate mathematical treatment. The
principles of thermodynamics, often called “its laws", count themselves amongst the most
fundamental regularities of Nature [1]. These laws define fundamental physical quantities,
such as temperature, energy, and entropy, to describe thermodynamic systems and they
account for the transfer of energy as heat and work in thermodynamic processes. An
empirically reproducible distinction between heat and work constitutes the “hard-core" of
thermodynamics. For processes in which this distinction cannot be made, thermodynamics
remains silent. One speaks of four thermodynamics’ laws:

• The zeroth law of thermodynamics allows for the assignment of a unique temperature to
systems that are in thermal equilibrium with each other.

• The first law postulates the existence of a quantity called the internal energy of a system
and shows how it is related to the distinction between energy transfer as work and energy
transfer as heat. The internal energy is conserved but work and heat are not defined as
separately conserved quantities. Alternatively, one can reformulate the first law as stating
that perpetual motion machines of the first kind can not exist.

• The second law of thermodynamics expresses the existence of a quantity called the entropy
S and states that for an isolated macroscopic system S never decreases, or, alternatively,
that perpetual motion machines of the second kind are impossible.

• The third law of thermodynamics refers to the entropy of a system at absolute zero
temperature (T = 0) and states that it is impossible to lower T in such a manner that
reaches the limit T = 0.

Classical thermodynamics accounts for the exchange of work and heat between systems with
emphasis in states of thermodynamic equilibrium. Thermal equilibrium is a condition sine
qua non for macroscopically specified systems only. It shoul be noted that, at the microscopic
(atomic) level all physical systems undergo random fluctuations. Every finite system will
exhibit statistical fluctuations in its thermodynamic variables of state (entropy, temperature,
pressure, etc.), but these are negligible for macroscopically specified systems. Fluctuations
become important for microscopically specified systems. Exceptionally, for macroscopically
specified systems found at critical states, fluctuations are of the essence.

1.2. The Legendre transform

The Legendre transform is an operation that transforms one real-valued function of f a real
variable x into another fT , of a different variable y, maintaining constant its information
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content. The derivative of the function f becomes the argument to the function fT .

fT(y) = xy − f (x); y = f ′(x) ⇒ reciprocity. (1)

The Legendre transform its own inverse. It is used to get from Lagrangians the Hamiltonian
formulation of classical mechanics.

Legendre’ reciprocity relations constitute thermodynamics’ essential formal ingredient [2]. In
general, for two functions I and α one has

I(A1, . . . , AM) = α +
M

∑
k=1

λk Ak, (2)

with the Ai extensive variables and the λi intensive ones. Obviously, the Legendre transform
main goal is that of changing the identity of our relevant independent variables. For α we
have

α(λ1, . . . , λM) = I −
M

∑
k=1

λk 〈Ak〉 . (3)

The three operative reciprocity relations become [2]

∂α

∂λk
= −〈Ak〉 ;

∂I

∂〈Ak〉
= λk ;

∂I

∂λi
=

M

∑
k

λk
∂〈Ak〉

∂λi
, (4)

the last one being the so-called Euler theorem.

1.3. The axioms of thermodynamics

Thermodynamics can be regarded as a formal logical structure whose axioms are empirical
facts [2], which gives it a unique status among the scientific disciplines [1]. The four
axioms given below are equivalent to the celebrated laws of thermodynamics of the prevous
Subsection [2].

• For every system there exists a quantity E, the internal energy, such that a unique Es−value
is associated to each and every state s. The difference Es1 − Es2 for two different states
s1 and s2 in a closed system is equal to the work required to bring the system, while
adiabatically enclosed, from one state to the other.

• There exist particular states of a system, the equilibrium ones, that are uniquely
determined by E and by a set of extensive macroscopic parameters Aξ , ξ = 1, . . . , M.
The number and characteristics of the Aξ depends on the nature of the system.

• For every system there exists a state function S(E, ∀Aξ) that (i) always grows if internal
constraints are removed and (ii) is a monotonously (growing) function of E. S remains
constant in quasi-static adiabatic changes.
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• S and the temperature T = [ ∂E
∂S ]A1,...,AM

vanish for the state of minimum energy and are
non-negative for all other states.

From the second and 3rd. Postulates one extracts the following two essential assertions

1. Statement 3a) for every system there exists a state function S, a function of E and the Aξ

S = S(E, A1, . . . , AM). (5)

2. Statement 3b) S is a monotonous (growing) function of E, so that one can interchange the
roles of E and S in (5) and write

E = E(S, A1, . . . , AM), (6)

Eq. (6) clearly indicates that

dE =
∂E

∂S
dS + ∑

ξ

∂E

∂Aξ
dAξ ⇒ dE = TdS + ∑

ξ

Pξ dAξ , (7)

with Pξ generalized pressures and the temperature T defined as [2]

T =

(

∂E

∂S

)

[∀ Aξ ]
. (8)

Eq. (7) will play a key-role in our future considerations. If we know S(E, A1, . . . , An) or,
equivalently because of monotonicity, E(S, A1, . . . , An)) we have a complete thermodynamic
description of a system [2]. For experimentalists, it is often more convenient to work with
intensive variables defined as follows [2].

Let S ≡ A0. The intensive variable associated to the extensive Ai, to be called Pi are the
derivatives

P0 ≡ T = [
∂E

∂S
]A1,...,An

, 1/T = β. (9)

Pj ≡ λj/T = [
∂E

∂Aj
]S,A1,...,Aj−1,Aj+1,...,An

. (10)

Any one of the Legendre transforms that replaces any s extensive variables by their associated
intensive ones (β, λ’s will be Lagrange multipliers in SM)

Lr1,...,rs = E − ∑
j

Pj Aj, (j = r1, . . . , rs)

contains the same information as either S or E. The transform Lr1,...,rs is a function of
n − s extensive and s intensive variables. This is called the Legendre invariant structure of
thermodynamics. As we saw above, this implies certain relationships amongst the relevant
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system’s variables, called the reciprocity relations (RR), that are crucial for the microscopic
discussion of Thermodynamics.

2. Classical statistical mechanics

In 1903 Gibbs formulated the first axiomatic theory for statistical mechanics [1, 3], revolving
around the concept of phase space. The phase space (PS) precise location is given by
generalized coordinates and momenta. Gibbs’ postulates properties of an imaginary (Platonic)
ad-hoc notion: the “ensemble" (a mental picture). The ensemble consists of extremely many
(N) independent systems, all identical in nature with the one of actual physical interest,
but differing in PS-location. That is, the original system is to be mentally repeated many
times, each with a different arrangement of generalized coordinates and momenta. Here
Liouville’s theorem of volume conservation in phase space for Hamiltonian motion plays a
crucial role. The ensemble amounts to a distribution of N PS-points, representative of the
actual system. N is large enough that one can properly speak of a density D at any PS-point
φ = q1, . . . , qN ; p1, . . . , pN , with D = D(q1, . . . , qN ; p1, . . . , pN , t) ≡ D(φ), with t the time, and,
if we call dφ the volume element,

N =
∫

dφ D; ∀t. (11)

Randomly extracting a system from the ensemble, the probability of selecting it being located
in a neighborhood of φ would yield

P(φ) = D(φ)/N. (12)

Consequently,
∫

P dφ = 1. (13)

Liouville’s theorem follows from the fact that, since phase-space points can not be
“destroyed", if

N12 =
∫ φ2

φ1

D dφ, (14)

then
dN12

dt
= 0. (15)

An appropriate analytical manipulation involving Hamilton’s canonical equations of motion
then yields the theorem in the form [1]

Ḋ +
N

∑
i

∂D

∂pi
ṗi +

N

∑
i

∂D

∂qi
q̇i = 0, (16)

entailing the PS-conservation of density.

Equilibrium means simply Ḋ = 0, i. e.,

N

∑
i

∂D

∂pi
ṗi +

N

∑
i

∂D

∂qi
q̇i = 0. (17)
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2.1. The classical axioms

Gibbs refers to PS-location as the “phase" of the system [1, 3]. The following
statements completely explain in microscopic fashion the corpus of classical equilibrium
thermodynamics [1].

• The probability that at time t the system will be found in the dynamical state characterized
by φ equals the probability P(φ) that a system randomly selected from the ensemble shall
possess the phase φ will be given by Eq. (12) above.

• All phase-space neighborhoods (cells) have the same a priori probability.

• D depends only upon the system’s Hamiltonian.

• The time-average of a dynamical quantity F equals its average over the ensemble,
evaluated using D.

3. Information

Information theory (IT) treats information as data communication, with the primary goal
of concocting efficient manners of encoding and transferring data. IT is a branch of
applied mathematics and electrical engineering, involving the quantification of information,
developed by Claude E. Shannon [4] in order to i) find fundamental limits on signal
processing operations such as compressing data and ii) finding ways of reliably storing
and communicating data. Since its 1948-inception it has considerably enlarged its scope
and found applications in many areas that include statistical inference, natural language
processing, cryptography, and networks other than communication networks. A key
information-measure (IM) was originally called (by Shannon) entropy, in principle unrelated
to thermodynamic entropy. It is usually expressed by the average number of bits needed
to store or communicate one symbol in a message and quantifies the uncertainty involved
in predicting the value of a random variable.Thus, a degree of knowledge (or ignorance)
is associated to any normalized probability distribution p(i), (i = 1, . . . , N), determined
by a functional I[{pi}] of the {pi} [4–7] which is precisely Shannon’s entropy. IT was la
axiomatized in 1950 by Kinchin [8], on the basis of four axioms, namely,

• I is a function ONLY of the p(i),

• I is an absolute maximum for the uniform probability distribution,

• I is not modified if an N + 1 event of probability zero is added,

• Composition law.

As for the last axiom, consider two sub-systems [Σ1, {p1(i)}] and [Σ2, {p2(j)}] of a composite
system [Σ, {p(i, j)}] with p(i, j) = p1(i) p2(j). Assume further that the conditional
probability distribution (PD) Q(j|i) of realizing the event j in system 2 for a fixed i−event
in system 1. To this PD one associates the information measure I[Q]. Clearly,

p(i, j) = p1(i) Q(j|i). (18)

Then Kinchin’s fourth axiom states that
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I(p) = I(p1) + ∑
i

p1(i) I
(

Q(j|i)
)

. (19)

An important consequence is that, out of the four Kinchin axioms one finds that Shannons’s
measure

S = −
N

∑
i=1

p(i) ln [p(i)], (20)

gives us the only way of complying with Kinchin’s axioms.

4. Statistical mechanics and information theory

It has been argued [9] that the statistical mechanics (SM) of Gibbs is a juxtaposition of

subjective, probabilistic ideas on the one hand and objective, mechanical ideas on the other.

From the mechanical viewpoint, the vocables “statistical mechanics" suggest that for solving

physical problems we ought to acknowledge a degree of uncertainty as to the experimental

conditions. Turning this problem around, it also appears that the purely statistical arguments

are incapable of yielding any physical insight unless some mechanical information is a priori

assumed [9]. This is the conceptual origin of the link SM-IT pioneered by Jaynes in 1957 via

his Maximum Entropy Principle (MaxEnt) [5, 6, 10] which allowed for reformulating SM in

information terms. Since IT’s central concept is that of information measure (IM)

Descartes’ scientific methodology considers that truth is established via the agreement

between two independent instances that can neither suborn nor bribe each other: analysis

(purely mental) and experiment [11]. The analytic part invokes mathematical tools and

concepts: Mathematics’ world ⇔ Laboratory. The mathematical realm is called Plato’s

Topos Uranus (TP). Science in general, and physics in particular, may thus be seen as a

[TP⇔ “Experiment"] two-way bridge. TP concepts are related to each other in the form of

“laws" that adequately describe the relationships obtaining among suitable chosen variables

that describe the phenomenon at hand. In many cases these laws are integrated into a

comprehensive theory (e.g., classical electromagnetism, based upon Maxwell’s equations)

[1, 12–15].

Jaynes’ MaxEnt ideas describe thermodynamics via the link [IT as a part of TP]⇔ [Thermal

experiment], or in a more general scenario: [IT] ⇔ [Phenomenon at hand]. It is clear that the

relation between an information measure and entropy is [IM] ⇔ [Entropy S]. One can then

assert that an IM is not necessarily an entropy, since the first belongs to the Topos Uranus and

the later to the laboratory. Of course, in some special cases an association IM ⇔ entropy S

can be established. Such association is both useful and proper in very many situations [5].

If, in a given scenario, N distinct outcomes (i = 1, . . . , N) are possible, three alternatives are to

be considered [6]:

1. Zero ignorance: predict with certainty the actual outcome.

2. Maximum ignorance: Nothing can be said in advance. The N outcomes are equally likely.
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3. Partial ignorance: we are given the probability distribution {Pi}; i = 1, . . . , N.

If our state of knowledge is appropriately represented by a set of, say, M expectation values,

then the “best", least unbiased probability distribution is the one that [6]

• reflects just what we know, without “inventing" unavailable pieces of knowledge [5, 6]

and, additionally,

• maximizes ignorance: the truth, all the truth, nothing but the truth [6].

Such is the MaxEnt rationale. In using MaxEnt, one is not maximizing a physical entropy, but

only maximizing ignorance in order to obtain the least biased distribution compatible with

the a priori knowledge.

Statistical mechanics and thereby thermodynamics can be formulated on an information

theory basis if the density operator ρ̂ is obtained by appealing to Jaynes’ maximum entropy

principle (MaxEnt), that can be stated as follows:

Assume that your prior knowledge about the system is given by the values of M expectation

values < A1 >, . . . ,< AM >. In such circumstances ρ̂ is uniquely determined by extremizing

I(ρ̂) subject to M constraints given, namely, the M conditions < Aj >= Tr[ρ̂ Âj], a procedure

that entails introducing M Lagrange multipliers λi. Additionally, since normalization of

ρ̂ is necessary, a normalization Lagrange multiplier ξ should be invoked. The procedure

immediately leads one [6] to realizing that I ≡ S, the equilibrium Boltzmann’s entropy, if

the a priori knowledge < A1 >, . . . ,< AM > refers only to extensive quantities. Of course, I,

once determined, affords for complete thermodynamical information for the system of interest [6].

5. A new micro-macroscopic way of accounting for thermodynamics

Gibbs’ and MaxEnt approaches satisfactorily describe equilibrium thermodynamics. We will

here search for a new, different alternative able to account for thermodynamics from first

principles. Our idea is to give axiom-status to Eq. (7), which is an empirical statement. Why?

Because neither in Gibbs’ nor in MaxEnt’s axioms we encounter a direct connection with

actual thermal data. By appealing to Eq. (7) we would instead be actually employing

empirical information. This is our rationale.

Consequently, we will concoct a new SM-axiomatics by giving postulate status to the

following macroscopic statement:

Axiom (1)

dE = TdS + ∑
ν

PνdAν. (21)

This is a macroscopic postulate to be inserted into a microscopic axiomatics’ corpus.

We still need some amount of microscopic information, since we are building up a microscopic

theory. We wish to add as little as possible, of course (Ockham’s razor). At this point it is useful

to remind the reader of Kinchin’s postulates, recounted above. We will content ourselves with

borrowing for our theoretical concerns just his his first axiom. Thus, we conjecture at this

point, and will prove below, that the following assertion suffices for our theoretical purposes:

126 Thermodynamics – Fundamentals and Its Application in Science
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Axiom (2) If there are W microscopic accessible states labelled by i, whose microscopic

probability we call pi, then

S = S(p1, p2, . . . , pW). (22)

Thus, we are actually taking as a postulate something that is actually known from both

quantum and classical mechanics.

Axiom (3) The internal energy E and the external parameters Aν are to be considered as

the expectation values of suitable operators, that is, the hamiltonian H and the hermitian

operators Rν (i.e., Aν ≡< Rν >). Thus, the Aν (and also E) will depend on the eigenvalues

of these operators and on the probability set. (Note that energy eigenvalues depend of course

upon the Rν.

The reader will immediately realize that Axiom (2) is just a way of re-expressing Boltzmann’s

“atomic" conjecture. Thus, macroscopic quantities become statistical averages evaluated using

a microscopic probability distribution [16]. Our present three new axioms are statements of

fact. What do we mean? That they are borrowed from either experiment or pre-existent

theories. Somewhat surprisingly, our three axioms do not actually incorporate any knew

knowledge at all. The merely re-express known previous notions. Ockham’s razor at its best!

Our theory could no be more economical.

We need now to prove that the above three postulates allow one to reconstruct the imposing

edifice of statistical mechanics. We will tackle this issue by showing below that they our

axioms are equivalent to those of Jaynes’ [17]. At this point we need to recall the main goal

of statistical mechanics, namely, finding the probability distribution (or the density operator)

that best describes our physical system. In order to do so Jaynes appealed to his MaxEnt

postulate, that we restate below for the sake of fixing notation.

MaxEnt axiom: assume your prior knowledge about the system is given by the values of M

expectation values

A1 ≡< R1 >, . . . , AR ≡< RM > . (23)

Then, ρ is uniquely fixed by extremizing the information measure I(ρ) subject to

ρ−normalization plus the constraints given by the M conditions constituting our assumed

foreknowledge

Aν =< Rν >= Tr[ρRν]. (24)

This leads, after a Lagrange-constrained extremizing process, to the introduction of M

Lagrange multipliers λν, that one assimilates to the generalized pressures Pν. The truth, the

whole truth, nothing but the truth [6]. Jaynes rationale asserts that if the entropic measure

that reflects our ignorance were not of maximal character, we would actually be inventing

information not at hand.

While working through his variational process, Jaynes discovers that, after multiplying by

Boltzmann’s constant kB the right-hand-side of his expression for the information measure, it

converts itself into an entropy, I ≡ S, the equilibrium thermodynamic one, with the caveat

that A1 =< R1 >, . . . , AM =< RM > refer to extensive quantities. Having ρ, his universal

form I(ρ) yields complete microscopic information with respect to the system of interest. To achieve

our ends one needs now just to prove that the new axiomatics, with (21) and (22), is equivalent

to MaxEnt.

127Thermodynamics’ Microscopic Connotations



10 Will-be-set-by-IN-TECH

6. New connection between macroscopic and microscopic approaches

In establishing our new connections between the micro- and macro-scenarios we shall work
with the classical instance only, since the corresponding quantum treatment constitute in this
sense just a straightforward extension.

Our main idea is to pay attention to the generic change pi → pi + dpi as constrained by Eq. (
21). In other word, we insist on studying the change dpi that takes place in such a manner that
(21) holds. Our main macroscopic quantities S, Aj, and E will vary with dpi. These changes
are not arbitrary but are constrained by (21). Note here an important advantage to be of our
approach. We need not specify beforehand the information measure employed.

Since several possibilities exist (see for instance Gell-Mann and Tsallis [18]), this entails that
the choice of information nature is not predetermined by macroscopic thermodynamics. For
a detailed discussion of this issue see Ferri, Martinez, and Plastino [19].

The pertinent ingredients at hand are

• an arbitrary, smooth function f (p) permitting one expressing the information measure via

I ≡ S({pi}) = ∑
i

pi f (pi), (25)

such that S({pi}) is a concave function,

• M quantities Aν representing values of extensive quantities 〈Rν〉, that adopt, for a
micro-state i, the value aν

i with probability pi,

• still another arbitrary smooth, monotonic function g(pi) (g(0) = 0; g(1) = 1). With
the express purpose of employing generalized, non-Shannonian entropies, we slightly
generalize here the expectation-value definitions by recourse to g via (26):

Aν ≡ 〈Rν〉 =
W

∑
i

aν
i g(pi); ν = 2, . . . , M, (26)

E =
W

∑
i

ǫi g(pi), (27)

where ǫi is the energy associated to the microstate i.

We take A1 ≡ E and pass to a consideration of the probability variations dpi that should
generate accompanying changes dS, dAν, and dE in, respectively, S, the Aν, and E.

The essential issue at hand is that of enforcing compliance with

dE − TdS +
W

∑
ν=1

dAνλν = 0, (28)

with T the temperature and λν generalized pressures. By recourse to (25), (26), and (27) we i)
recast now (28) for
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pi → pi + dpi, (29)

and ii) expand the resulting equation up to first order in the dpi.

Remembering that the Lagrange multipliers λν are identical to the generalized pressures Pν

of Eq. (7), one thus encounter, after a little algebra [20–26],

C
(1)
i = [∑M

ν=1 λν aν
i + ǫi]

C
(2)
i = −T ∂S

∂pi

∑i[C
(1)
i + C

(2)
i ]dpi ≡ ∑i Kidpi = 0, (30)

so that, appropriately rearranging things

T
(1)
i = f (pi) + pi f ′(pi)

T
(2)
i = −β[(∑M

ν=1 λν aν
i + ǫi) g′(pi)− K],

(β ≡ 1/kT), (31)

and we are in a position to recast (30) in the fashion

T
(1)
i + T

(2)
i = 0; ( f or any i), (32)

an expression whose importance will become manifest later on.

Eqs. (30) or (32) yield one and just one pi−expression, as demonstrated in Refs. [20–26].
However, it will be realized below that, at this stage, an explicit expression for this probability
distribution is not required.

We pass now to traversing the opposite road that leads from Jaynes’ MaxEnt procedure and
ends up with our present equations. This entails extremization of S subject to constraints in E,
Aν, and normalization. For details see [20–26].

Setting λ1 ≡ β = 1/T one has

δpi
[S − β〈H〉 −

M

∑
ν=2

λν〈Rν〉 − ξ ∑
i

pi] = 0, (33)

(normalization Lagrange multiplier ξ) is easily seen in the above cited references to yield as a
solution the very set of Eqs. (30). The detailed proof is given in the forthcoming Section. Eqs.
(30) arise then from two different approaches:

• our methodology, based on Eqs. (21) and (22), and

• following the well known MaxEnt route.

Accordingly, we see that both MaxEnt and our axiomatics co-imply one another. They are
indeed equivalent ways of constructing equilibrium statistical mechanics. As a really relevant
fact
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One does not need to know the analytic form of S[pi] neither in Eqs. (30) nor in (33).

7. Proof

Here we prove that Eqs. (30) can be derived from the MaxEnt approach (33). One wishes to
extremize S subject to the constraints of fixed valued for i) U, ii) the M values Aν (entailing
Lagrange multipliers (1) β and (2) M γν), and iii) normalization (Lagrange multiplier ξ). One
has also

Aν = 〈Rν〉 = ∑
i

pi aν
i , (34)

with aν
i = 〈i|Rν|i〉 the matrix elements in the basis 〈i〉 of Rν. The ensuing variational problem

one faces, with U = ∑i piǫi, is

δ{pi}

[

S − βU −
M

∑
ν=1

γν Aν − ξ ∑
i

pi

]

= 0, (35)

that immediately leads, for γν = βλν, to

δpm ∑
i

(

pi f (pi)− [βpi(
M

∑
ν=1

λν aν
i + ǫi) + ξ pi]

)

= 0, (36)

so that the the following two quantities vanish

f (pi) + pi f ′(pi)− [β(∑M
ν=1 λν aν

i + ǫi) + ξ]

⇒ if ξ ≡ βK,

f (pi) + pi f ′(pi)− β(∑M
ν=1 λνaν

i + ǫi) + K]

⇒ 0 = T
(1)
i + T

(2)
i . (37)

We realize now that (32) and the last equality of (37) are one and the same equation. MaxEnt
does lead to (32).

8. Conclusions

We have formally proved above that our axiomatics allows one to derive MaxEnt equations
and viceversa. Thus, our treatment provides an alternative foundation for equilibrium
statistical mechanics. We emphasized that, opposite to what happens with both Gibbs’ and
Jaynes’ axioms, our postulates have zero new informational content. Why? Because they are
borrowed either from experiment or from pre-existing theories, namely, information theory
and quantum mechanics.

The first and second laws of thermodynamics are two of physics’ most important empirical
facts, constituting pillars to our present view of Nature. Statistical mechanics (SM) adds an
underlying microscopic substratum able to explain not only these two laws but the whole
of thermodynamics itself [2, 6, 27–30]. Basic SM-ingredient is a microscopic probability
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distribution (PD) that controls microstates-population [27]. Our present ideas yield a detailed
picture, from a new perspective [20–26], of how changes in the independent external
thermodynamic parameters affect the micro-state population and, consequently, the entropy
and the internal energy.
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