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1. Introduction

A black hole is, by definition, a region in spacetime in which the gravitational field is so strong
that it precludes even light from escaping to infinity. A black hole is formed when a body of
mass M contracts to a size less than the so called gravitational radius rg = 2GM/c2. (G is the
Newton’s gravitational constant, and c is the speed of light). The velocity required to leave the
boundary of the black hole and move away to infinity (the escape velocity) equals the speed
of light. In this way, one easily concludes that neither signals nor particles can escape from
the region inside the black hole since the speed of light is the limiting propagation velocity for
physical signals. From the fact that no signals can escape from a black hole, while physical
objects and radiation can fall into it, the surface bounding the black hole in spacetime (called
the event horizon) is a lightlike surface.

The term “black hole" was introduced by Wheeler in 1967 although the theoretical study of
these objects has quite a long history. The very possibility of the existence of such objects was
first discussed by Michell and Laplace within the framework of the Newtonian theory at the
end of the 18th century [1–3]. In general relativity context, the problem arose within a year
after the theory had been developed, i.e., after Schwarzschild (1916) obtained the first exact
(spherically symmetric) solution of Einstein’s equations in vacuum.

In particular, black hole developments in the last forty years have shown that black holes
have thermodynamics properties like entropy and temperature, and as a consequence of the
instability of the vacuum in strong gravitational fields, they are sources of quantum radiation
[4–6]. String theory and loop quantum gravity, lately, showed that the origin of the black
hole thermodynamics must be related with the quantum structure of the spacetime, bringing
together the developments in black hole physics and the improvement of our understanding
on the nature of the spacetime in quantum gravity regime [7, 8]. In this way, it is believed
that black holes may play a major role in our attempts to shed some light on the quantum
nature of the spacetime such as the role played by atoms in the early development of quantum
mechanics.
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2 Will-be-set-by-IN-TECH

However the understanding of black hole thermodynamics in the semiclassical and
furthermore in quantum regime has been a very difficult, and still unsolved problem. To
explain the situation, it is known that, in statistical physics, entropy counts the number
of accessible microstates that a system can occupy, where all states are presumed to occur
with equal externally observable classical parameters: mass, electric charge, and angular
momentum. All other information about the matter which formed a black hole “disappears”
behind its event horizon, and therefore the nature of these microstates is obscure. Thus,
the origin of the black hole entropy is not clear. Furthermore, in order to justify the name
“entropy”, one must to explain also why the sum of the entropy of a black hole and the entropy
of its vicinity is a non-decreasing function of time. In other words, why black holes obey the
so called “Generalized Second Law of thermodynamics (GSL)”.

The situation becomes even worse if black hole evaporation is considered. Since black holes
evaporate, one could expect, from black hole radiation, any information about the state which
collapsed into the black hole. However, Hawking showed, through semiclassical arguments,
that black hole radiation is thermal, and therefore does not carry any information about its
initial state. In this situation, the matter that formed the black hole, which initially was in a
pure state has evolved into a mixed state. This fact bring us a contradiction with quantum
mechanics, where a pure state can only evolve into another pure state because of the unitarity
of the evolution operator [4, 5, 9, 10].

In this context, a new phenomenon arises as one way to solve the drawbacks between black
hole physics and quantum mechanics. This phenomenon is related with quantum gravity,
and consists in a topology change of the spacetime, where a new topologically disconnected
region arises inside the black hole, and information can be stored and preserved there. This
scenario can be produced by the gravitational collapse, which would lead to a region of
Planckian densities and curvature where quantum gravitational effects becomes important.
Topology change must occur deep inside the black hole horizon, in a way that, it is entirely
invisible to observers outside the black hole, which see the usual Hawking evaporation. In
this situation, a complete state specification of the (now topologically non-trivial) universe
requires a wavefunction which has a component on the new topologically disconnected region
too. In this way, observers without access to this new region, have incomplete information
about the universe as a whole.

In this chapter, the black hole thermodynamics will be addressed in the context of topology
change, as conceived for some classes of quantum spaces, called fuzzy spheres. It will be
argued that a model based on the topology change of these fuzzy manifolds can be used to
shed some light on the origin of the black hole entropy, including why black hole evaporation
process obeys the GSL. In this sense, the selection rules will be addressed for the black hole
area transitions in a black hole evaporation process driven by topology change. Moreover,
the information loss problem will be discussed, including the possibility of some information
about the black hole initial state could be recovered by an observer in our universe, where one
can perform measures.

This chapter is organized as follows. In the second section, the black hole thermodynamics
will be addressed, introducing the laws of black hole mechanics and the Hawking effect. In
the third section, the fuzzy sphere model and the topology change process for fuzzy spaces
will be addressed. In the forth section, the relation between fuzzy spaces topology change and
black hole thermodynamics will be addressed, where the selection rules for the black hole area
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Fuzzy Spheres Decays and Black Hole Thermodynamics 3

transitions in the evaporation process are obtained. In the fifth section, it will be investigated
the obedience to GSL by the black hole evaporation in the fuzzy topology change approach.
The sixth section is devoted to conclusions.

2. Black hole thermodynamics

Over the last forty years, black holes have been shown to have a number of surprising
properties. These discoveries have revealed unforeseen relations between the otherwise
distinct areas of general relativity, quantum physics and statistical mechanics. This interplay,
in turn, led to a number of deep puzzles at the very foundations of physics. Some have
been resolved while others remain open. The starting point of these fascinating developments
remounts to the early 1970s, where a set of relations among neighboring black hole solutions
were found, culminating in Bardeen, Carter, and Hawking’s “Four Laws of Black Hole
Mechanics” [11]. These laws dictate the behavior of black holes in equilibrium, under small
perturbations away from equilibrium, and in fully dynamical situations. While they are
consequences of classical general relativity alone, they have a close similarity with the laws of
thermodynamics. The origin of this seemingly strange coincidence lies in quantum physics.

2.1. The laws of black hole mechanics

1 - (Zeroth law) If the energy-momentum tensor Tµν obeys the dominant energy condition,
then the surface gravity κ is constant on the future event horizon H+.

Although the surface gravity κ is defined locally on the horizon, it turns out that it is always
constant over the horizon of a stationary black hole. This constancy is reminiscent of the
Zeroth Law of Thermodynamics which states that the temperature is uniform everywhere
in a system in thermal equilibrium. The zeroth law of black hole mechanics can be proved
without field equations or energy conditions [12–15] assuming that the horizon is a Killing
horizon (i.e. there is a Killing field tangent to the null generators of the horizon) and that the
black hole is either (i) static (i.e. stationary and time reflection symmetric) or (ii) axisymmetric
and “t − φ” reflection symmetric. Alternatively it can be proved (Hawking) assuming only
stationarity together with Einstein’s field equations with the dominant energy condition for
matter [16, 17]. 1

2 - (First law) If a stationary black hole of mass M, charge Q and angular momentum J, with
future event horizon of surface gravity κ, electric potential ΦH and angular velocity ΩH , is
perturbed such that it settles down to another black hole with mass M + dM, charge Q + dQ
and angular momentum J + dJ, then,

dM =
κ

8π
dA + ΩHdJ + ΦHdQ . (1)

The first law relates nearby stationary black hole solutions of the Einstein’s equation, and
has been derived in many ways. If stationary matter (other than the electromagnetic field) is
present outside the black hole, then there are additional matter terms on the right hand side
of the equation (1). The surface gravity κ evidently plays the hole of temperature. Although
the quantities κ, ΩH , and ΦH are all defined locally on the horizon, they are always constant

1 Assuming also hyperbolic field equations for matter, and analyticity of the spacetime, Hawking also shows that the
event horizon must be a Killing horizon, and that the spacetime must be either static or axisymmetric.
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over the horizon of a stationary black hole (modulo some assumptions; see for example the
assumptions above for κ).

3 - (Second law) If Tµν satisfies the weak energy condition, and assuming that the cosmic
censorship hypothesis is true then the area of the future event horizon of an asymptotically
flat spacetime is a non-decreasing function of time:

δA ≥ 0 . (2)

4 - (Third law) It is impossible by any procedure to reduce the surface gravity κ to zero in a
finite number of steps. 2

Bardeen, Carter, and Hawking noted that these laws closely parallel the ordinary laws of
thermodynamics, with the horizon area playing the role of entropy and the surface gravity
playing the role of temperature. But can one truly considers that this analogy is something
more than a mere formal coincidence?

The physical temperature of a black hole in classical general relativity is absolute zero. The
existence of the event horizon prevents the black hole to emit anything, and it can be regarded
as a perfect absorber, with absolute zero temperature. In this way, the identification of the
surface gravity of a black hole with a temperature, in the context of the classical theory, is
completely non-physical, and so the identification of the event horizon area with an entropy.

This was the general view of most physicists before the discovery of the Hawking effect.
The most notable exception was Bekenstein, who put forward the idea of a real physical
connection between entropy and area of the event horizon, even before the work of Hawking.
He also suggested a generalized second law for black holes:

Generalized Second Law (GSL) :

“The sum of the black holes entropy and the entropy of matter outside black holes would
never decrease"

δ
(

Sout +
1

8πα
A
)

≥ 0 . (3)

The existence of black holes is not compatible with the ordinary second law of
thermodynamics. If matter can fall into a black hole and disappear, the entropy of matter for
the external observer decreases. However, the area of the event horizon increases. Bekenstein
suggested that the generalized entropy S′ = Sout + A/8πα does not decrease.

A more detailed inspection of this suggestion shows that it is not consistent. One can considers
a black hole immersed in a thermal bath at a temperature lower that αc2κ/G. Since the black
hole will absorb part of the radiation without emitting anything, one has a heat flow from
a cold thermal radiation to a “hotter" black hole. This would disagree with the generalized
second law because the loss of entropy from the thermal radiation would be greater than the
increase in black hole entropy. An additional physical input is required to pass from a formal
to a physical analogy.

Some insights can be gained analyzing the dimension of the constant α. A simple look
unravels that, since S has the dimension of Boltzmann’s constant kB. In this way, αkB must

2 As in ordinary thermodynamics, there are a number of formulations of the third law, which are not strictly equivalent.
The version given here is analogous to the Nernst form of the third law of thermodynamics.
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have dimensions of length squared. With the physical constants that one has in classical
general relativity (i.e., Newton’s constant G and the velocity of light c) it is not possible to
form a constant (to be identified with αkB) with dimensions of length squared. The Planck’s
constant ℏ is necessary for that.

From G, c and ℏ, one can form the Planck length

lP =

√

Gℏ

c3
. (4)

With this fundamental length available (αkB ∝ l2
P), one can go further in the analogy and write

T ∝
ℏ

kBc
κ , S ∝

kBc3

Gℏ
A . (5)

The lesson of this brief discussion is that the input required to properly establish a physical
analogy between black holes and thermodynamics involves considering quantum effects. This
will be the topic of the next section.

2.2. The Hawking effect

In 1974, Hawking demonstrated that all black holes emit blackbody radiation [4]. The
original derivation of the Hawking effect made direct use of the formalism for calculating
particle creation in a curved spacetime. Hawking considered a classical spacetime describing
gravitational collapse to a Schwarzschild black hole. A free (i.e., linear) quantum field
propagating in this background spacetime was considered, which is initially in its vacuum
state prior to the collapse, and the particle content of the field at infinity at late times
was computed. This calculation involves taking the positive frequency mode function
corresponding to a particle state at late times, propagating it backwards in time, and
determining its positive and negative frequency parts in the asymptotic past. Hawking’s
calculation revealed that at late times, the expected number of particles at infinity corresponds
to emission from a perfect black body (of finite size)

〈N
(ℑ+)
ω 〉 =

Γω

e2πω/κ − 1
(6)

at the Hawking temperature

T = ℏ
κ

2πkB
, (7)

where Γω is a scattering coefficient sometimes called the gray-body factor since it indicates
the emissivity of the black hole which is not that of a perfect blackbody.

It should be noted that this result relies only on the analysis of quantum fields in the region
exterior to the black hole, and it does not make use of any gravitational field equations. In this
way, Hawking’s calculation has two main ingredients: the first is that the quantum mechanical
vacuum is filled with virtual particle-antiparticle pairs that fluctuate briefly into and out of
existence. Energy is conserved, so one member of each pair must have negative energy. 3

Normally, negative energy is forbidden - in a stable quantum field theory, the vacuum must

3 To avoid a common confusion, note that either the particle or the antiparticle can be the negative-energy partner.
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be the lowest energy state - but energy has a quantum mechanical uncertainty of order ℏ/t,
so a virtual pair of energy ±E can exist for a time of order ℏ/E. The second ingredient is the
observation that, in general relativity, energy - and, in particular, the sign of energy - can be
frame dependent. The easiest way to see this is to note that the Hamiltonian is the generator
of time translations, and thus depends on one’s choice of a time coordinate. 4

In this way, one can conclude that a black hole may radiate its energy at a temperature given
by equation (7). This result makes the relation between the laws of black hole mechanics and
the laws of thermodynamics to be more than a mere analogy.

From the results above, one can attribute an entropy to black hole which is given by:

SBH =
A

4l2
P

. (8)

Another interesting result is a consequence of the Stephan law. For a black hole with a horizon
area A:

dE

dt
⋍ −σAT4

H , (9)

where σ = π2k4
B/60ℏ3c2.

Moreover, from the fact that

E = Mc2, kBTH ∼ ℏc3

GM
, (10)

and, for a Schwarzchild black hole:

A = 4π
( MG

c2

)2
, (11)

another result is that
dE

dt
∼ ℏc4

G2M2
. (12)

In this way, a Schwarzchild black hole possess a finite lifetime which is given by:

τ ∼
( G2

ℏc4

)

M3 . (13)

4 One must therefore be careful about what one means by positive and negative energy for a virtual pair. In particular,
consider the Schwarzschild scenario. Outside the event horizon, t is the usual time coordinate, measuring the proper
time of an observer at infinity. Inside the horizon, though, components of the metric change sign, and r becomes a time
coordinate, while t becomes a spatial coordinate: an observer moving forward in time is one moving in the direction of
decreasing r, and not necessarily increasing t. Hence an ingoing virtual particle that has negative energy relative to an
external observer may have positive energy relative to an observer inside the horizon. The uncertainty principle can
thus be circumvented: if the negative-energy member of a virtual pair crosses the horizon, it need no longer vanish in
a time ℏ/E, and its positive-energy partner may escape to infinity [18].
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3. Open questions

The results described in the previous sections provide a remarkably compelling case that
stationary black holes are localized thermal equilibrium states of the quantum gravitational
field, and that the laws of black hole mechanics are simply the ordinary laws of
thermodynamics applied to a system containing a black hole. Although no results on black
hole thermodynamics have been subject to any experimental or observational tests, the
theoretical foundation of black hole thermodynamics appears to be sufficiently firm to provide
a solid basis for further research and speculation on the nature of quantum gravitational
phenomena. In this section, it will be briefly discussed two key unresolved issues in black
hole thermodynamics which may shed considerable further light upon quantum gravitational
physics.

3.1. The origin of black hole entropy

From the results above, it is clear that black holes are really thermodynamical systems with
an actual temperature and entropy. What remains to be understood is the meaning of this
entropy in terms of statistical mechanics.

It is known that in statistical physics, entropy counts the number of accessible microstates
that a system can occupy, where all states are presumed to occur with equal probability. In the
thermodynamical description, entropy S is related to the number of all consistent microscopic
states N as

S = kBlnN . (14)

In analogy, it is expected that there might be a microscopic description of the black hole
thermodynamics, too. However, it is also known that black holes can be completely
characterized by only three externally observable classical parameters: mass, electric charge,
and angular momentum. All other information about the matter which formed a black hole
“disappears” behind its event horizon, and therefore the nature of these microstates is obscure.
Then, what is the origin of the black hole entropy?

It is widely believed that the black hole entropy might be related to a number of microscopic
states. Since the microscopic description seems to require a quantum theory of gravity,
detailed investigations of the black hole entropy should contribute a lot toward construction
of the theory of quantum gravity. This is one among the several reasons why the origin of
the black hole entropy needs to be understood at the fundamental level. Another question
is related with GSL. In order to justify the name “entropy”, one must to explain also why
S = Sbh + Sout is a non-decreasing function of time, in other words, why black holes obey a
GSL.

A strong motivation to investigate the black hole entropy is the so-called information loss
problem, which will be addressed in the next section.

3.2. The information loss problem

Black holes can be completely characterized by only three externally observable classical

parameters: mass, electric charge, and angular momentum. All other information about the
matter which formed a black hole “disappears” behind the black hole event horizon, and
therefore the nature of these microstates is obscure. Since black holes evaporate, one could
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expect, from the Hawking radiation, any information about the state which collapsed into
the black hole. However, Hawking showed that this radiation is thermal, and therefore does
not carry any information about the black hole initial state. That is to say, no information can
escape from inside of the black hole horizon. In this situation, the matter that formed the black
hole, which initially was in a pure state has evolved into a mixed state. But, it contradict our
basic knowledge about quantum mechanics. There, a pure state can only evolve into another
pure state because of the unitarity of the evolution operator U(U†U = 1). This problem is
known as the black hole information loss paradox.

Some possibilities to solve this paradox have already been proposed. Among these
possibilities, one has

i - The evolution is indeed non-unitary and the basics concepts of quantum mechanics must
be revised [5, 19]. However, these proposal has difficulties related with violation of energy
conservation and the absence of an empty vacuum as the ground state [20–23].

ii - The black hole radiation is not thermal and carries information. The problem is that a new
physics is necessary, which is radically different from the one is known: concepts as locality
and causality must be left, since matter behind the horizon has to influence matter outside the
horizon [24–26].

iii - The information is stored in a stable black hole remnant [27]. The main problem with
remnants is that, since the initial black hole could have been arbitrarily massive, the remnant
must be capable of carrying an arbitrarily large amount of information (about M2/M2

Planck
bits, if the initial mass was M). This means that there must be an infinite number of species
of stable remnants, all with mass comparable to MPlanck . Black hole remnants have appeared
in several noncommutative approaches of black holes, including one where the fuzzy sphere
model is used [28–30].

iv - Information could be stored in a topological disconnected region which arises inside of the
black hole [31]. Gravitational collapse leads to a region of Planckian densities and curvature
where quantum gravitational effects can lead to a topology change process where a new
topologically disconnected region (a baby universe) appears. Information about the black
hole initial state can be stored there. It is possible, but not necessary, that information returns
via quantum gravity tunneling after some long timescale. In this point, the baby universe

ceases to exist, and the black hole evolution as seen by an observer outside the black hole
is unitary. Topology change had been claim to be non-unitary and therefore to suffer from
the same problems of the first proposal. The other objection against topology change is the
violation of cluster decomposition(locality) [31, 32].

In this chapter, the topology change approach will be addressed. The main idea present
here is to see the black hole event horizon as a fuzzy sphere, and using its known quantum
symmetries properties, find out a topology change process to black holes, which is free of the
problems related with unitarity and locality. If this is possible, a solution to the information
loss paradox will be gotten. Moreover, this model, based on the topology change of a quantum
manifold, is used to explain the origin of the black hole thermodynamics. It will be argued
that this model can explain the origin of the black hole entropy, and why black holes obey
a generalized second law of thermodynamics. In the following sections, all fundamental
constants will be considered equals to one
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4. Fuzzy spaces topology change and black hole thermodynamics

4.1. The fuzzy sphere model

Fuzzy spheres consist in one of the most simplest example of noncommutative spaces and
appear as vacuum solutions in Euclidean gravity [33–35]. It is obtained when one quantizes
the usual sphere S2 replacing the commutative algebra of functions on this manifold by the
noncommutative algebra of matrices.

It is known that any function defined on the usual sphere can be expanded in terms of the
spherical harmonics Ylm as

f (x) |S2=
∞

∑
l=0

l

∑
m=−l

clmYlm(x) , (15)

where clm are complex coefficients, and the product of these functions is commutative.

The introduction of the noncommutative geometry is performed as one quantizes the
coordinates xµ (µ = 1, 2, 3) on S2, through the transformation

xµ → x̂µ = κ Ĵµ , (16)

with
x̂µ x̂µ = r21 , (17)

where Ĵµ form the n-dimensional irreducible representation of the SU(2) algebra, whereas r
is the fuzzy sphere radius, and

κ =
r√

N2 − 1
. (18)

In this way, the coordinates on the fuzzy sphere S2
F satisfy the following commutation relations

[x̂µ, x̂ν] = iλ/r−1εµναx̂α , (19)

where λ/ has a dimension of (length)2, and plays here a role analogous to that played by
Planck’s constant in quantum mechanics. The fact that the coordinates x̂µ do not commute
anymore implies that the points on the sphere are “smeared out”, and one has to substitute
the idea of points for the idea of elementary (Planck) cells.

A consequence of the process above is the introduction of a cutoff N on the expansion (15), in
a way that it becomes

f (x) |S2
F
=

N

∑
l=0

l

∑
m=−l

clmŶlm(x) , (20)

where now Ŷlm(x) are matrices. In this way the function f (x) is replaced by a matrix (N +
1) × (N + 1) in a way that its product becomes noncommutative. The commutative limit is
given by λ/ → 0 or N → ∞.

In the context of black hole physics, the use of fuzzy spheres is mostly motivated by the
Bekenstein’s limit [6], which says that the black hole entropy is finite and proportional to the
event horizon area. Since fuzzy spheres, are obtained from quantization of a compact space,
they are described by finite dimensional matrices, in a way that the number of independent
states defined on the fuzzy sphere is limited, and the entropy associated with these states is
finite, in agreement with the Bekenstein’s limit [28, 34, 36–39].
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4.2. Fuzzy spheres and Hopf algebras

Another important feature of fuzzy spheres is its close relationship with Hopf algebras, which
allow us to define a linear operation (the coproduct of a Hopf algebra) on S2

F and compose
two fuzzy spheres preserving algebraic properties intact. This operation produces a topology
change process where a fuzzy sphere splits into two others [40], and can be used as a good
mathematical model to black hole topology change [36, 37].

In order to define a Hopf algebra, one has that a bi-algebra is a vector space A over a field of
scalars F which is both an algebra and a coalgebra in a compatible way. The algebra structure
is given by F-linear maps m : A ⊗ A → A (the product) and η : F → A (the unit map),
where xy := m(x, y) and η(1) = 1A. The coalgebra structure is likewise given by linear maps
Δ : A → A ⊗ A (the coproduct) and ǫ : A → F (the counit map). One writes ι : A → A, or
sometimes ιA , to denote the identity map on A. The required properties are

• Associativity: m(m ⊗ ι) = m(ι ⊗ m) : A ⊗ A ⊗ A → A;

• Unity: m(η ⊗ ι) = m(ι ⊗ η) = ι : A → A;

• Coassociativity: (Δ ⊗ ι)Δ = (ι ⊗ Δ)Δ : A → A ⊗ A ⊗ A;

• Counity: (ǫ ⊗ ι)Δ = (ι ⊗ ǫ)Δ = ι : A → A;

A Hopf algebra is defined as a bi-algebra H together with a (necessarily unique) convolution
inverse S for the identity map ι = ιH ; the map S is called the antipode of H.

Fuzzy spaces possess quantum groups properties related with a Hopf algebra [40].5 To
describe the fuzzy sphere topology change, one has that under the quantization procedure
(16), functions defined on S2 are replaced by matrices on S2

F [33]. In this way, let a matrix M̂

describing a wave function on S2
F, the Hopf coproduct Δ : S2

F(j) → S2
F(K)⊗ S2

F(L) acts on M̂
as

Δ(K,L)(M̂) = ∑
µ1,µ2,m1,m2

CK,L,J;µ1,µ2
CK,L,J;m1,m2

(21)

×Mµ1+µ2,m1+m2 eµ1m1 (K)⊗ eµ2m2 (L) ,

where C’s are the Clebsh-Gordan coefficients and eµimj ’s are basis for a matrix space defined
on the fuzzy sphere [40].

The coproduct Δ has the following properties:

Δ(K,L)(M†) = Δ(K,L)(M)† ,

(22)

Δ(K,L)(MN) = Δ(K,L)(M)Δ(K,L)(N) ,

(23)

TrΔ(K,L)(M) = Tr(M) ,

5 Actually, fuzzy spaces possess algebraic properties more general than a Hopf algebra. It is due to the fact that a
coproduct of two different algebras is possible, whereas in an ordinary Hopf algebra only the coproduct of an algebra
by itself is possible.
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and
〈Δ(K,L)(M†), Δ(K,L)(N†)〉 = 〈M, N〉 (24)

In this way, the coproduct Δ preserves the Hermitian conjugation, the matrix product, the
matrix trace, and the matrix inner product. These properties of the coproduct Δ assure that
(21) is a unitary process, and preserves the algebraic properties of the operators defined on
the fuzzy sphere [36, 37, 40].

4.3. Fuzzy spaces topology change and black hole thermodynamics

The basic assumptions in this chapter stay in the meaning of the eq. (21). This equation says
that a wavefunction M̂ ∈ S2

F(J) splits into a superposition of wavefunctions on S2
F(K)⊗ S2

F(L).

In this way, the information in M̂ is divided between two regions of the spacetime, i.e, the two
fuzzy spheres with spins K and L respectively. The following consequences are imminent:

(i) If one use the fuzzy sphere Hilbert space as the ones of the black hole, the maximum of
information about the black hole that an outside observer can obtain would be encoded in
wave functions defined on the fuzzy sphere Hilbert space.

(ii) One will find out, through the Hopf coproduct Δ, a topology change process for the black
hole. In this process the information about the black hole initial state, will be divided into two
spacetime regions. One of them is a fuzzy sphere with spin K, which will be considered as
the original world and name it “the main world”. The other one is a fuzzy sphere with spin L
which will be named “the baby world”.

(iii) The process is unitary, in this way there is no information loss. However, since the baby
world arises in the black hole interior, an observer in the main world can not access the
degrees of freedom there. In this way, from his standpoint, the black hole will appear to
evolve from a pure to a mixed state described by a density matrix ρ̂. It enable us to define an
entropy, measured by the observer in the main world, associated to the black hole horizon.

Now, in order to analyze how the topology change process drives the black hole evaporation,
it will be necessary to investigate how the fuzzy topology change drives the black hole area
transitions. It will be admitted that the selection rules for the black hole area transitions are
the ones for the topology change. These rules are obtained from the eq. (21), when one traces
over the degrees of freedom in the baby universe.

The splitting process (21) for a matrix M̂ = | J, m〉〈J, m
′ | with L = 1/2, and K = J − 1/2 is

given by:

Δ(| J, m〉〈J, m
′ |) =

√

(K+mK+1)(K+m
′
K+1)

2K+1 | K, m − 1/2〉〈K, m
′ − 1/2 |

+

√

(K−mK+1)(K−m
′
K+1)

2K+1 | K, m + 1/2〉〈K, m
′
+ 1/2 | . (25)

In that point, it still necessary to ensure that the splitting process above can be performed
repeatedly, under identical circumstances, with statistically independent results to outside
observers in different regions of spacetime. That is to say, it is necessary to ensure that locality
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is preserved in this process. In ordinary quantum field theory these requirements are insured
by the Cluster Decomposition Theorem.

Cluster decomposition theorem

The vacuum expectation value of a product of many operators - each of them being either
in different regions A and B, where A and B are very separated - asymptotically equals to
the expectation value of the product of the operators in A, times a similar factor from the
region B. Consequently, sufficiently separated regions behave independently. If A1, ..., An are
n operators each localized in a bounded region and one picks some subset of the n operators
to translate xi into x′i = xi+ρa,

lim
ρ→∞

〈M0, A1(x1)A2(x2), ..., Aj−1(xj−1)Aj(x
′
j), ...An(x′n), M0〉 (26)

= 〈M0, A1(x1)A2(x2), ..., Aj−1(xj−1), M0〉
×〈M0, Aj(x

′
j), ...An(x′n), M0〉 ,

where M0 represents the vacuum state.

If one admits that (26) is valid for an outside observer is easy to see, from Eq. (24) that

lim
ρ→∞

〈Δ(M0), Δ(A1(x1))Δ(A2(x2)), ..., Δ(Aj−1(xj−1))Δ(Aj(x
′
j)), ..., Δ(An(x′n)), Δ(M0)〉

= 〈Δ(M0), Δ(A1(x1))Δ(A2(x2)), ..., Δ(Aj−1(xj−1)), Δ(M0)〉
×〈Δ(M0), Δ(Aj(x

′
j)), ..., Δ(An(x′n)), Δ(M0)〉 , (27)

where Δ(Aj(xj)) and Δ(Aj(x
′
j)) represent the splitting process in different points of spacetime.

The splitting process, then, occurs in a way that cluster decomposition is preserved and
locality is not violated.

From the equation (25), and from the fact that the splitting process (21) obeys cluster
decomposition, in a way that different steps J → J − 1/2, in the black hole evaporation, are
independent events, the probability amplitude for a n-steps transition is given by

aJn =
( 2J + 1

2J − n + 1

)

. (28)

Now, in order to analyze the black hole area transitions, it will be introduced a canonical
ensemble in which our system (the BH) can occupy different area microstates. The idea of
using these types of ensembles goes back to Krasnov [41–43] and is, somehow, a necessity in
the Loop Quantum Gravity formalism as the count of states is naturally done by using the
horizon area instead of BH mass [44, 45]. In this framework, the probability amplitude for the
BH evaporate is given by

aJn = e−βδAJn , (29)

where β is a temperature-like parameter dual to the black hole area [46–48].

The probability amplitude (28) will be identified with (29), in a way that the value of the black
hole area in the J-state will be written as

AJ = β−1 ln(2J + 1) . (30)
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Moreover, the density matrix describing the black hole quantum states can be written as

ρ̂ = (1/Z)
Dim(S2

F)

∑
J=0

e−βAJ | J〉〈J |= (1/Z)e−βÂ , (31)

where Z = Tre−βÂ is the partition function.

The matrix ρ̂ in the eq. (31) satisfy the Bloch equation

i
∂ρ̂

∂Θ
= − Â

8π
ρ̂ , (32)

where β has been replaced by −iΘ/8π.

The equation (32) will govern the transitions between black hole area states. It must be
used when working in the Euclidean continuation of the black hole, supplementing the
Wheeler-DeWitt equation, where Θ plays the role of a sort of “dimensionless internal time”
associated with the horizon [46–48]. Moreover, Θ = iΘE, where ΘE is the Euclidian angle.
Regularity of the Euclidean manifold at the horizon imposes a fixed Euclidean angle given by
ΘE = 2π. In this way, at the horizon β = 1/4.

From the equation (30), and the results above, the entropy S = −Tr(ρ̂lnρ̂) = ln(2J + 1),
associated for an outside observer to black hole is given by

S =
A

4
, (33)

which corresponds to the Bekenstein-Hawking formula.

The logarithmic dependence of the black hole area spectrum on J, in the expression (30), tell
us that the decrease in the horizon area is continuous at large values of J, and discrete to small
values of J, when the black hole approaches the Planck scale. The black hole area spectrum is
showed in the figure (1).

0

5

10

15

BH�Area

Figure 1. The black hole area spectrum for topology change approach

In this way, if one models a black hole horizon by a fuzzy sphere and consider its quantum
symmetry properties, a topological change process which can be used to solve the black hole
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information loss paradox is obtained. In this process a black hole event horizon, modeled
by a fuzzy sphere with spin J , splits into two others. The fuzzy sphere splitting can be
used to describe a black hole evaporation process in which information about the black hole
initial state is divided between two topologically disconnected regions: the main and the baby
world. Nor unitarity or locality is broken in the evolution of the whole system. On the other
hand, an observer in the main world sees the topology change process occurs in a non-unitary
way, due to the impossibility of access the degrees of freedom in the baby world.

It is possible, but not necessary, that information returns via quantum gravity tunneling at
the final stages of black hole evaporation. In this point, the baby universe ceases to exist,
and the black hole evolution as seen by an observer outside the black hole is unitary. In
the next section it will seen how the selection rules, inherited from the topology change
process, will bring essential consequences to the way how entropy is emitted by black holes.
One has that Hawking’s radiation is known semi-classically to be continuous. However, the
Hawking quanta of energy are not able to hover at a fixed distance from the horizon since the
geometry of the horizon has to fluctuate, once quantum gravitational effects are included.
Thus, one suspects a modification of the black hole radiation when quantum geometrical
effects are taken into account. As will be seen in the next section, a possible modification
on the description of the black hole emission process occurs at the final stages of black hole
evaporation, where its area spectrum becomes discrete.

4.4. Entropy emitted during the evaporation process

It is known that the entropy of a system measures one’s lack of information about its actual
internal configuration. Suppose that everything one knows about the internal configuration
of the system is that it may be found in any of a number of states, with probability pn for
the nth state. Then the entropy associated with the system is given by Shannon’s well-known
relation S = − ∑ pn lnpn [49–52].

The probability for a black hole to emit a specific quantum should be given by the expression
(28), in which one must yet include a gray-body factor Γ (representing a scattering of the
quantum off the spacetime curvature surround the black hole). Thus, the probability pn to the

black hole goes n steps down in the area ladder is proportional to Γ(n) e−
δAJn

4 . Moreover, the
discrete area spectrum (30) implies a discrete line emission from a quantum black hole.

To gain some insight into the physical problem, it will be considered a simple toy model
suggested by Hod [53, 54]. To begin with, it is well known that, for massless fields, Γ(Mω)
approaches 0 in the low-frequency limit, and has a high-frequency limit of 1. A rough
approximation of this effect can be archived by introducing a low frequency cutoff at some
ω = ωc [55]. That is, Γ(ω̄) = 0 for ω̄ < ω̄c, and Γ(ω̄) = 1 otherwise, where ω̄ = Mω [56–58].

The ratio R =| Ṡrad/ṠBH | of entropy emission rate from the quantum black hole to the rate of
black hole entropy decrease is given by:

R =

∣

∣

∣

∣

∣

∣

∣

∑
Ns

i=1 ∑
2J
n=1 CΓ(n)e−

δAJn
4 ln

[

CΓ(n)e−
δAJn

4

]

∑
Ns

i=1 ∑
2J
n=1 CΓ(n)e−

δAJn
4

(

δAJn

4

)

∣

∣

∣

∣

∣

∣

∣

, (34)
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where C is a normalization factor, defined by the normalization condition:

Ns

∑
i=1

2J

∑
n=1

CΓ(n)e−
δAJn

4 = 1 . (35)

For the effective number of particle species emitted ( Ns), it will be taken into account the
various massless modes emitted. Here, Ns will be considered as

Ns =

{

2J + 1 for 2J + 1 < 112 ,
112 for 2J + 1 ≥ 112 .

In this way Ns is upper limited by the number of modes of massless particles in nature
which make the dominant contribution to the black-hole spectrum (the 1/2, 3/2, 5/2 neutrino
modes, the 1 and 2 photon modes, and the 2 and 3 graviton modes [53, 54, 56–58]), and by the
size of the fuzzy sphere Hilbert space.

In the figure (2), R has been plotted down taking ω̄c ≃ 0.2 (the location of the peak in the
total power spectrum [56–58]). With this frequency cutoff, the minimal non-null value to the
quantum number J, in order to have Γ = 0, is J = 6.0. In this point, the black hole must
evaporate completely.

From the graphic for R, one has that the non-unitary evolution of the black hole geometry in
the main world, due to the topology change process, imposes obedience to a “second law of
thermodynamics” on the black hole evolution process, since R is ever larger than (or equal) to
unity. The value of R approaches the value of 1.3 at the large J limit in agreement with known
Zurek’s semiclassical results [55]

500 1000 1500

J

0.2

0.4

0.6

0.8

1.0

1.2

R

Figure 2. The ratio of entropy emission rate from the quantum black hole to the rate of black hole
entropy decrease.

It is important to notice that the entropy emitted from the black hole decreases as the area
spacing increases. The entropy of the radiation should be maximal in the semiclassical limit
where the black hole can be in any area state, and the various transitions have almost the
same probabilities. On the other hand, in the quantum limit, only special values are allowed
to the black hole area, and then only special transitions are allowed. In this way, the entropy
of the radiation emitted by the black hole becomes smaller. The striking consequence of this
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is the possibility that, since the black hole radiation becomes less and less entropic as the
evaporation process takes place, some information about the black hole initial state could leak
out from its interior and be accessible to an observer in our universe, where measures can
be performed. The possibility of information leakage from a black hole with a discrete area
spectrum is already pointed out by Hod [53, 54]

5. Remarks and conclusions

It has been argued that a model based on the topology change of a quantum manifold can be
used to shed some light on the problems of the origin of black hole entropy and information
loss. In this approach, black hole entropy is generated because of the non-unitary evolutions of
the main world geometry due to the topology change process in black hole interior. To do this,
the process of emission of quanta of radiation by black holes has been putted in connection
with topology changes in the quantum manifold which is assumed to describe the horizon
(the fuzzy sphere).

Nor unitarity or locality is broken in the evolution of the whole system in topology change
approach in a way that no information is lost. Moreover, from the topology change model,
the selection rules for the black hole area transitions have been obtained. In this way,
an expression for the probability amplitudes of black hole transitions has been derived.
From them, an understanding of the Bekenstein-Hawking formula for black hole entropy is
provided. The topology change approach gives us a relation of states to points that brings
together the black hole entropy and our standard concept of entropy as the logarithm of the
number of microstates.

Through the study of the black hole evaporation process, an area spectrum, which is
continuous in the semiclassical limit, and becomes discrete as the black hole approaches the
Planck scale has been obtained. In order to investigate the influences of the area spectrum
shape to the black hole emission, the ratio R between the rates of entropy emission and black
hole entropy decrease has been calculated. At first, R is found to be larger than 1, showing
that the considered mechanism is able to produce a generalized second law. Then, R approach
1 as the black hole shrinks to the Planck scale, and the area spectrum becomes discrete. These
results point to a possible information leak out from black hole, since its radiation becomes less
and less entropic as the black hole evaporates, and could alleviate the information problem for
an observer outside the black hole. Since the possible information leakage would occurs more
strongly in the quantum gravity limit, it would not require radical modifications in the laws
of physics above the Planck scale. The task of found an appropriate quantum mechanism for
information leakage remains.
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