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1. Introduction

Rotating machinery is very common in industrial systems, and it plays an important role in

industrial development and economic development. With the rapid advancement in industry,

rotating machinery is becoming more and more complex and require constant attention.

Although the reliability and robustness of rotating machinery also have been improving, some

occasional failure events of components often lead to unexpected downtime while resulting

in huge losses. And rolling element bearing is often at the heart of these rotating machinery

which suffers from fault more frequently. These faults may cause the machine to break down

and decrease its level of performance [6]. So, it is urgent to diagnose the incipient errors

exactly in these bearings.

In traditional fault diagnosis, a single sensor is always used to get the operation conditions

of several machine components. The collected signal involves many correlated features [33].

During operating process, the machine set can generate many kinds of signals. And those

approaches based on the vibration signal analysis are advantageous because of their visual

feature, easy measurability, high accuracy and reliability [34]. Fault diagnosis using raw

vibration signals, a wide variety of techniques have been introduced in recent years. There

are mainly including signal processing methods and intelligent systems application. Signal

processing methods are traditional methods which are still common used, such as wavelet

and wavelet packet methods [23–25], empirical mode decomposition [15, 35], time-frequency

distributions [7], blind source separation [29]. While intelligent system approaches for fault

diagnosis are including artificial neural networks (ANNs) [36], support vector machines

(SVMs) [33], adaptive neuro-fuzzy inference system (ANFIS) [19] and fuzzy technique [28],

etc.. These approaches are based on one data source or individual decision system, and many

researchers have realized and shown that an individual decision system with a single data

source can only acquire a limited classification capability which may not be enough for a

particular application [22]. So, it is necessary to combine multiple decision systems to carry

on failure diagnosis.
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Multi-sensor information fusion is an emerging interdisciplinary beginning in the military
field, and it has already been successfully applied in many different areas. In the field of
industrial equipment fault diagnosis, multi-source information fusion technology application
is still in its early stage. Multi-sensor information fusion is divided into three levels: sensor
level, feature level and decision level. And multiple classifier ensemble approach belongs to
decision level information fusion. In the recent years, the use of multiple classifiers has gained
a lot of attention and researches have continuously showed the benefits of using multiple
classifiers to solve complex problems [4]. In contrast, the feature-level fusion has not probably
received the amount of attention it deserves [32].

By using information fusion theory, this chapter will introduce some bearing fault diagnosis
approaches. And these methods can divide into two categories: fault diagnosis based on
feature-level fusion [11] and fault diagnosis based on decision-level fusion [14]. In the
proposed fusion methods for bearing fault diagnosis, some intelligent algorithms are used
for feature dimension reduction or pattern recognition. The feature-level fusion approach for
bearing fault diagnosis is using gene expression programming (GEP), while the decision-level
fusion approach using multiple classifier ensemble method. And the decision-level fusion
approach is based on the new bearing fault diagnosis method [12] which uses empirical mode
decomposition (EMD) and fractal feature parameter classification.

2. Bearing fault diagnosis using fractal feature parameter classification

Faulty and normal machine conditions are always treated as classification problems based
on learning pattern from empirical data modeling in complex mechanical processes and
systems [31]. In this approach, a general framework for applying classification methods to
fault diagnosis problems includes two steps: representative feature extraction and pattern
classification. Feature extraction is a mapping process from the measured signal space
to the feature space. Representative features which demonstrate the information of fault
are extracted from the feature space. Pattern classification is the process of classifying
the extracted features into different categories by geometric, statistic, neural or fuzzy
classifiers. And recently, the development of artificial intelligence techniques has led to their
application in fault diagnosis area. Meanwhile, artificial neural networks (ANNs) and support
vector machines (SVMs) have been successfully applied to the intelligent fault diagnosis of
mechanical equipment [27].

In practice, the classical approach is not always reliable when the extracted features are
contaminated by noise. And most intelligent fault diagnosis approaches are complex,
especially in solving multiple fault diagnosis problems. In this section, a novel, simple, fast
and reliable intelligent method for solving multiple fault diagnosis problem will be proposed.
And this approach is based on EMD and fractal feature parameter extraction.

2.1. Methodology

Fractal dimension is considered right from its invention [21] to be a good parameter to
characterize time sequences of values of natural variables. And a simple, fast and accurate
method for calculating the fractal dimension of data’s time sequences was presented by
Sy-Sang liaw and Feng-Yuan Chiu [20]. This method considers that a time sequence of 2M + 1
values is separated by a constant time interval which is well fitted by a fractal function f (t) in
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the period [0, T]. Then, calculating the fractal dimension D of f (t) by using the known values
of f (t) at tj = jT/2M. To achieve this aim, Liaw and Chiu first defined Lk( f ), the piecewise
linear interpolation of level k(k = 0, 1, 2, ..., M), to f (t) as the union of the line segments
connecting the points [tj, f (tj)] and [tj+1, f (tj+1)], where tj = jT/2k, j = 0, 1, 2, ..., 2k (see
Figure 1). And then they checked out how poor the interpolation function Lk( f ) is relative to
the next level of interpolation Lk+1( f ). The error of Lk( f ) is defined as the sum of the absolute
value of the differences of Lk( f ) and Lk+1( f ) at all tj = jT/2k+1 ≡ jεk:

∆k ≡
2k+1

∑
j=0

|Lk+1( f (tj))− Lk( f (tj))| =
2k+1

∑
j=odd

| f (tj)−
f (tj − εk) + f (tj + εk)

2
|, tj = jεk (1)

Liaw and Chiu [20] found that the value ∆k is proportional to (εk)
1−D when k is large enough.

L2(f)
∆1

∆0

∆1

L0(f)

L1(f)

Figure 1. Piecewise interpolation Lk( f ) to a function f (t) (grey) at level 0 (dotted), 1 (dashed), and 2
(solid). ∆k (thick solid) denotes the error of the kth level interpolation with respect to the k + 1 level [20]

Thus, the fractal dimension D of f (t) can be obtained from the slope s of the log-plot of ∆k

with respect to the level k by D = 1 + s/log2 for large enough k values.

In this bearing fault diagnosis method, raw vibration signal will be seen as a time sequences of
data. Raw vibration signal is often heavily clouded by various noises due to the compounded
effect of other machine elements’ interferences and background noises presenting in the
measuring device [2]. So, EMD is used to analysis raw vibration signal to filter noise before
extracting its fractal feature. As discussed by Huang et al. [10], the EMD method is designated
to deal with non-stationary and nonlinear signals. This method is based on the simple
assumption that any data consists of different simple intrinsic modes of oscillations. Using
the EMD method, complicated signals can be decomposed in a finite set of intrinsic mode
functions (IMFs). Each IMF should meet the following two conditions: (1) in the whole data
set of a signal, the number of extreme and the number of zero crossings must either equal or
differ at most by one, and (2) at any time point, the mean value of the envelope defined by the
local maxima and the envelope defined by the local minima is zero.

Assume x(t) is a vibration signal, and its empirical mode decomposition process can be
described by following steps:

Step 1. Initialize: r0(t) = x(t), i = 1.

Step 2. Extract the i-th intrinsic mode function (IMF) ci(t):

Step 2.1. Initialize: h0(t) = ri−1(t), j = 1.
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Step 2.2. Determine all the maximal values, minimal value points of hj−1(t) and fit
all extreme points into the upper and lower envelope of the original signal with the cubic
spline line.

Step 2.3. Determine the mean value of the upper and lower envelope of hj−1(t),
designated as mj−1(t).

Step 2.4. Calculate the difference between hj−1(t) and mj−1(t), hj(t): hj(t) = hj−1(t)−
mj−1(t).

Step 2.5. If hj(t) satisfies the conditions of IMF, then it is designated as ci(t) = hj(t).
Otherwise, update the value of j: j = j + 1, and return to Step 2.2.

Step 3. Get the remaining signal: ri(t) = ri−1(t)− ci(t), after decomposing the i-th IMF.

Step 4. When ci(t) or ri(t) satisfies the given termination condition, the cycle is ended.
Designate the final remaining signal as rn(t) (n = i). Otherwise, update the value of i:
i = i + 1, and return to Step 2.

Finally, raw vibration signal can be decomposed into n IMFs: ci(t), i = 1, ..., n and one residue
function rn(t):

x(t) =
n

∑
i=1

ci(t) + rn(t) (2)

In this work, representative feature is fractal feature parameter extracting from each IMF.
Because the method of fractal dimensions of time sequences needs k to be large enough, we
use fractal feature parameter. And fractal feature parameter of each IMF will be calculated
as Equation 3 shows. It is easy to know that the IMF’s numbers of different raw vibration
signal samples are different. And in the vibration signal examination, we find that the rich
operating condition information is inside the front IMFs. So, we can integrate the residual
IMFs into a component. In this new method, a parameter L is set to denote the number of IMF
using to extract representative feature. And the L-th IMF will be re-denoted as cr(t) whose
calculation form as Equation 4. Then, the feature set of each raw signal has L fractal feature
parameters. For example, we set the value of parameter L as L = 6. Figure 2 summarizes
all the IMFs and fractal features obtained from a bearing inner race fault signal sample. Table
1 presents the fractal feature parameters of IMFs of different operating condition vibration
signal samples. And from Table 1, it is clear that fractal feature parameter sets of the same
operating condition are similar, and it is easy to distinguish different operating conditions of
fractal feature parameter.

p =
M−1

∑
k=0

∆k (3)

cr(t) =
n

∑
i=L

ci(t) (4)

2.2. Results and discussion

By using fractal feature parameter classification, bearing fault diagnosis method is applied
to the bearing fault signal analysis from the Case Western Reserve University website [3].
The ball bearings are installed in a motor driven mechanical system, as shown in Figure 3.
By a self-aligning coupling, a three-phase induction motor is connected to a dynamometer
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Figure 2. The resulting empirical mode decomposition components and fractal features from the inner
race fault signal sample

Operating Sample p(c1) p(c2) p(c3) p(c4) p(c5) p(cr)
condition index

Normal 1 62.5909 26.8249 8.9951 6.6883 1.7284 0.6491

2 67.8337 25.7203 8.9875 5.9469 2.8435 0.4777

Outer race 1 442.1013 45.3849 17.8250 5.9114 3.0012 0.6935

2 479.2442 44.4325 19.1783 6.6492 3.4410 0.4973

Inner race 1 487.9925 151.8692 59.1485 14.1692 4.6696 1.5808

2 511.5880 149.7561 68.9864 28.0217 5.8445 2.6485

Ball 1 295.3898 32.5473 19.6932 4.1315 2.0519 0.3888

2 270.6188 33.8913 20.9217 4.4377 2.3469 0.3063

Table 1. Fractal feature parameters of different operating condition samples (defect size: 0.007inches)

and a torque sensor. The bearings are installed in a motor driven mechanical system. The
dynamometer is under control so that desired torque load levels can be achieved. Vibration
data is collected using accelerometer, which is attached to the housing with magnetic bases.
Accelerometer is placed at the 12 o’clock position at the driven end of the motor housing.
In machine condition monitoring, an accelerometer can provide rich information about
conditions of several machine components. For example, the measured data from the
accelerometer in this experiment is a mixture of signals reflecting conditions of the bearing
inner race, outer race and rolling elements. The vibration data are collected by a 16 channel
DAT recorder with 12,000 Hz.
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Figure 3. Schematic diagram of the experimental setup

As we referred in Figure 3, in the mechanical system, single point faults were introduced to
the test bearings using electro-discharge machining with fault diameters of 7 mils, 14 mils
and 21 mils. Each bearing was tested under four different loads (0, 1, 2 and 3 hp). Three
bearing data sets (A-C) were obtained from the experimental system under the four different
operating conditions: (1) under normal condition, (2) with outer race fault, (3) with inner race
fault, (4) with ball fault. The detailed descriptions of the three data sets are shown in Table 2.

Data The number of The number of Defect size(inches) Operating Class
set training sample testing sample (training/testing) condition label

A 40 40 0/0 Normal 1

40 40 0.007/0.007 Outer race fault 2

40 40 0.007/0.007 Inner race fault 3

40 40 0.007/0.007 Ball fault 4

B 40 40 0/0 Normal 1

40 40 0.007/0.021 Outer race fault 2

40 40 0.007/0.021 Inner race fault 3

40 40 0.007/0.021 Ball fault 4

C 40 40 0/0 Normal 1

40 40 0.007/0.007 Outer race fault 2

40 40 0.007/0.007 Inner race fault 3

40 40 0.007/0.007 Ball fault 4

40 40 0.014/0.014 Outer race fault 5

40 40 0.014/0.014 Inner race fault 6

40 40 0.014/0.014 Ball fault 7

40 40 0.021/0.021 Outer race fault 8

40 40 0.021/0.021 Inner race fault 9

40 40 0.021/0.021 Ball fault 10

Table 2. Description of three data sets

Data set A is formed by 320 samples. These samples include 4 different operating information
under 4 conditions (0, 1, 2 and 3 hp), and among which the fault defect size is 0.007 inches.
Every operating condition has 80 data samples. The whole data set is divided into 2 parts: 160
samples for training and 160 for testing. So, the task can be viewed as a four-class classification
aimed at 4 different operating conditions. Data set B also contains 320 data samples. The
training samples are including samples with 0.007 inches fault defect, while testing samples
0.021 inches fault defect. Data set B is used to further investigate the performance of fault
diagnosis scheme. Data set C comprises 800 data samples including three different defect
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sizes of 0.007, 0.014 and 0.021 inches under four different loads. It covers four different
operating conditions, too. Each class data subset has been partitioned into two equal halves,
one partition is used for training, while the other for testing. The purpose of data set C is to
test the reliability of the novel approach in identifying the various grades of fault.

In order to evaluate the classification performance of the fractal feature parameter of IMF,
orthogonal quadratic discriminant function (OQDF-E) [9] is used to train and test on three
data sets showed in Table 2. Table 3 gives the classification performance on various data sets.
The new bearing fault diagnosis method can get good decision accuracy as Table 3 shows.
Table 4 extends the analysis of results and shows the classification performance between
normal and fault operating condition. From Table 4, we can see that the new method using
fractal feature parameter can get perfect performance in fault detection.

Data set A B C

Train accuracy (%) 100 100 78.25

Test accuracy (%) 100 78.13 80

Table 3. Classification performance

Data set A Data set B Data set C

Operating condition Normal Fault Normal Fault Normal Fault

Test accuracy (%) 100 100 100 100 100 100

Table 4. Fault detection performance

3. Decision-level fusion for bearing fault diagnosis

In above section, we have proposed a simple, fast and good performance fault diagnosis
approach. This approach is based on single sensor source and using individual classifier.
It can obtain high accuracy on the multiple fault types recognition problems under the same
fault degree. But when under multiple fault degrees, it declines in performance. To deal
with this problem, this section will introduce a new method based on decision-level fusion for
bearing fault diagnosis. The new fusion method includes four stages. These four stages are
vibration signal acquisition and decomposition, fractal feature parameter extraction, single
data source fault diagnosis and decision-level fusion for fault diagnosis. The first three stages
are the same with the method described in the above section. So, we only state the last step in
this section.

3.1. Methodology

Given a specific pattern recognition problem, different classifier has different classification
performance. Very satisfactory results can not always be got if we simply conduct a study
on a single classifier to improve its classification accuracy. Multiple classifier system (MCS)
can overcome limitations of individual classifier and enhance classification accuracy. The
techniques of combining the outputs of several classifiers have been applied to a wide range
of real problems and it has been shown that MCSs outperform the traditional approach of
using a single high-performance classifier [26].

The most often used classifiers combination approaches in MCS include the majority voting
[30], the weighted combination (weighted averaging) [18], the probabilistic schemes [16, 17],
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the Bayesian approach (naïve Bayes combination) [1, 18, 30], the Dempster-Shafer (D-S) theory
of evidence [5, 30] and etc. This section will propose a new classifiers combination method
which treats the combination process as linear programming problem.

Assume that K base classifiers are used in MCS, and M kinds of fault states including normal
condition on the bearing fault diagnosis problem. Then, a decision matrix can be given as
follow in the process of multiple classifiers combination.

D(x) =

⎡

⎢

⎢

⎢

⎣

P1(F1|x) P1(F2|x) . . . P1(FM|x)
P2(F1|x) P2(F2|x) . . . P2(FM|x)

...
...

. . .
...

PK(F1|x) PK(F2|x) . . . PK(FM|x)

⎤

⎥

⎥

⎥

⎦

(5)

The new method introduced in this section will fuse those posterior probabilities in the
decision matrix for constructing a global classifier E to make final decision. The posterior
probability output of global classifier E for each fault state is calculated by following mode:

PE(Fi|x) =
K

∑
k=1

βkPk(Fi|x), ∀ i ∈ {1, 2, . . . , M}, (6)

where βk (∑K
k=1 βk = 1) is a dynamic association weight in MCS.

This new decision-level fusion method for bearing false diagnosis is based on the assumption:
the base classifier has higher real-time recognition accuracy, if its posterior probabilities of
all fault states are greater difference. That is to say, if individual decision system very
determines that current operating condition belongs to a certain type of fault states, the
posterior probability of the certain fault state will much higher than others. Using this
hypothesis, the problem of multiple classifiers combination can be converted into a linear
programming problem. And the objective function of this linear programming is defined as:
√

[∑M
i=1(PE(Fi|x)− 1/M)2]/M.

In current using classifier ensemble methods, base classifier’s statistical performance is a
major consideration factor. But we find the realtime decision information also can be a
consideration factor. And in the new MCS method, we use within-class decision support
[13] which is defined as: within-class decision support indicates that base classifier individual
class recognition output gets the decision support degree from other same class recognition
outputs in MCS. This decision support degree is measured by the difference between current
output and its nearest output. For example, the within-class decision support of Pk(Fi|x)
which denotes posterior probability of the i-th state from the k-th base classifier is: 1 −

min
1≤k′≤K,k′ �=k

|Pk(Fi|x)− Pk′ (Fi|x)|.

Real-time decision support value (DSV) of base classifier in MCS is the sum of all class
recognition output’s within-class decision support value. And it is easy to get its calculation
formula as:

μk =
M

∑
i=1

(1 − min
1≤k′≤K,k′ �=k

|Pk(Fi|x)− Pk′ (Fi|x)|), ∀ k ∈ {1, 2, . . . , K} (7)
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In the proposed decision-level fusion method for bearing fault diagnosis, we set a rule: if the
real-time decision support value of base classifier is higher, its dynamic association weight of
it is bigger. And this rule can be described as follows:

i f μk < μk′ then βk < βk′ , ∀ k, k′ ∈ {1, 2, . . . , K}, k′ �= k (8)

i f μk = μk′ then βk = βk′ , ∀ k, k′ ∈ {1, 2, . . . , K}, k′ �= k (9)

i f μk > μk′ then βk > βk′ , ∀ k, k′ ∈ {1, 2, . . . , K}, k′ �= k (10)

That is to say, the relationship between dynamic association weights is determined by the
relationship between real-time decision support values of different base classifiers. And these
relationships will be used in the linear programming problem by the form of relationship
vectors. Relationship vectors are defined as Table 5 shows (for example, K = 3). From Table
5, it is clear that each real-time relationship between DSVs is re-expressed by one or two
relationship vectors. And it is also clear that each relationship vector is K dimensions. All
these relationship vectors compose a relationship matrix which is denoted as R.

Real-time relationship between DSVs Relationship vectors

μ1 < μ2 [1 − 1 0]
μ1 = μ2 [−1 1 0] & [1 − 1 0]
μ1 > μ2 [−1 1 0]

Table 5. Example for relationship vector construction (K=3)

In order to simplify the fusion formula, a K × 1 matrix β (β = [β1; β2; . . . ; βK ]) is used to
replace βk (k ∈ {1, 2, . . . , K}) for calculating the decision output of global classifier E. Then,
Equation 6 can be transformed into following simplified form: PE(x) = D(x)T β. And the

objective function
√

[∑M
i=1(PE(Fi|x)− 1/M)2]/M is simplified as:

√

∑
M
i=1(PE(Fi|x)− 1/M)2,

then further simplified to: ||D(x)T β − 1
M ||2. Finally, use relationship matrix R to formulize

constraint rules by the form: Rβ ≤ 0. Now, we can give complete linear programming
problem description as Equation 11 shows, where N is the count of relationship vectors of
current relationship matrix.

max ||D(x)T β −
1

M
||2

subject to [1]1×K β = 1

[0]K×1 ≤ β ≤ [1]K×1

Rβ ≤ [0]N×1 (11)

Solving the linear programming problem as above, we can obtain the dynamic association
weight matrix β. Using this dynamic association weight matrix, the fusion decision vector of
global classifier E can be calculated. And the final decision of bearing fault diagnosis can be
got by:

E(x) = i with PE(Fi|x) = max
1≤i′≤M

PE(Fi′ |x) (12)
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3.2. Results and discussion

The decision-level fusion method for bearing fault diagnosis is also applied to the rotating
machinery from the Case Western Reserve University website [3]. In this experiment,
vibration signals are collected from accelerometers which attached to the motor at different
positions as Figure 4 shows. And dynamometer is used to control the torque load level. In
this work, we study four different operating conditions recognition under four different loads
(0, 1, 2 and 3 hp) with fault diameters of 7 mils, 14 mils and 21 mils. And these four operating
conditions are normal condition, outer race fault, inner race fault and ball fault.

Figure 4. Schematic diagram of the experimental setup

Two data sets are constructed as Table 6 presents for testing the diagnosis performance of new
decision-level fusion method. Each data set samples cover four different operating conditions
and four different loads. And each class of two data sets has 160 data samples which are
divided into two equal halves, one for training and the other for testing. Data set A is a
four-class classification task corresponding to the four operating conditions. Data set B is a
ten-class classification task corresponding to various grades of different faults.

Data The number of The number of Defect size(inches) Operating Class
set training sample testing sample (training/testing) condition label

A 80 80 0/0 Normal 1

80 80 0.007/0.007 Outer race fault 2

80 80 0.007/0.007 Inner race fault 3

80 80 0.007/0.007 Ball fault 4

B 80 80 0/0 Normal 1

80 80 0.007/0.007 Outer race fault 2

80 80 0.007/0.007 Inner race fault 3

80 80 0.007/0.007 Ball fault 4

80 80 0.014/0.014 Outer race fault 5

80 80 0.014/0.014 Inner race fault 6

80 80 0.014/0.014 Ball fault 7

80 80 0.021/0.021 Outer race fault 8

80 80 0.021/0.021 Inner race fault 9

80 80 0.021/0.021 Ball fault 10

Table 6. Description of two data sets

These data samples are extracted from two different sensor sources. And the number of
samples from each sensor source is half of the total. If each sensor source’s samples are seen
as a subset of data set, each data set has two subsets. For example, data set A has two subsets:

124 Performance Evaluation of Bearings



Bearing Fault Diagnosis Using Information Fusion and Intelligent Algorithms 11

A1 and A2. A1 is composed by the samples from the driven end accelerometer, while A2 from
the fan end accelerometer. Table 7 gives the elements description of data set A in detail.

Data Class Sub Sensor The number of The number of
set label dataset source training sample testing sample

A 1 A1 driven end accelerometer 40 40

A2 fan end accelerometer 40 40

2 A1 driven end accelerometer 40 40

A2 fan end accelerometer 40 40

3 A1 driven end accelerometer 40 40

A2 fan end accelerometer 40 40

4 A1 driven end accelerometer 40 40

A2 fan end accelerometer 40 40

Table 7. The elements description of data set A

In this work, two different classifiers, k-NN (k = 7) and Parzen classifier, are used for fault
diagnosis task. And these two different classifiers identify rotating machinery operating
condition using vibration signals collected from driven end and fan end accelerometers
respectively. That is to say, each data set has four individual decision system results. And
MCS is composed by these four base classifiers.

Table 8 gives individual classifier recognition accuracy on subsets of data set A and B. It is
clear that individual classifiers can attain high bearing diagnosis accuracy on data set A, but
they can not maintain the same high-performance on data set B whose fault diagnosis task is
extended to various grades of different fault conditions.

Data set Subset Classifier Training accuracy Testing accuracy

A A1 k-NN classifier 100% 100%

Parzen classifier 100% 98.75%

A2 k-NN classifier 100% 100%

Parzen classifier 100% 99.38%

B B1 k-NN classifier 88% 87.5%

Parzen classifier 100% 85.75%

B2 k-NN classifier 91.75% 88%

Parzen classifier 100% 86.75%

Table 8. Fault diagnosis performance using base classifier

Table 9 shows the fault diagnosis performance of the novel decision-level fusion model using
multiple classifier system. It is clear that the novel decision-level fusion model can get high
recognition accuracy even in the difficult fault diagnosis task. In the testing phase of data set
B, fault diagnosis accuracy of the new fusion model is higher than all base classifiers’ accuracy
as Table 8 shows. And it increases 6.5 percentage points averagely.

Data set Training accuracy Testing accuracy

A 100% 100%

B 100% 93.5%

Table 9. Fault diagnosis performance using the new fusion model
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To further analyze performance of the new fusion model, a new k-NN classifier (k = 3) is
added to multiple classifier system. The new multiple classifier system is used to test fault
diagnosis performance on data set B. And sum rule is used to compare with the new approach.
The comparison results are presented in Table 10. From Table 10, it is clear that the new
approach attains the highest diagnosis accuracy.

7-NN 7-NN Parzen Parzen 3-NN 3-NN Sum New
classifier classifier classifier classifier classifier classifier rule method

on B1 on B2 on B1 on B2 on B1 on B2

87.5% 88% 85.75% 86.75% 90% 87.75% 94.75% 95%

Table 10. Further comparison results of fault diagnosis performance

4. Feature-level fusion for bearing fault diagnosis

This section will propose a new multiple sources feature-level fusion model for bearing fault
diagnosis using GEP. At present, the research of fault diagnosis based on feature-level fusion
is still less, far from decision-level fusion attention. This is mainly because feature-level fusion
is more difficult. But feature-level fusion application for fault diagnosis can be more effective
to extract fault feature information. It is a way to improve the performance and robustness of
bearing fault diagnosis system.

4.1. Methodology

GEP was invented by Ferreira [8], and it is the natural development of genetic algorithms
and genetic programming. GEP uses linear chromosome which is composed of genes
containing terminal and non-terminal symbols. Chromosomes can be modified by mutation,
transposition, root-transposition, gene transposition, gene recombination, one-point and
two-point recombination. GEP genes are composed of a head and a tail. The head contains
function (non-terminal) and terminal symbols, while the tail contains only terminal symbols.
For each problem, the head length (denoted h) is chosen by users, and then the head length is
used to evaluate the tail length (denoted t) by: t = (n − 1)× h + 1, where n is the number of
arguments of the function with most arguments.

The flow of GEP is as follows:

Step 1. To set control parameters, select function classes, initialize population.

Step 2. To parse chromosome, evaluate population.

Step 3. To take use some operation such as selection, mutation, inserts sequence, recombine,
mutation of random constant and inserts sequence of random constant to create new
population.

Step 4. To implement best preservation strategy.

Step 5. If obtain most precision of computing, evolution would be finished, else turn to Step
2.

The new feature-level fusion model using GEP will be dealt with multiple sensors fusion
problem. Assume that there are I sensors used in machine condition monitoring. For each
sensor, the raw signal is divided into some signals by the same time segment. Each of these
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signals is processed to extract some features. In this chapter, machine operating signal features
only take into account the time-domain statistical characteristics. These feature parameters of
time-domain are presented in Eequations. (13-23), where x(t) is a signal series and N is its
number of data points.

p1 =
1

N

N

∑
n=1

x(n) (13)

p2 =

√

∑
N
n=1(x(n)− p1)2

N − 1
(14)

p3 =

√

∑
N
n=1 x(n)2

N
(15)

p4 = (
∑

N
n=1

√

|x(n)|

N
)2 (16)

p5 = max |x(t)| (17)

p6 =
∑

N
n=1(x(n)− p1)

3

(N − 1)p3
2

(18)

p7 =
∑

N
n=1(x(n)− p1)

4

(N − 1)p4
2

(19)

p8 =
p5

p3
(20)

p9 =
p5

p4
(21)

p10 =
p3

1
N ∑

N
n=1 |x(n)|

(22)

p11 =
p5

1
N ∑

N
n=1 |x(n)|

(23)

In the pattern recognition process of bearing fault diagnosis, we assume that there are M
conditions including normal condition. Let Si

m represents the set of all training samples
belonging to m-th condition (1 ≤ m ≤ M) from the i-th sensor source. Feature-level fusion
model is seek a way to fuse these features from different sensor sources. The new feature-level
fusion model using GEP fuses these features by looking for a feature recognition function ϕ
which maps the feature space to another space where samples in the same class are similarity
and samples dissimilarity otherwise. And then, the feature recognition function ϕ will direct
the building of a multi-source feature fusion model in reverse direction.

Functions +, −, ×, /, sqrt, exp are selected as input functions of GEP. The generation is set
5000, and fitness function is defined as:

Fitness =
∑

M−1
m=1 ∑

M
m′=m+1(σm − σm′ )2

∑
M
m=1 ∑

I
i=1 ∑k∈Si

m
(ϕ(Pi

k)− σm)2
(24)

where σm is the mean of all m-th condition samples function mapping values, its formula is:

σm =
1

I

I

∑
i=1

∑k∈Si
m

ϕ(Pi
k)

|Si
m|

(25)
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After GEP training, a perfect feature recognition function ϕ can be got. Using function ϕ, we
can calculate the mean mapping value of each operating condition samples from a certain
sensor source. For building the multi-source feature evaluation matrix, the samples which are
correctly classified are selected to calculate their mean. Multi-source feature evaluation matrix
is composed by these mean values as Equation 26 shows.

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ρ1(1) ρ1(2) . . . ρ1(11)

ρ2(1) ρ2(2) . . . ρ2(11)

...
...

. . .
...

ρM(1) ρM(2) . . . ρM(11)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(26)

In Equation 26, each element represents the mean value of each feature component of each
operating condition. For example, ρ2(1) represents the mean of all correctly classified samples
of the first feature from the 2-th operating condition.

4.2. Results and discussion

In order to evaluate the proposed feature-level fusion model, we apply it to bearing fault
diagnosis. And data of this bearing fault diagnosis task are also take from a lab of the Case
Western Reserve University website [3]. In this work, three experiments over three data sets
are conducted as Table 11 shows. Those data are collected under various operating loads from
motor driven end and fan end accelerometers.

Data The number of The number of Defect size(inches) Operating Class

set training sample testing sample (training/testing) condition label

A 80 80 0/0 Normal 1

80 80 0.007/0.007 Outer race fault 2

80 80 0.007/0.007 Inner race fault 3

80 80 0.007/0.007 Ball fault 4

B 80 80 0/0 Normal 1

80 80 0.007/0.021 Outer race fault 2

80 80 0.007/0.021 Inner race fault 3

80 80 0.007/0.021 Ball fault 4

C 80 80 0/0 Normal 1

80 80 0.021/0.007 Outer race fault 2

80 80 0.021/0.007 Inner race fault 3

80 80 0.021/0.007 Ball fault 4

Table 11. Description of three data sets

Each data set covers four different operating conditions and four different loads (0, 1, 2 and
3 hp). And each class of data sets has 160 data samples which are divided into two equal
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halves, one for training and the other for testing. The task of data set A is to identify different
type of faults, while the experiment over data set B is carried out to further investigate the
diagnosis performance of developing faults when the fusion model is trained by incipient
faulty samples. And the experiment over data set C is to test the diagnosis performance of
incipient faults when the fusion model is trained by the serious faulty samples.

Table 12 gives the results of these three experiments. From Table 12, we can see that the new
feature-level fusion model using GEP can get stable, good diagnosis performance. And it is
clear that testing performance is higher than training performance in the experiment on data
set C. That is to say, when the new feature-level fusion model is trained by the serious faulty
samples, it can easily identify incipient faults.

Data set Training recognition accuracy Testing recognition accuracy

A 83.75% 81.25%

B 83.75% 72.50%

C 76.25% 81.88%

Table 12. Fault diagnosis performance using feature-fusion model

In order to observe the performance change when the new feature-fusion model uses multiple
source information instead of single source information, the new method is used to test
bearing fault diagnosis performance with single sensor source. Table 13 gives the performance
comparison result between more than one sensor (here using two sensors) and single sensor.
From Table 13, we can see multi-sensor testing performance is greatly higher than the single
sensor application using the new feature-level fusion model.

Data set A B C

Multi-sensor testing performance increasing 0.56 0.48 0.57

Table 13. Performance comparison between multi-sensor and single sensor

5. Conclusion

This chapter has introduced some new methods for bearing fault diagnosis. These new
approaches are using information fusion and intelligent algorithms. Bearing fault diagnosis
is still an ongoing research subject over a decade and attracting a huge number of researchers
in different areas. But most of those current using techniques mainly deal with single-source
data. Many researches have shown that an individual decision system with a single data
source can only acquire a limited classification capability which may not be enough for a
particular application. So, we study a new way for bearing fault diagnosis using information
fusion technology and intelligent algorithm.

Information fusion is a field still under research. Generally, information fusion process may
happen in three levels: sensor level, feature level and decision level. Here, we propose a
new feature level fusion method and a new decision level fusion method for bearing fault
diagnosis. The feature level fusion method is using GEP which is a new intelligent algorithm.
And it is a parallel fusion method. The decision level fusion approach is based on a new
multiple classifier ensemble method. It analyzes raw vibration signal, and completes the
feature extraction by using EMD and fractal feature parameter calculation. From experimental
results, we can see that these new fusion model for bearing fault diagnosis task can get good
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decision performance which is higher than the performance from traditional single sensor
application.
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