
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 4 

 

 

 
 

© 2012 Yu and Guo, licensee InTech. This is an open access chapter distributed under the terms of the 
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Compressed Sensing: Ultra-Wideband Channel 

Estimation Based on FIR Filtering Matrix 

Huanan Yu and Shuxu Guo 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/48714 

1. Introduction 

Ultra-wideband (UWB) communication (Win & Scholtz, 1998; Yang & Giannakis, 2004a) is a 

fast emerging technology since the Federal Communication Commission released a spectral 

mask in the spring of 2002. The major reason for UWB technology to receive much attention 

is its promising ability to provide low-power consumption, high bit rate and multipath 

resolution, and coexist with the narrow-band system by trading bandwidth for a reduced 

transmits power. In the impulse radio UWB (IR-UWB) systems, the duration of pulse is 

ultra-short, typically on the order of nanoseconds. On one hand, the ultra-short impulses 

make it possible to resolve and combine signal echoes with path length differential down to 

1 ft exploiting the diversity inherent in the multipath channel and improving the position 

accuracy. On the other hand, the new technical (Witrisal et al., 2009) challenges are posed: 

(1) analog-to-digital converters (ADCs) working at the Nyquist rate are in general very 

expansive and power demanding; (2) the synchronization which is accomplished at the scale 

of sub nanosecond duration is extremely complex; (3) capture a sufficient amount of the rich 

multipath diversity need accuracy channel estimation. Compare to the transmitter easily 

implement, the IR-UWB receiver are too complex.  

The emerging theory of compressed sensing (CS) (Candès, et al., 2006; Donoho, 2006) 

provides new approaches for practical UWB receiver design. When the short duration 

pulses in the UWB system propagate through the multipath channels, the received signals 

remain sparse in time domain. The sampling rate can be reduced to sub-Nyqusit rate and 

the receiver can reconstruct the initial signal with high probability. Accordingly, there has 

been a growing interest in applying the CS theory to sparse channel estimation (Bajwa et al., 

2010; Berger et al., 2010). The recent literature on sparse channel estimation can be found in 

(Bajwa et al., 2010; Berger et al., 2010) and in their references. It is proved that conventional 

channel estimation methods provide higher errors because they ignore the prior knowledge 
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of the sparseness (Wan et al., 2010). The sparse channel estimation problem is faced in 

(Paredes et al., 2007) under a time domain sparse model point of view. In (Paredes et al., 

2007) a suitable dictionary formed by delayed versions of the UWB transmitted pulse is 

defined in order to better match the UWB signal. However, the spike basis achieves 

maximal incoherence with the Fourier basis (Candès & Wakin, 2008) and is for that reason 

that seems more convenient to work with frequency domain. To ensure that every 

measurement counts, they propose to pre-modulate the input signal with a spread spectrum 

sequence before the Fourier transformation. As the IR-UWB signals have resolvable 

multipath with a sparse structure at the receiver, the application of CS theory to UWB 

channel estimation has also found wide interest in the UWB community. For the CS based 

UWB channel estimation, the main goal has been to estimate the sparse channel with 

reduced number of observations (Paredes et al., 2007; Liu & Lu, 2009; Naini et al., 2009).That 

is equivalent to reducing the sampling rate at the receiver. In (Paredes et al., 2007), a channel 

detection method based on the Matching Pursuit algorithm is proposed, where the path 

delays and gains are calculated iteratively. In (Liu & Lu, 2009), the authors combine the 

maximum likelihood (ML) approach with the CS theory. In (Naini et al., 2009), a spread 

spectrum modulation structure is placed before the measurement matrix to enhance the 

estimation performance. The common assumption of the studies in (Paredes et al., 2007; Liu 

& Lu, 2009; Naini et al., 2009) is that the UWB channels are sparse. However, depending on 

the environment (e.g., an industrial environment may have dense multipath), the sparsity 

assumption of the channels may not hold. And the receiver may be a little complex for the 

compressed sensing framework. 

In this context a Finite Impulse Response (FIR) filtering matrix estimator for UWB channel 

based on the theory of CS is advanced. An FIR filter is introduced at the transmitter to get a 

quasi-Toeplitz measurement matrix. So the reconstruction accuracy using the CS framework 

is improved. Also, the receiver is simplified since a filter at the transmitter has been adopted 

in place of the measurement matrix at the receiver. The key point is to avoid the 

magnification of noise by the measurement matrix. Unlike the Generalized Likelihood Ratio 

Test (GLRT) detector design, the correlation detector for UWB signals employing the 

channel parameters estimated in this chapter needs no prior knowledge about the channel 

noise. In addition, the desired receiver performance calls for fewer measurements. Then 

both the Orthogonal Matching Pursuit (OMP) and the Basis Pursuit De-noising (BPDN) are 

compared to the Dantzig Selector (DS) for different signal noise ratio (SNR) to give the 

opinions for choosing suitable reconstruction algorithms. Realistic channel estimation is 

considered. Simulations discussed later indicate the efficiency of the proposed method. 

This chapter is organized as follows. In section 1, the motivation and research status are 

introduced. In section 2, a brief description of compressed sensing and its application for 

UWB channels is introduced. In section 3, the FIR filtering matrix method for UWB 

channel estimation based on the CS theory is proposed. In section 4, the estimation results 

are used in the UWB signals detection. In section 5, the simulation results together with 

the analysis are given. In section 6, we offer the conclusions and discussions. The 

references are given in section 7. 
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2. Compressed sensing for UWB channel estimation 

In essence, CS theory has shown that a sparse signal can be recovered with high probability 

from a set of random linear projections using nonlinear reconstruction algorithms. The 

sparsity of the signal can be in any domain (time domain, frequency domain, wavelet 

domain, etc.) and the number of random measurements, in general, is much smaller than the 

number of samples in the original signal, which leads to a reduced sampling rate and, 

hence, reduced use of ADCs resources.  

In UWB impulse radio communications, an ultra-short duration pulse, typically on the order 

of nanoseconds, is used as the elementary pulse-shaping to carry information (Reed, 2005). 

Transmitting ultra-short pulses leads to several desirable characteristics: (1) simplicity is 

attained in the transmitter since a carry-less baseband signal is used for conveying 

information (Lottici et al., 2002); (2) the transmitted signal power is spread broadly in 

frequency having little or not impact on other narrowband radio systems operating on the 

same frequency (Qiu et al., 2005); (3) the received UWB signal is rich in multipath diversity 

introduced by the large umber of propagation paths existing in a UWB channel. For the 

most important fact that transmitting an ultra-short pulse through a multipath UWB 

channel leads to a received UWB signal that can be approximated by a linear combination of 

a few elements from a pre-defined basis, yielding thus a sparse representation of received 

UWB signal. Next, we briefly describe the CS framework in (Candès et al., 2006) and 

(Donoho, 2006), and apply this framework into the UWB channel.  

2.1. CS overview 

Consider the problem of reconstructing an N×1 discrete-time signal vector ∈Nx . It can be 

shown that if x is sparse, in the sense that x can be represented as a superposition of a small 

number of vector taken from a dictionary D=[D1,…,DN] of tight-frames, which provides a K-

sparse representation of x, that is  

 
-1

0 1= =

= = 
l l

N K

n n n n
n l

x D u D u  (1) 

Where x is a linear combination of K vector chosen from the arbitrary basis D, and K<<N; {nl} 

are the indices of those vectors; {ul} are the weighting coefficients; α=K/N is called sparse-

ratio. Alternatively, in this chapter we write the signal vector in matrix notation 

 =x Du  (2) 

Where u=[u0, u1,…,uN-1]T which has K nonzero coefficients, where K<<N. In CS, signal x can 

be represented by K entries of u in place of N entries of x, that reduces dimension of the 

signal of interest. We need to estimate only K real-parameters not N to reconstruct x from a 

channel realization. When sparse-ratio α is very small, the compressive gain becomes high. 
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Figure 1. Compressive sensing model 

In the viewpoint of the CS theory, a sparse signal can be reconstructed successfully from far 

fewer data/measurements than what is usually considered necessary (Donoho, 2006). Figure 

1 shows the CS theory frame. It gives the whole course of the signal projection and 

reconstruction. The sampling from x becomes a linear transformation, that is x can be 

reconstructed from M measurements and M<<N. By projecting x onto a random 

measurement matrix ×Φ ∈M N , a set of measurements ∈My can be obtained as  

 = Φ = Φy x Du  (3) 

where Φ is called measurement matrix, which is incoherent with D; and y is the signal we 

received in receiver, who has M entries, each becomes a measurement of x. Instead of using 

the N-sample x to find the weighting coefficients u, M-sample measurement vector y can be 

used. Accordingly, u can be estimated as 

 
1

ˆ min=u u s.t. = Φy Du   (4) 

Where lp -norm is defined as 

1

1−

 
=  
 


p
PN

nnp
u u . Note that, the advantage of estimating u 

from the vector y instead of x is that the former having much fewer samples corresponds to 

a much lower sampling rate at the receiver. If the dictionary D and measurement matrix Φ 

are acquired, and they satisfy M=CKlogN<<N, signal x can be recovered from measurements 

y using reconstruction algorithms with overwhelmingly high probability, even we don’t 

know the sparse pattern of the unknown signal u (Candès & Tao, 2006). C ≥1 is then called 

the oversampling factor.  

In short, sampling and processing signals in the CS framework can be concluded just like 

this: First, we must design tight-frames D according to the character of signal of interest. 

That is to design a overcomplete dictionary to get the sparse representation of x; after the 

first stage, one should design a M×N sensing matrix Φ, through which measurement y can 

be achieved. Finally, x can be recovered with y, D and Φ employing reconstruction 

algorithm. In next section, we will present how this concept can be used for UWB channel 

estimation.  
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2.2. CS for UWB channel estimation 

The CS theory explained in (2)–(4) can be applied to UWB channel estimation for the fact 

that the Gaussian pulse response of the UWB channel is sparse. We show the simulation 

results in section 5. Suppose that ∈Nr is the discrete-time representation of the received 

signal given as 

 = +r Ph n   (5) 

Where ×∈N NP  is a scalar matrix representing the time-shifted pulses, h= [α1, α2,    , α3 ]T 

are the channel gain coefficients, and n are the AWGN terms. Since the UWB channel 

structure is sparse, h has only K nonzero coefficients. Similar to (3), the received signal r can 

be projected onto a random measurement matrix ×Φ ∈M N  so as to obtain ∈My  as 

 = Φ + Φ = +y Ph n Ah v  (6) 

Due to the presence of the noise term v, the channel h can be estimated as 

 
1

ˆ min=h h s.t.
2

− ≤ εAh y  (7) 

Where ε is related t o the noise term as 
2

≥ε v . Considering (7), the channel estimation 

performance depends on the sparsity of h(i.e., the value of K), as well as the number of 

observations M. It is therefore necessary to understand the discrete-time equivalent 

structure of h and the effects of standardized channel models. 

3. UWB channel estimator based on CS  

While CS research has focused primarily on signal reconstruction and approximation, the 

CS framework can be extended to a much broader rang of statistical inference tasks, well 

suited for applications in wireless UWB communications. UWB channel estimation is one of 

those applications which will be used extensively in this section. Next we will investigate 

the effect of the IEEE 80.15.4a UWB channel models (Molisch et al., 2006) on the channel 

estimation performance from a practical implementation point of view. Then a new sparse 

channel estimation method is proposed by improving the random measurement method 

based on CS for discrete time signals in (Paredes et al., 2007). According to the amplification 

of channel noises as well as measurement signals, we designed a new channel estimation 

method with FIR filtering matrix.  

3.1. UWB channel 

In the following, we initially present the discrete-time equivalent channel h followed by the 

UWB channel models. In order to obtain h, the general channel impulse response (CIR) 

should be presented first. Accordingly, the continuous-time channel h(t) can be modeled as 
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1

0

( ) ( )
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= −α δ τ
L

l l
l

h t t  (8) 

Where αl is the l-th multipath gain coefficient, τl is the delay of the l-th multipath 

component, δ(.) is the Dirac delta function and L is the number of resolvable multipath. 

The continuous-time CIR given in (8) assumes that the multipath may arrive any time. This 

is referred to as the τ-spaced channel model (Erküçük et al., 2007). Suppose that two 

consecutive multipath with delays τk and τk+1 arrive very close to each other. Further 

suppose that a pulse of duration Ts is to be transmitted through this channel. If Ts>|τk+1−τk|, 

then the pulse at the receiver cannot be resolved individually for each path, and experiences 

the combined channel response of the kth and (k+1)th paths. Let us define an approximate 

Ts-spaced channel model that combines multipath arriving in the same time bin, [(n − 1)Ts, 

nTs], ∀n. Accordingly, for [(n−1)Ts, nTs], ∀n, the delays {τl|0, 2, . . . , L-1} that arrive in the 

corresponding quantized time bins can be determined, and the associated {αl |0, 2, . . . , L-1} 

gains can be linearly combined to give the new channel coefficients {αn|1, 2, . . . , N}. Note 

that some of the {αn} values may be zero due to no arrival during that time bin, hence, the 

number of nonzero coefficients K satisfies the condition K≤L≤N. The equivalent Ts-spaced 

channel model can be expressed as 

 
1

( ) ( )
=

= −α δ
N

n s
n

h t t nT  (9) 

Where Tc= NTs is the channel length. Using (9), the discrete-time equivalent channel can be 

written as 

 1 2[ , , , ]= α α α T
Nh   (10) 

where the channel resolution is Ts. Then the discrete-time equivalent channel vector 

obtained above can be used in (5)–(7) in the context of CS theory. Next, we consider the 

UWB channel models to be used with the channel vector h. 

The CS based UWB channel estimation studies assume that the UWB channel vectordefined 

above is sparse. However, this is a vague assumption. In order to classify a channel as 

sparse, initially the channel environment should be examined. In (IEEE Std 802.15.4a, 2007), 

members of the IEEE 802.15.4a standardization committee have developed a comprehensive 

standardized model for UWB propagation channels. Accordingly, they have considered 

different environments and have conducted measurement campaigns in order to model the 

UWB channels for each environment. The channel environments that they have 

parameterized include indoor residential, indoor office, outdoor, industrial environments, 

agricultural areas and body area networks. The details of the related channel models and 

their associated parameters can be found in (Molisch et al., 2006). We motivate our study 

with the selection of a variety of environments either having a line-of-sight (LOS) or a non-

LOS (NLOS) transmitter-receiver connection. Accordingly, the CM1 (indoor residential 

LOS), CM2 (indoor residential NLOS), CM5 (outdoor LOS) and CM8 (industrial NLOS) 
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channel models are widely used in UWB research. We now summarize the characteristics of 

channel models CM1, CM2, CM5 and CM8 in the following. 

CM1: This is by-far the most commonly used channel model in order to assess the system 

performance. It models an LOS connection in an indoor residential environment. It is the 

most sparse channel model where few Rake fingers can collect considerable amount of 

signal energy. 

CM2: This is a channel model with an NLOS connection in an indoor residential 

environment. It complements CM1. It is a sparse channel model but usually contains more 

multipath compared to CM1. 

CM5: This is a channel model with an LOS connection in an outdoor environment. 

Typically, the multipath arrive in a few clusters. 

CM8: This is a channel model with an NLOS connection in an industrial environment. The 

multipath arrive densely so that the channel does not have a sparse structure. 

Using the Ts-spaced channel model in (9) and the parameters for channel models CM1, CM2, 

CM5 and CM8 in (Molisch et al., 2006), a realization for CM1 channel model is plotted in 

Figure 4 when the channel resolution is Ts=0.66ns. It can be observed that the typical channel 

properties listed above can be observed. The impulse response of the UWB channel is 

sparse.  

3.2. Random measurement estimation 

According to the models proposed by the IEEE 802.15.4a working group, the impulse 

response of the UWB channel is modeled as function (8) follow in time domain. Consider 

the simple communications model of transmitting a pulse p(t) throughout a noiseless UWB 

communication channel h(t). The received UWB signal can be modeled as 

 
1

0

( ) ( ) ( ) ( )
−

=

= ∗ = − δ τ
L

l l
l

g t p t h t p t   (11) 

In this chapter, we suppose p(t) is a first derivative of the Gaussian pulse with unit power. 

Then the estimate value of g(t) is ˆ( )g t , which represents a referent template for subsequent 

correlation detection of UWB signals. The received UWB signal given by (11) has been 

sampled to define the discrete-time vector g, which is taken as a signal targeted for 

estimation. It is available to get the estimate of g by sampling directly from g(t). However, 

the extremely high bandwidth of the received UWB signal requires high-speed A/D 

converters. Some approaches for UWB receivers are needed to attain the required sampling 

rates. The random measurement method focuses on this goal by sensing data at the receiver 

using a M×N measurement matrix Φ1, which is obeying the restricted isometry property 

(RIP) (Bajwa et al., 2007), leading to measurements y1 

 1 1 1= Φ = Φy g Ph   (12) 
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The referent template ˆ( )g t  access to correlation detection can be reconstructed successfully 

with only M measurements at the receiver, provided that g is sparse in some space. The 

principle architecture of the random measurement estimation is given in Figure 2. 

 

Figure 2. The random measurement estimation 

In (Paredes et al, 2007), a over-complete dictionary is designed, in which the signal g has 

concise representations when expressed. Then a better performance of the channel 

estimation was guaranteed. The results, however, are based on a premise that there is no 

channel noise on pilot symbols. It is not true in actual channel. When the noise is 

introduced, we have 

 ( ) ( ) ( ) ( ) ( ) ( )= ∗ + = +ng t p t h t n t g t n t  (13) 

Where n(t) denotes additive white Gaussion noise (AWGN) in UWB channel, follow the
2(0, )δN  distribution. We restrict our attention to discrete signals, then the measurement 

process on the signal itself exploiting measurements matrix 1Φ  is described as this 

 1 1 1 1 1( )= Φ + = Φ + Φy g n Ph n  (14) 

Note that, the random measurement method processes the noise from N-dimension to M-

dimension via the projection. In terms of the conversion in dimension, the noise power 

translates into 2 2( / ) δN M  versus 2δ  before projecting. Because of M<<N, that means the 

sampling rate reduces at the expense of magnification of the channel noise. 

3.3. FIR filtering matrix estimation 

In this chapter, we propose a new method based on filtering matrix for UWB channel 

estimation with CS framework. In order to improve the estimation performance, some 

implements should be taken to suppress the magnification of the noise from measurements 

matrix. The concrete step is illustrated in Figure 3, which gives the architecture of the 

proposed method. The processing flows for both the transmitter and the receiver have been 

adjusted leading to higher accuracy and lower complexity in receiver. 

As can been seen from Figure 3 (Yu Huanan & Guo Shuxu, 2010), a UWB signal is 

transmitted by a UWB pulse generator and through an FIR filter. Then, the received signal is 

directly sampled through a low-rate A/D conversion after the propagation paths. Finally, 
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the estimation of the impulse response ĥ  can be reconstructed via OMP algorithm (Pati et 

al., 1993).  

 

Figure 3. The FIR filtering matrix estimation 

According to function (1), the transmitting signal x(t), which is K-sparse over some 

overcomplete dictionary P, 

 
1

0

( ) ( ) ( )
−

=

= =
N

n n
n

x t P t h P t h  (15) 

Where  

 0 1 1( ) [ ( ), ( ), , ( )]−=  NP t P t P t P t   (16) 

 0 1 1[ , , , ]−=  T
Nh h h h  (17) 

Note that there are only K non-zeros in h. x(t) is then fed into a L-length FIR filter. Suppose 

that m(t) is the impulse response of the FIR filter, the received signal for the UWB 

communication is given by 

 2( ) ( ) ( ) ( ) ( )= ∗ ∗ +y t p t m t h t n t  (18) 

Since the UWB channel is sparse, the impulse response of the UWB channel h(t) can be 

viewed as a sparse signal. Let h be the discrete-time representation of h(t), which is set up as 

the estimation target in this section. In addition the identity matrix is used as an 

overcomplete dictionary because of the sparsity of h. Define ( ) ( ) ( )= ∗c t p t m t , then (18) 

becomes 

 2( ) ( ) ( ) ( )= ∗ +y t c t h t n t  (19) 

Where c(t) and h(t) are processed using a low-rate A/D, which is M-dimension. The output 

y2(t) is then uniformly sampled with sampling period Ts. Ts follows the relation Ts/Th =q, 

where q is a positive integer, and Th denotes the time delay between each adjacent channel. 

M samples are collected so that  ⋅ = ⋅ + s h xM T L T T , which is the duration of y(t). Now we 

have the down-sampled output signal y2(mTs), m=0, 1,…, M－1 
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  (20) 

The output y2(t) is uniformly sampled with sampling period Ts. Now we rewrite (20) in 

matrix notation             

 2 2= Φ +y h n   (21) 

where Φ2 is a quasi-Toeplitz matrix. It has such property: each row of Φ2 has L non-zero 

entries and each row is a copy of the row above, shifted by q places. Following (Bajwa et al., 

2007), it is illustrated that the quasi-Toeplitz matrix obeys the RIP. 

According to (20) and (21), let y2 be the random projected signal where Φ2=p(t)*m(t) is the 

measurement matrix, and identity matrix is used as over-complete dictionary. The random 

projected signal y2 can be acquired with M-dimension low-rate A/D converters, and the 

OMP algorithm is then applied on y2 to recover ĥ . While the convolution process is 

following (21), associated with the reconstruction results above, the referent template ĝ  for 

correlation detection is acquired. 

The whole process above accounts to a filtering action on the Gaussian pulse, which we 

selected as the transmitted pulse waveform. The receiver becomes very simple, with only one 

M-dimension low-rate A/D to collect measurement samples after the filter and channel. It can 

be seen that the noise does not go through the projection from N-dimension to M-dimension, 

thus the noise has not been magnified in the CS framework. Furthermore the proposed 

method has a better measurement matrix compared with the random measurement method. 

Hence, a better performance of the estimation accuracy can be achieved.  

4. Correlation detection for the UWB signals 

The random measurements method is focused on CS reconstruction of noiseless UWB 

signals, which relies on the assumption that the noiseless composite pulse-multipath 

waveform is sparse in a pre-designed dictionary. In a more realistic UWB communication 

scenario, however, the received signal is contaminated with noise and interferences, and the 

challenges fall in the design of a UWB receiver with the ultimate goal of signal detection. 

4.1. Correlation detection 

Suppose that the impulse response of the UWB channel h(t) is invariant in each data frame, 

including Np pilot symbols and Ns data modulated symbols. The total number of symbols in 

one burst is Np+Ns And Nf first derivative of the Gaussian pulse p(t) are repeated over 

consecutive frames to transmit one pilot or binary symbol. For the sake of damping the 

effect of AWGN, we average the received signal during a data frame. The maximum excess 
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delay of the dense multi-path channel is given by Tmed. p(t) is of unit energy and has time 

duration Tp, and also the duration of a frame is given by Tf . In order to avoid inter-symbol 

interference (ISI) and intra-symbol interference (Yang & Giannakis, 2004b), it is assumed 

that Tf > Tp + Tmed.  

In the UWB correlation detector, if there exits a module to time precisely, the pilot and data 

symbols can be exactly separated. When the pilot is canceled, and also the referent template

ĝ  estimated above is employed into the correlation detection of the received signals, the 

transmitted signal during a data frame for UWB communication is shown as follows 

 ( )
11

0 0

( )

−−

= =

= − − − 
fs

NN

j f f f p f f
j n

s t b p t jN T nT N N T   (22) 

here, { 1}∈ ±jb  are the j-th information bits. Signal s(t) propagates through an L-path fading 

channel whose response to p(t) is 
1

( )
=

− τ
L

l l
l

h p t such that the received signal at the receiver is 

  ( )
11

0 0 1

( ) ( )
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b j l f f f p f f l
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r t b p t jN T nT N N T n t  (23) 

Where n(t) is thermal noise with two-sided power spectral density N0/2. The integral term 

implements the correlation operation between the received UWB signal rb(t) and the 

estimate template ˆ( )g t , and then the information bits can be acquired as  

  
1

( 1)

0

ˆ ˆsign( ( ) ( )

−
+ +

+
=

= − − 
f

f

f s

N
j T kT

j b f sjT kT
j

b r t g t jT kT dt  (24)  

It can be seen from (24), since Ts is the sampling period, only the M-dimension low-rate A/D 

is needed.  

4.2. Signal reconstruction algorithms 

Then, the Orthogonal Matching Pursuit, the Basis Pursuit De-noising and the Dantzig 

Selector are used to detect original signal to give the opinions for choosing suitable 

reconstruction algorithms. 

When M << N, the (8) is an uncertain function, so the search for the most sparse solution 

becomes an NP-hard problem. The literature (Donoho, 2006) proved that this problem can 

be inverted to the problem of answering a programming problem. In this chapter we study 

the three algorithms: the BPDN algorithm and the DS algorithm in 1 -norm and the OMP 

algorithm in the greedy algorithm. 

The BPDN algorithm derived from the Basis Pursuit (BP) algorithm, so it is an optimizing 

strategy. The BPDN algorithm tries to deal with such problems:  
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2
− Φ + λ
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y x x  (25) 

It can be rewrite as follow 

 
1

min
x

x s.t.
2

2
− Φ ≤ σy x  (26) 

The other is the DS algorithm based on 1 -norm, which can deal with the following 

problem 

 
1

min
x

x s.t. T( )
∞

Φ − Φ ≤ σy x   (27) 

Comparing (26) with (27), we see that the DS algorithm is similar with the BPDN algorithm. 

The main difference is that the BPDN algorithm relies on punishing residuals using the 2 -

norm to realize the optimization, while the DS algorithm relies on minimizing correlation 

between residuals and all atoms. 

OMP is a kind of greedy algorithm, deviating from the 1 -norm shrinkage strategy. One of 

the most important properties of the algorithm is that it does not choose the same atom 

twice, so the estimation value satisfies
0

ˆ =x K , after K iterations.  

Literature (Pati et al., 1993) proved that all of the BPDN algorithm, DS algorithm and OMP 

algorithm can obtain Elogm times of the mean square error about the Oracle estimator, and 

E is a constant here. 

5. Simulations and results 

In this section, the performance of the CS based on FIR filter matrix meuof the new method 

and random measurement estimation are made. Then three experimentations have been 

designed as follows.  

The simulation parameters are set as follows: the transmitted UWB signal pulse p(t) is the 

first-order derivative of the Gaussian pulse and is normalized to have unit energy. The 

duration of the time resolution of the channel is Ts=0.66ns, Tf =110ns. The UWB channel 

model CM1 (LOS) proposed by IEEE working group are adopted in our simulation. Table 1 

shows the principal parameters of the channel models. 

Simulation 1: consider the pulse propagating through a noiseless propagation scenarios. We 

adopt a UWB channel that models an indoor residential environment with line-of-sight IEEE 

802.15.4a channel model. Figure 4 shows the impulse response of the UWB channel. Then 

the first derivative of the Gaussian pulse is selected as the transmitted pulse waveform, 

according to which the response of the channel is shown in Figure 5. It is just the real value 

of the referent template for the subsequent correlation detection. 
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Average cluster arrival rate (ns) 0.0265 

Multipath component delay factor (ns) 6.7 

Average pulse arrival rate (1/ns) 3.2 

Cluster delay factor (ns) 7.8 

Standard deviation of the channel gain (dB) 4.0 

Standard deviation of the channel coefficient in cluster (dB) 4.2243 

Standard deviation of the channel coefficient between clusters (dB) 4.2243 

Table 1. Parameters in UWB channel models proposed by IEEE 

 

Figure 4. Impulse response of the UWB channel 

 

Figure 5. Gaussian pulse response of the UWB channel 

Simulation 2: ĝ is reconstructed via OMP algorithm in the absence of noise. The simulation 

parameters are set as follows: N=1000, M=360, K=180. Figure 6 and Figure 7 show the 
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simulation results and reconstruction error respectively for both random measurement 

method and FIR filtering matrix method.  

 

Figure 6. The reconstruction performance of the random measurement method 

As Figure 6 and Figure 7 shown, both the method proposed in this chapter and the random 

measurement method can successfully implement channel estimation for UWB 

communication. Moreover, both the methods sample at a reduced sampling rate, which is 

only M/N=1/3 of the sampling directly rate. Since a better measurement matrix is used in 

this chapter, better performance of the estimation accuracy can be achieved. As depicted in 

(a) The reconstruction result

(b) The reconstruction error
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the second picture of Figure 7, reconstruction error approximate to zero or negligible values. 

In the CS theory, more measurements can improve the advancement of the estimation 

precision at the expense of increasing the sampling rate of the A/D conversion. This work 

can be advanced by designing better over-complete dictionary or better measurements 

matrix, which is an ongoing research. 

 

Figure 7. The reconstruction performance of the FIR filtering matrix method 

Simulation 3: UWB signals have been detected via correlation detection method and the 

reconstructed referent template has been acquired via three estimation approaches: the 

random measurement method, FIR filtering matrix method and direct-sampling method. 

Further, the parameters in (22) are set to Np=25 and Ns=10 When 1000 information bit is 

transmitted through the UWB channel, the effect of AWGN is taken into consideration. 

(b) The reconstruction error

(a) The reconstruction result
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Figure 8 illustrates the BER performance on the assumption that the pilot symbols are 

transmitted in the absence of noise, whereas Figure 9 illustrates the BER performance when 

the pilot symbols are affected by the AWGN. 

 

Figure 8. The BER performances of three estimation methods with noiseless UWB signals 

 

Figure 9. The BER performances of three estimation methods with noiseless UWB signals 

In addition, the results of simulation 2 illustrates that FIR filtering matrix method has a better 

performance in channel estimation than random measurement method under the same 

simulation conditions. As Figure 8 indicated, when the pilot symbols go through the noiseless 

channel, the results via direct-sampling estimation are the optimized-template signals, 

however, it require an A/D converter with much higher sampling rate. Moreover, the BER 

curves shown above illustrate that both the random measurement method and the method 

proposed in this chapter can estimate the template signals precisely. When they are compared 

with the direct-sampling estimation, all the BER curves are close to each other terribly. It is 
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obvious that, the accuracy of the channel estimation has little impact on the BER of the 

correlation detector. So far as referent template can be reconstructed successfully through the 

reconstruction method based on the CS theory, the BER curves approach each other. 

As Figure 9 demonstrated, when taking into account of the effect of AWGN, the FIR filtering 

matrix method based on CS has an obvious advantage of the BER performance. While that 

of the random measurement estimation is the worst one comparing with the others. This 

performance is expected since the noise has been magnified through measurement matrix. 

That is, the unsuccessful result of the reconstruction algorithm at low signal-to-noise ratio 

(SNR) is inevitable. Note that the BER of the correlation detector increases horribly as the 

referent template has not been estimated efficiently. 

 

Figure 10. The comparison of the mean square error for the three reconstruction algorithms 

Simulation 4: The performance test applies the OMP, the DS and the BPDN to reconstruct 

the original signals. The main parameters for these methods are set as follows. The 

maximum number of OMP iterations is set to 100 and the target residual energy is set to 

0.3% of the energy for the projected signal, i.e. σ= 3×10-3. The target residual energy σ is 

also used in the BPDN and the DS method. For the BPDN, the relaxation parameter is 

supposed to be 0.05, i.e. ε= 0.05. For the DS, the tolerance for primal-dual algorithm is 

ξ=10-3 and the max value of primal-dual iterations is set to 50. Thus, we use the mean 

squared error (MSE) as the performance criterion, so the tests results are achieved by 50 

operations for average. 

Figure 10 shows the MSE performance of the CS-based channel estimation for the three 

reconstruction methods. We observe that: (1) the MSE performance of the DS is slightly 

better than that of the BPDN. (2) In the higher operating SNR, the OMP has strong 

competitive advantages to the other two methods, however, turn into worse under lower 

operating SNR. This simulation shows that the FIR filtering matrix method is indeed leading 

to the improved performance for the CS reconstruction. 



 
Ultra Wideband – Current Status and Future Trends 82 

6. Conclusion 

In this chapter, we proposed a pre-filtering method for UWB channel estimation based on 

the theory of CS, whose measurement matrix is just a Toeplitz matrix, and the channel 

estimation accuracy is improved. The method proposed in this paper avoided the 

magnification to the noise. Thus when the reconstructed signal is used as a referent template 

at the receiver in the noise realization, a better BER performance can be achieved. 

The correlation detector for UWB communication discussed in this paper employs the channel 

estimates to the conventional correlation detection directly, while the design of the whole 

system combining the channel estimation and signals detection will be a further research. 

Moreover, it is the key point of improving the BER performance of the correlation detector to 

search for a CS reconstruction method, which can successfully recover the referent template 

under the noise realization and fewer measurements with overwhelming probability. In 

addition, we analyze the choices of reconstruction algorithms using several simulations. Both 

the OMP and the BPDN algorithms are compared to the Dantzig selector for different signal 

noise ratio to give the opinions for choosing suitable reconstruction algorithms. 

Admittedly, there are several other theoretical and practical aspects of UWB channel 

estimation methods based on compressed sensing that need discussing in future. Below, 

however, we briefly comment on some of these aspects. First, the different types of 

measurement matrix according to the UWB channels should be in further study. In this 

paper, we do some attempts to construct the quasi-Toeplitz matrix developing the model of 

UWB channel estimator. Somewhat similar theoretical arguments can be made to argue the 

other type of measurement matrix to get better estimation performance. Second, extensive 

numerical simulations carried out in literatures for a number of CS estimators have 

established that the performance of CS estimation methods is markedly superior to that of 

traditional methods based on LS criterion. However, the nontraditional methods based on 

MUSIC and ESPRIT algorithms are not optimal for estimating sparse channels. This is 

because it is possible for a channel to have a small number of resolvable paths but still have 

a very large number of underlying physical paths, especially in the case of diffuse scattering. 

So the two algorithms can be employed combining with the compressed sensing framework. 

Third, one expects the representation of real-world multipath channels in certain bases to be 

only effectively sparse. The channel model and channel parameters are localized with the 

perfect channel model in this paper. Finally, and perhaps most importantly for the success 

of the envisioned wireless systems, the CS can be leveraged to design efficient overcomplete 

dictionary for estimating sparse UWB channels. 
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