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1. Introduction

Vortices are fundamental objects which appear in many branches of physics [1] such as optics
[2, 3] and Bose-Einstein condensates [4]. In nonlinear optics, vortex solitons are associated
with the phase dislocations (or phase singularities) carried by the nondiffracting optical
beams [5], and share many common properties with the vortices observed in other systems,
e.g., superfluids and Bose-Einstein condensates [6, 7]. In a homogeneous medium, stable
vortex solitons were proposed to exist in the so-called cubic-quintic or other similar nonlinear

media, for example, combination of χ(2) and χ(3) nonlinear media, based on competing
self-focusing and self-defocusing nonlinearities [8–11]. However, the experimental realization
of vortex solitons in such media is hard, as the requirement of very high energy flow of light
usually excites other higher-order nonlinearities, which may be dominant and suppress the
occurrence of competing nonlinearities.

Successful alternatives are confined systems, such as graded-index optical fibers [12],
nonlinear photonic crystals with defects [13], linear and nonlinear optical lattices [14–19], or
optical lattices with defects [20], where the azimuthal instability of vortices can be suppressed
by the corresponding confining potentials. Stable vortices with charges lower than two are
possible within certain ranges of lattice (transverse refractive index modulation) parameters
[14, 17, 21–28]. Different types of vortex solitons, such as discrete vortices [21], vortex-ring
“discrete” solitons [28], and second-band vortices [22] were observed in experiments. For a
review of early works, see [5, 29, 30] and references therein.

Thus far, dynamics of higher-charged vortex solitons are still poorly understood. The optical
settings allowing stable higher-charged vortex solitons are rare. Main efforts in bulk or
lattice-modulated nonlinear media were devoted to the analysis of vortex solitons with
charges less than or equal to two. In the following sections, three different schemes for the
realization of vortex solitons with higher charges will be addressed.

In section 2, the dynamics of vortex solitons in a radial lattice with a lower-index defect
covering several lattice rings is revealed. The defect scale can be utilized to control the energy
flow of vortices. Vortex solitons with various charges are stable in a region near the upper
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cutoffs of propagation constant. Although higher-charged vortices at higher energy flow
suffer oscillatory instability, they can survive very long distances without visible distortions.
Vortex solitons at lower or moderate energy flow are completely stable under appropriate
conditions. The variation of topological charges slightly influences the existence and stability
domains of vortex solitons. This property provides an effective way for the experimental
realization of vortex solitons with higher charges in an optical setting with fixed parameters.

In section 3, the existence, stability and propagation dynamics of vortex solitons in a
defocusing Kerr medium with an imprinted azimuthally modulated Bessel lattice are
investigated. Since the special amplitude distribution of vortex soliton resembles to the
azimuthons stated in [31] and the phase distribution is also a staircase function of the polar
angle, such vortex solitons can also be termed as “azimuthons”. The azimuthal refractive
index modulation admits stable vortex solitons with lower or higher topological charges. The
“stability rule” of azimuthons in defocusing cubic media is exactly opposite to that of vortex
solitons in focusing media with the same transverse refractive index modulation. It is the first
example of stable azimuthons in local nonlinear media.

In section 4, the stability of vortex solitons supported by a circular waveguide array
with out-of-phase modulation of linear and nonlinear refractive indices is studied. The
out-of-phase competition between two effects substantially modifies the stability properties of
vortex solitons. Vortex solitons undergo remarkable power-dependent shape transformations.
They expand or shrink radially with the propagation constant, depending on the phase
difference between the neighboring lobes. In particular, we revealed that increasing
waveguide number of circular array can stabilize vortex solitons with higher topological
charges.

2. Higher-charged vortex solitons in defected radial lattices

2.1. Introduction

Defects and defect states exist in a variety of linear and nonlinear systems, including solid
state physics, photonic crystals, and Bose-Einstein condensates. When lights propagate in
an optical lattice with a local defect, the band-gap guidance results in the formation of
linear or nonlinear defect modes [32, 33]. Recently, defect guiding phenomena of light in
diverse settings, such as photonic crystals [13], fabricated waveguide arrays [34, 35], and
optically induced photonic lattices [36–42], have been predicted theoretically and observed
experimentally. Ye and his coworkers proposed that stable nonlinear modes can be trapped
in a lower-index defect sandwiched between two optical lattices, or in the cylindrical core of
a radial lattice [43]. The variation of defect scales, depths and shapes can be used to stabilize
and reshape the fundamental, dipole and vortex solitons [20].

In this section, we reveal that the defocusing media with an imprinted radially symmetric
lattice with a lower-index defect covering several lattice rings can support stable vortex
solitons with higher charges under appropriate conditions. In contrast to the cases in
competing media, vortex solitons can propagate stably at lower or moderate energy flow.
In lattices with fixed depth and defect scale, vortex solitons are completely stable provided
that the propagation constant exceeds a critical value. In particular, we illustrate that the
variation of topological charges slightly influences the existence and stability domains of
vortex solitons. This is in contrast to all previous studies and allows the experimental
realization of vortex solitons with higher charges without changing the parameters of an
optical setting.
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2.2. Theoretical model

We consider light propagation along the z axis of a defocusing Kerr medium with an
imprinted transverse modulation of the refractive index. Dynamics of the beam can
be described by the nonlinear Schrödinger equation for the dimensionless complex field
amplitude A:

i
∂A

∂z
= −

1

2

(

∂2 A

∂x2
+

∂2 A

∂y2

)

+ |A|2A − pR(x, y)A. (1)

Here, the longitudinal z and transverse x, y coordinates are scaled in the terms of diffraction
length and beam width, respectively; p denotes the lattice depth; the refractive-index profile
is given by R(x, y) = cos2(Ωr) for r ≥ (2N − 1)π/(2Ω) and R(x, y) = 0 otherwise, where

r = (x2 + y2)1/2 is the radial distance, Ω is the frequency, and N = 1, 2... is the number of rings
removed from the lattice and characterizes the defect scale. Thus, the transverse modulation
of refractive index features a lower-index guiding core. By comparing the defocusing bulk
media without external potentials, the radial lattices with defects can confine the beams in a
local region. An example of such refractive-index landscapes is shown in Fig. 1.

Figure 1. Radial lattice with a defect.

Although there are defects in radial lattices, the wings of nonlinear modes still penetrate
into the bulk of lattices. Thus, the existence of nonlinear modes strongly depends on the
transverse lattices. Since the term 1/rd/dr in Laplacian can be neglected at r → ∞, the
band-gap structure of a radially symmetric lattice is slightly different from that of 1D periodic
lattice [43]. Thus, it is convenient to use the band-gap structure of 1D periodic lattice to
approximately analyze the existence of solitons. Due to the fact that nonlinear modes in
defocusing Kerr media can only be found in the finite gaps, we are interested in the solitons
residing in the first finite gap. Equation (1) conserves several quantities, including the energy

flow U =
∫

∞
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We search for stationary solutions of Eq. (1) by assuming A(x, y, z) = q(r) exp(ibz + imφ),
where q is a r-dependent real function depicting the profile of stationary solution, b is a
propagation constant associating with the energy flow, and m is an integer known as the
topological charge of vortex soliton. The nonlinear mode degenerates to a fundamental
radially symmetric mode when m = 0. The substitution of the light field into Eq. (1) yields:

d2q

dr2
+

1

r

dq

dr
−

m2

r2
q − 2bq − 2q3 + 2pRq = 0, (2)
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which can be solved numerically by means of a Newton iterative method. Mathematically,
various families of stationary solutions are determined by the propagation constant b, lattice
depth p, modulation frequency Ω and defect scale N. We vary b, p, N and fix Ω ≡ 2 in this
section.

The stability of solitons can be analyzed by considering the perturbed solution in the form
of: A(x, y, z) = [q(r) + u(r) exp(λz + inφ) + v∗(r) exp(λ∗z − inφ)] exp(ibz + imφ), here the
perturbation components u, v could grow with a complex rate λ during propagation, and
n is an integer representing the angle dependence of the perturbation and is termed as an
azimuthal index. The substitution of the perturbed solution into Eq. (1) results in a system of
eigenvalue equations:

iλu = −
1

2
(

d2

dr2
+

1

r

d

dr
−

(m + n)2

r2
)u + bu + (v + 2u)q2 − pRu

−iλv = −
1

2
(

d2

dr2
+

1

r

d

dr
−

(m − n)2

r2
)v + bv + (u + 2v)q2 − pRv. (3)

The coupled equations can be solved by a finite-difference method. In Cartesian coordinates,
the square of the above linearization operator is self-adjoint if the stationary solutions are
angle independent (fundamental solitons). Thus, the discrete eigenvalue is either purely real
or purely imaginary. The instability growth rates with purely real parts correspond to the
Vakhitov-Kolokolov (V-K) instability [44]. When the stationary solutions are angle dependent
(vortex solitons), the eigenvalues may have both real and imaginary parts associating with an
oscillatory instability. Stationary solutions are completely stable provided that all real parts of
eigenvalues equal zero.

2.3. Discussions

First, we consider vortex solitons with unit charge supported by the defocusing Kerr media
with an imprinted radial lattice with a defect. Without loss of generality, we set the defect
scale N = 10 in the following discussions. In contrast to the fundamental solitons, the energy
flow U of vortices is always a monotonically decreasing function of propagation constant
b [Fig. 2(a)]. We stress that the vortex solitons here are bright or ring-profile ones whose
amplitudes decay to zero at infinity. Such vortices cannot be bifurcated from the dark vortices
supported by the bulk defocusing media in the vanishing lattice. In other words, vortex
soliton only exists when the lattice depth exceeds a critical value. For example, as shown in
Fig. 2(b), the threshold value of lattice depth for the appearances of vortices with unit charge is
pth ≈ 1.18, below which no vortex solutions can be found. Therefore, the vortex in the present
lattice system is not a continuum of dark vortex in the vanishing lattice case, and it belongs to
a different soliton family. For p ≤ 2.57, the existence domain expands with the lattice depth.
It shrinks with the growth of lattice depth if p ∈ (2.57, 7.05], due to the restriction of the
ascending lower edge of the first band gap. It is the restriction of the first gap which accounts
for the hoofed existence domain [Fig. 2(b)].

Figures 2(c) and 2(d) display two typical profiles of vortex solitons with unit charge at different
energy flow. The vortex at higher energy flow looks like a flat-topped beam embedded with
a dark core at which the amplitude is zero and the phase is undefined. Vortices become more
localized with the growth of propagation constant. Vortices at higher energy flow penetrate
deeply into the bulk of lattice, which leads to the multi-ring structures of beam intensity
distributions.
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To examine the stability of vortex solitons with unit charge, we conduct linear-stability
analysis on the stationary solutions according to Eqs. (3). Typical spectra of the linearization
operator for vortex solitons at b = −0.8 and b = −0.1 in lattice with defect scale N = 10
at p = 4.2 are shown in Figs. 3(a) and 3(b), respectively. Vortices at higher energy flow
suffer an oscillatory instability with complex growth rates [Re(λ) ≪Im(λ)], while vortices
at lower or moderate energy flow are completely stable [Re(λ) = 0]. To confirm the stability
analysis results, we numerically integrate Eq. (1) with a standard beam propagation method
code, using the stationary solutions as the initial inputs. Representative unstable and stable
propagation examples are illustrated in Figs. 3(c) and 3(d). Obviously, unstable vortex solitons
can survive large distances (hundreds of diffraction lengths), greatly exceeding the present
experimentally feasible sample lengths.

We summarize the linear-stability analysis results in Fig. 2(b). We show the critical value

of propagation constant bn=1
cr above which no perturbations with the azimuthal index n and

nonzero real part of growth rate were found. Vortex solitons are dynamically stable in a broad
region near the upper cutoffs of propagation constant. It is the combination of defocusing
nonlinearity and confining potential who affords the stability of vortex solitons. The precise
structure of instability regions (patched) is rather complicated. There may exist multiple
narrow stability windows.

Now, we focus on the vortex solitons with higher topological charges in radially lattices with
defects imprinted in a defocusing Kerr medium. Figure 4(a) shows the hoofed existence
domain of vortex solitons with m = 3. Vortex solitons can be found in lattices with
p ∈ [1.18, 6.97]. By comparing the existence domains of vortex solitons with m = 1 [Fig. 2(b)]

Figure 2. (a) Energy flow of vortex solitons with m = 1 vs b for different p. (b) Areas of existence and
instability (patched) on the (p, b) plane. Solid lines denote the edges of the first gap of 1D periodic lattice.
(c, d) Contour and amplitude profiles of vortices at p = 4.2, b = −0.8, U = 556.2 and p = 4.2, b = −0.1,
U = 37.9, respectively. In all cases N = 10.
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and m = 3, one can find that the upper cutoff of propagation constant drops from ∼ −0.04
to ∼ −0.08, which leads to the decrease of the upper threshold value of lattice depth p (from
7.05 to 6.97) and thus the shrinkage of the existence domain. Yet, the existence area of vortex
solitons with m = 3 still occupies almost the whole of the first gap of undefected lattice (for
b < 0).

The energy flow of vortex solitons with m = 3 also decreases with the propagation constant.
The pronounced decaying oscillations of such modes in the bulk of lattice become stronger
with the decrease of propagation constant [Fig. 4(b)]. The maxima of intensity distribution
around the phase dislocation move towards the center of the defect core with the growth of
propagation constant. Figure 4(c) displays an example of screw-type phase distribution of
vortex soliton with m = 3.

The instability of vortex solitons with higher charges usually depends on the azimuthal index
n [17, 26, 45]. Linear-stability analysis results reveal that for vortices with m = 3, the instability
area associating with n = 2 is always dominant. For vortex solitons with m = 3 in a lattice
with p = 5, the widths of instability windows associating with azimuthal indices n = 1, 2
and 3 occupy ≈ 26.77%, ≈ 38.69% and ≈ 16.93% of the width of the whole existence domain,
respectively. An example of instability growth rate corresponding to azimuthal index n = 2
versus propagation constant is illustrated in Fig. 4(d). It indicates that vortex solitons suffer
weak azimuthal instability, which allows them to propagate without obvious shape distortion
over large propagation distances. Vortex solitons will be completely stable provided that the
propagation constant exceeds a critical value.

By comparing the stability areas of vortex solitons with m = 1 [Fig. 2(b)] and m = 3 [Fig. 4(a)],
one finds that the stability area of vortices with m = 3 is slightly narrower than that of

Figure 3. Spectra of the linearization operator (a, b) and unstable and stable propagations (c, d) of
vortex solitons shown in Figs. 2(c) and 2(d).
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vortices with m = 1, which constitutes one of our central results. That is to say, the stability
area is slightly affected by the growth of topological charge, which allows one to realize
stable vortex solitons with even higher charges. Since vortices with different charges share
a collective stability area, one can input beams with different charges to excite vortex solitons
with corresponding charges in certain parameter windows without changing the lattice depth,
defect scale, modulation frequency, etc. It should be noted again that vortex solitons with
different charges can propagate stably at lower or moderate energy flow, which is in sharp
contrast to the cases in competing media, where very high energy flow is needed to stabilize
the vortices [8, 10]. Thus, in addition to the Bessel lattice [17], the radial lattice with a defect is
another effective alternative for the realization of stable vortex solitons at lower or moderate
energy flow, especially for vortices with higher charges.

To confirm the above conclusions, we investigate the dynamics of vortices with m = 4, 5...10.
The existence and stability domains shrink slowly with the topological charge due to the
slow decrease of the upper cutoff of propagation constant. The energy flow decreases with
the growth of topological charge when the lattice parameters are fixed [Fig. 5(a)]. This can
be explained by the law of conservation of energy. For linearly polarized vortex beam, the
total energy includes two parts. The first part is the energy carried by the photons, and the
second part is the rotational energy associating with the orbital angular momentum. From the
definition of the energy flow of vortex solitons, one finds that the expression of energy flow
only defines the energy carried by the photons. Yet, the rotational energy of vortex solitons is
proportion to the square of topological charge and effectively rotational radius. Given that the
allowed energy of different modes in a fixed system is a constant, the energy flow carried by

Figure 4. (a) Areas of existence and instability (patched) of vortex solitons with m = 3 on the (p, b)
plane. Solid lines denote the edges of the first gap of 1D periodic lattice. (b) Profiles of vortices at
p = 4.2. (c) Phase distribution at b = −0.5, p = 4.2. (d) Real part of instability growth rate associating
with n = 2 vs b at p = 5. In all cases N = 10.

373Stable Higher-Charged Vortex Solitons in Optically-Induced Lattices
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photons decreases with the increase of rotational energy. The conclusion may be generalized
to vortex solitons with continuous intensity distributions in other models.

The above discussions can also explain the decrease of the thickness of vortex solitons
shown in Fig. 5(b). With the growth of topological charge, the decrease of effective mass
of the beam is in companion with the increase of effectively rotational radius and angular
velocity. For fixed propagation constant, the delocalization of vortex soliton weakens with
the growth of topological charge. A representative propagation example of unstable vortex
solitons is illustrated in Fig. 5(c). The vortex can propagate without visible shape distortion
over hundreds of diffraction lengths. Figures 5(d) and 5(e) show two instances of stable
propagations of vortex solitons at b = −0.4 with topological charges m = 6 and 9, respectively.
The phase structure of vortex soliton at z = 1024 with m = 9 is displayed in Fig. 5(f).

Finally, we briefly discuss the influence of lattice parameters on the existence of vortex
solitons. Vortex solutions cannot be found in radial lattices without defects. The existence
domain expands with the growth of defect scale and approaches an ultimate at N = 4. It
shrinks with the increase of modulation frequency Ω. The existence domain shrinks slowly
with the topological charge if other parameters are fixed. No matter what topological charge
or lattice parameters are, the stable area always occupies a region near the upper cutoffs of
propagation constant. We stress that although the vortex solitons residing in the patched
areas shown in Figs. 2(b) and 4(a) are unstable, they can survive large propagation distances.
Unstable vortex solitons with higher charges exhibit a similar behavior. Thus, we expect that
all vortices in radial lattices with defects can be observed in experiments.

Figure 5. (a) Energy flow of vortex solitons with different m vs b. (b) Profiles of vortex solitons with
different m at b = −0.4. (c, d) Unstable and stable propagations of vortex solitons with m = 6 at
b = −0.67 and b = −0.4, respectively. (e, f) Field modulus and phase distribution of vortex soliton with
m = 9 at b = −0.4, z = 1024. In all panels, p = 5.
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3. Higher charged vortex solitons in azimuthally modulated Bessel lattice

3.1. Introduction

Besides the harmonic lattice, there is another important optical lattice with unique symmetry,

the Bessel lattice, which can be created by nondiffracting Bessel beams with cylindrical

symmetry. Kartashov et al. systematically investigated the dynamics of various types of

solitons supported by the Bessel lattices, including multipole-mode solitons [46], ring-profile

vortex solitons [17], spatiotemporal solitons [27] etc. Necklace [47], broken ring solitons [48]

can also be trapped stably in different order Bessel lattices. For a review of the early works,

see [23].

Interestingly, Bessel lattices with azimuthal modulation are also possible [25, 49]. Such lattices

resemble highly nonlinear micro-structured fibres [50] and may be realized in experiment

by several incoherent Bessel beams with different intensities and orders [49]. The complex

lattices can also be created in photorefractive crystals by the phase-imprinting technique

[50, 51]. The azimuthally modulated lattices exhibit several discrete guiding channels of linear

refractive index. Stable soliton complexes and azimuthal switching in focusing cubic media

with modulated Bessel lattices were reported in [49]. Neighboring components in soliton

complex are out-of-phase. Ring-shaped and single-site solitons were observed in azimuthally

modulated lattices [50, 51]. Especially, by using group-theory techniques, Kartashov et al.

derived a general “charge/stability rule” for vortex solitons supported by the azimuthal

Bessel lattice [25].

In Ref. [31], Desyathikov and his coworkers introduced a novel class of spatially localized

self-trapped ringlike singular optical beams in focusing cubic and saturable media, the

so-called “azimuthons”. The amplitude of such states is a spatially localized ring modulated

azimuthally, and the phase of the azimuthon is a staircase function of the polar angle. This

concept provided an important missing link between the radially symmetric vortices and

rotating soliton clusters [52]. Following this work, stable azimuthons in nonlocal nonlinear

media were found when the nonlocality parameter exceeds a certain threshold value [53, 54].

However, stable azimuthons are only found in media with nonlocal responses. Azimuthons

in local nonlinear media unavoidably experience azimuthal modulation instability upon

propagation. In this section, we elucidate the existence and stability properties of azimuthons

(vortex solitons with special amplitude distribution) supported by the azimuthally modulated

Bessel lattices. It is the combination of nontrivial phase and lattice confinement who affords

the existence of azimuthons. Thus, the azimuthons we obtained provide a missing link

between the radially symmetric vortices and nonrotating soliton clusters although they break

the radial symmetry due to the potential we used. Similar to the “azimuthons” stated in [31],

the nonlinear localized modes we discussed can also be attributed to the two contributions

induced by the internal energy flow and the modulated beam respectively. In sharp contrast

to the cases in focusing cubic media [25], we reveal that the “stability rule” in defocusing

cubic media is quite the reverse. The result is in good agreement with the conclusion given by

[55] where the stability of discrete vortex solitons supported by hexagonal photonic lattices in

focusing media is opposite to the stability in the defocusing one, though the discussions were

limited to the single-charged and double-charged vortex solitons.
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3.2. Theoretical model

We consider beam propagation along the z axis in defocusing cubic media with an imprinted
transverse refractive index modulation. The dynamics of the nonlinear modes supported by
such a scheme can be described by Eq. (1)

Here, the parameter p describes the lattice depth. The profile of the modulated lattice is given

by R(x, y) = J2
nJ
[(2blin)

1/2r] cos2(nφ), where nJ denotes the order of the Bessel function, φ is

the azimuthal angle, n stands for the azimuthal index and blin defines the transverse lattice
scale. Typical transverse linear refractive index modulation induced by the first order Bessel
lattice with azimuthal index n = 2 is shown in Fig. 6(a). The local lattice maxima situated
closer to the lattice center are more pronounced than others. The number of guiding channels
in the main ring is given by 2n.

Figure 6. (a) First-order Bessel lattice with azimuthal index n = 2. (b) Profile of the first linear modes
with n = 2.

Experimentally, Eq. (1) can be realized by launching a modulated Bessel beam into a
photorefractive crystal in the ordinary polarization direction and a soliton beam in the
extraordinary polarization direction [46]. In the particular case of optical lattice induction
in SBN crystal biased with dc electric field ∼ 105 V/m, for laser beams with 10μm the
propagation distance z ∼ 1 corresponds to 1mm of actual crystal length, while amplitude
q ∼ 1 corresponds to peak intensity about 50 mW/cm2 [25]. Note that Eq. (1) can also
be treated as Gross-Pitaevskii equation for a 2D Bose-Einstein condensate with repulsive
interatomic interactions trapped in an optical lattice created by an azimuthally modulated
Bessel beam.

We search for stationary solutions of Eq. (1) in the form of A(x, y, z) = [qr(x, y) +
iqi(x, y)] exp(ibz), where qr and qi are real and imaginary parts of the solution profiles and
b is a nonlinear propagation constant. The twisted phase structure of the stationary solutions
can be defined by m = arctan(qi/qr)/2π, where m is the so-called “topological charge” of
vortex solitons. Substituting the expression into Eq. (1), we obtain:

1

2

(

∂2

∂x2
+

∂2

∂y2

)

qr,i − bqr,i − (q2
r + q2

i )qr,i + pRqr,i = 0 (4)

We fix blin ≡ 2 and vary b, p and n without loss of generality.

To elucidate the stability properties of solitons, we search for perturbed solutions of Eq. (1) in
the form A(x, y, z) = [qr + iqi + (ur + iui) exp(λz)] exp(ibz), where ur and ui are the real and
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imaginary parts of the perturbations, respectively. Substituting the perturbed solution into
Eq. (1) and linearizing ur,i around qr,i yield a system of coupled Schrödinger-type equations
for perturbation components ur,i:

± λui,r =
1

2

(

∂2

∂x2
+

∂2

∂y2

)

ur,i − bur,i + pRur,i − (3q2
r,i + q2

i,r)ur,i − 2qrqiui,r (5)

where ur,i may grow with a complex rate λ during the propagation of solitons. The
eigenfunctions ur,i and eigenvalues λ can be solved numerically. The solitons are stable only
when all real parts of λ equal zero.

3.3. Discussions

Before we discuss the dynamics of vortex solitons (azimuthons), it is important to understand
the origin of such nonlinear modes. After removing the nonlinear term in Eq. (4),
the linear equation has infinite eigenvalues and the corresponding linear eigen-modes.
Nonlinear modes bifurcate from these linear modes while the nonlinearity cannot be ignored.
Fundamental solitons always bifurcate from the first linear modes and higher order solitons
associate with the other linear modes. Corresponding to the azimuthal Bessel lattice shown
in Fig. 6(a), we plot the first eigen-mode of the linearized equation of Eq. (4) in Fig. 6(b). The
profile of linear mode possesses several amplitude peaks covering on a constitutive ring-like
substrate, thus it looks like azimuthons. Such linear modes intuitively indicate the possible
profiles of nonlinear modes in the nonlinear system.

Mathematically, the refractive index modulation contributed by the modulated Bessel lattice
increases linearly with the growth of lattice depth. However, this relationship cannot hold for
practical crystal when the lattice is modulated very deep. Thus, the practical realization of
stable vortex solitons with higher topological charges becomes infeasible by solely increasing
the lattice depth of the first-order lattice to a very large value. Fortunately, the higher-order
Bessel lattice can suppress the azimuthal instability of vortex solitons effectively [26]. To study
the properties of vortex solitons with higher charges, one must consider the higher order
modulated Bessel lattices.

The following discussion will focus on azimuthons (vortex solitons) carrying different
topological charges supported by azimuthally modulated Bessel lattices imprinted in
defocusing cubic media. For the convenience of comparing with the results of Ref. [25], we

assume R(x, y) = J2
n[(2blin)

1/2r] cos2(nφ), where the order of lattice equals to the azimuthal
index. We also search for stationary solutions of azimuthons by a relaxation method. A
Gauss beam multiplying a phase dislocation with charge m was selected as an initial iterative
guess solution. Figure 7 displays some instances of azimuthons supported by the azimuthally
modulated lattices with n = 4 and 6. The azimuthons exhibit spatially modulated patterns
which are in contrast to the vortices in unmodulated Bessel lattices [17], where the vortices are
ring-shaped. The number of amplitude peaks is determined by the azimuthal index n. Like
the vortices in focusing media [25], azimuthons with similar amplitude distributions allow
different topological charges. In the fourth-order Bessel lattices with azimuthal index n = 4,
azimuthons can be found only for m = 1, 2 and 3. In sufficiently deep lattices with fixed b and
p, the discreteness of azimuthons increases with the growth of the topological charge m, while
the “radii” of the azimuthons are almost the same. Such properties are similar to the vortex
solitons in focusing media [25]. For fixed p and n, the azimuthons will expand to the outer
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lattice rings at small b and shrink to the main guiding lattice ring at larger b. The local minima
of azimuthons around the lattice ring approaches to zero when b → bco.

We also find azimuthons supported by lattices with different azimuthal indices. Numerical
study reveals that azimuthon solutions can be found only when the relation 0 < m < n
is satisfied. The relation also holds for the vortex solitons in focusing cubic media [25]. The
phase difference between the neighboring components is mπ/n, which differs from the vortex
solitons in harmonic lattices [56] or necklace solitons in Bessel lattices [47].

The properties of azimuthons supported by azimuthally modulated Bessel lattice are
summarized in Fig. 8. The power of azimuthons is a descending curve due to the defocusing
nonlinearity [Fig. 8(a)]. Azimuthon solutions cannot be found when the propagation constant
exceeds a certain value which corresponds to an eigen-value of the linearized equation of
Eq. (4). The upper propagation constant cutoffs of vortex solutions with m = 1 and 3 are
displayed in Fig. 8(b) and 8(c). The existence areas expand with the growth of lattice depth
for fixed topological charge and shrink with the growth of topological charges for fixed lattice
depth. There is a lower threshold lattice depth for supporting azimuthons. Comparing the
points of b → 0 in Fig. 8(b) and 8(c), we find that the threshold lattice depth grows with the
increase of topological charge m.

To comprehensively understand the stability properties of azimuthons supported by lattices
with different depths and azimuthal indices, we performed the linear stability analysis on
azimuthons in lattices with order (azimuthal index) n up to 10 and lattice depths p ≤ 80.
We numerically derived an important “stability rule” for azimuthons in the azimuthally
modulated Bessel lattice imprinted in defocusing media. That is, azimuthons might be stable
only when the topological charge satisfies the condition:

0 < m ≤ n/2 (6)

Figure 7. Amplitude distributions of azimuthons with m = 1 (a), 2 (b) and 3 (c, d). Parameters
n = 4, p = 30, b = 0.5 in (a-c) and n = 6, p = 45, b = 0.5 in (d). Bottom row: the corresponding phase
structures.
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Lattice order Available charges and stability status
n=2 m=1 unstable

n=3 m=1 stable m=2 unstable

n=4 m=1 stable m=2 stable m=3 unstable
n=5 m=1 stable m=2 stable m=3 unstable m=4 unstable

n=6 m=1 stable m=2 stable m=3 stable m=4 unstable m=5 unstable

Table 1. The stability status of azimuthons for different lattice orders.

where n > 2. Azimuthons with m = n/2 for even n may be stable or unstable depending
on the lattice parameters. There exists a narrow instability area near b → 0 when the lattice
is modulated shallow (near its lower threshold value). For deeper lattices, completely stable
azimuthons are possible. A summary of “stability rule” is presented in Table 1. The table
shows the stability status of azimuthons for different lattice orders. It is exactly opposite
to the Table I in [25], which was derived by the group-theory and is valid in the focusing
cubic media. This finding also verifies the very recent reports [55, 57] in which the stability of
discrete vortex solitons supported by hexagonal photonic lattices in focusing media is proved
to be opposite to the stability in the defocusing ones. We note that our conclusion is more
general since the above two studies are restricted to the single- and double-charge discrete
vortex solitons.

Linear instability analysis results of some unstable azimuthons supported by the fourth-,
fifth-, and sixth-order lattices are shown in Fig. 8(d)-8(f). Note the relation between the
azimuthal index and topological charge does not satisfy the condition Eq. (6). The instability
domain vanishes only when propagation constant approaches to the upper cutoff. Direct
propagation simulation examples of stable and unstable propagation of azimuthons are
presented in Fig. 9.

Figure 8. (a) Power of azimuthons with m = 1, 2 and 3 vs propagation constant, n = 4, p = 30.
Propagation constant cutoff bco vs lattice depth p for azimuthons with m = 1 (b) and 3 (c). Real parts of
instability growth rate λ vs propagation constant for azimuthons supported by the fourth- (d), fifth- (e),
and sixth- (f) order lattices with p = 30, m = 3, p = 35, m = 3, p = 35, m = 5, respectively. Azimuthal
index n = 4 in (a-d), 5 in (e) and 6 in (f).
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The azimuthons aforementioned are restricted to the particular cases of n = nJ . In fact,
azimuthon solutions can also be found when n �= nJ . Contrary to the intuition and the cases
in nonlocal media [53], the charge m of available azimuthon solutions is independent of the
lattice order nJ but less than the azimuthal index n. The initial input guess solutions with
m ≥ n may converge to the nonlinear modes of the following three different categories: 1.
an azimuthon with charge m′

< n; 2. a multipole mode or necklace soliton with neighboring
components out-of phase; 3. a multipole mode or necklace soliton embedded into a global
skew phase whose charge m′′ = m − n. Thus, we conclude that azimuthon solutions can only
be found for m < n. The reason may be attributed to the Kerr media with a local nonlinear
response in our model [31].

4. Higher-charged vortices in mixed linear-nonlinear circular arrays

4.1. Introduction

Recent studies demonstrated that the transverse nonlinearity modulation of optical materials
can substantially affect the existence conditions and stability properties of spatial solitons [58].
Current technologies allow one to realize both the linear refractive index and the nonlinearity
modulation of materials, for example, in photonic crystals with holes infiltrated with highly
nonlinear materials [59]. Nonlinearity can also be modulated by changing the concentration
of dopants upon fabrication [60] or be achieved in arrays written in glass by high-intensity
femtosecond laser pulses [61].

Very recently, various types of one-dimensional solitons in the form of odd, even, dipole,
triple, vector solitons, and two-dimensional solitons in the form of fundamental, multi-pole,
vortex, surface solitons, and three-dimensional solitons in the form of light-bullets and optical
tandems were predicted in competing linear and nonlinear lattices [18, 62–64] or in purely
nonlinear lattices [19, 65–67]. On the other hand, spatially modulated nonlinearity may result
in controllable soliton shape transformations [18, 62]. Bound states with an arbitrary number
of solitons can be found in media with spatially inhomogeneous nonlinearities [68]. The
power-dependent location of stationary solitons and their stability in linear-nonlinear lattices
were analyzed in Refs. [69], where the position and stability of the solitons become functions
of the power.

Besides models with periodically modulated nonlinearity, settings with local nonlinearity
modulation were also suggested [70]. In particular, Kartashov et al. demonstrated
that necklace solitons can be supported by circular waveguide arrays with out-of-phase
modulation of nonlinearity and linear refractive index [63]. They revealed that the stability
domain of necklace solitons expands with the increase of the number of necklace spots.

Figure 9. Stable and unstable propagation of azimuthons. (a, b) n = 5, m = 2, p = 30, b = 0.4. (c, d)
n = 6, m = 4, p = 35, b = 0.4. White noise was added into (a).
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Although vortex solitons in linear-nonlinear or in purely nonlinear lattices were studied in

[18, 19], the discussions were limited to the vortices with unit charge. In fact, stable localized

vortex solitons with charges higher than two were only predicted in media modulated by

Bessel-like lattices [25, 26]. In addition, the stability domain of vortex solitons in all previous

studies shrinks rapidly with the growth of topological charge.

In this section, following the theoretical model proposed by Kartashov and his coworkers

[63], we address the existence and stability properties of vortex solitons with higher charges

supported by a circular array with mixed out-of-phase linear-nonlinear refractive index

modulation. We find that vortex solution can be found only when its topological charge is less

than half of the number of waveguides. Vortex solitons expand radially with the propagation

constant when the phase difference between neighboring lobes is greater than π/2 and shrink

radially when the phase difference between neighboring lobes is smaller than π/2. For vortex

solitons with fixed charges, the stability weakens with the growth of waveguide sites. In

particular, we demonstrate that vortex solitons with higher charges tend to be more stable

than those with lower charges, which in sharp contrast to the cases in uniform or periodical

lattice modulated media.

4.2. Theoretical model

We consider a beam propagation along the z axis in a circular waveguide array with

out-of-phase modulation of linear refractive index and nonlinearity coefficient. Evolution of

the nonlinear waves is governed by the nonlinear Schröinger equation for the dimensionless

field amplitude A:

i
∂A

∂z
= −

1

2

(

∂2 A

∂x2
+

∂2 A

∂y2

)

− [1 − δR(x, y)]|A|2A − pR(x, y)A = 0 (7)

where p and δ are the depths of modulation of linear refractive index and nonlinearity.

We adopt modulation function of the linear refractive index and nonlinearity as R(x, y) =
Σ

n
k=1 exp[−(x − xk)

2/d2 − (y − yk)
2/d2], which means a circular array composed by n

Gaussian waveguides with widths d = 1/2 and centers (xk, yk) located on a ring of radius

nr0/2 [63]. To guarantee that waveguides do not overlap and the soliton components

residing in neighboring waveguides can interact with each other, we select r0 = 0.6. The

nonlinear coefficient γ = 1 − δR attains its minima where the linear refractive index attains

maxima. Thus, the nonlinearity modulation and linear refractive index modulation are

out-of-phase. The length of the arc between adjacent waveguides remains the same for any n

since the radius of the array increases linearly with n. Equation (1) admits several conserved

quantities, including the power or energy flow U =
∫ ∫

∞

−∞
|A|2dxdy and the Hamiltonian

H =
∫ ∫

∞

−∞
[ 1

2 |
∂A
∂x |

2 + 1
2 |

∂A
∂y |

2 − pR|A|2 − 1
2 γ|A|4]dxdy.

We search for vortex solutions of Eq. (7) in the form of A(x, y, z) = [qr(x, y) +
iqi(x, y)] exp(ibz), where qr(x, y) and qi(x, y) are real and imaginary parts of the solution

profiles and b is a nonlinear propagation constant. Substituting the expression into Eq. (7)

leads to two coupled ordinary differential equations in terms of qr and qi, which can be solved

numerically by a two-dimensional relaxation algorithm. The stability characteristics of vortex

solitons can be understood by numerically solving the eigenvalue of Eqs. (5).
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Figure 10. (a) Power of vortex solitons with unit charge versus b for different δ values. (b) Hamiltonian
versus power corresponding to (a). (c-f) Soliton profiles marked in (a) at b = 2.1 (c) and 3.5, 4.12, 4.60 in
(d-f). In all panels n = 4, p = 6.

4.3. Single-charged vortices

First, we address the properties of vortex solitons supported by a circular waveguide array
with n = 4. Typical vortex solitons with unit charge are illustrated in Fig. 10. Vortex solitons
reflect their distinctive modulated profiles. The field modulus distribution of such state is a
spatially localized ring modulated azimuthally, and the phase changes 2mπ along a closed
trajectory including the beam centre [Figs. 10(c)-10(f)]. Thus, they look like the so-called
“azimuthons” in local and nonlocal nonlinear media [31, 53]. Vortex solitons are composed of
n lobes located in different waveguides of the array with phase difference 2mπ/n between
the neighboring lobes. This phase difference determines the net force contributed by the
interactions of vortex lobes. There are n local intensity minima connecting the n lobes for small
and moderate propagation constant. The discreteness of solitons strengthens for b → blow and
b → ∞.

If the modulation depth of the local nonlinearity is small (δ ≤ 0.5), the lobes of vortices stay
around sites of linear waveguide array. However, the competition between the linear and
nonlinear refraction may result in a remarkable shape transformation at δ > 0.5, due to the
concentration of the light energy in regions where the nonlinearity is stronger. Interestingly,
there exists a transition point of propagation constant btr at which the vortex soliton features
a ring-shaped profile [Fig. 10(e)], which is analogous to the cases in lattice-free media or in
media with imprinted Bessel lattices [17]. The nonlinearity modulation gives rise to unusual
power-controlled soliton shape transformations [Figs. 10(d)-10(f)]. Note that the four lobes
of vortex solitons at b > btr for δ = 1 reside in the regions between neighboring waveguide
sites of the circular array [Fig. 10(f)], while the lobes of vortex solitons at b < btr reside in the
waveguide sites [Fig. 10(d)]. Similar to the cases in harmonic lattices [56], vortex solitons may
be termed as “on-site” vortices at b < btr and “off-site” vortices at b > btr.

The power of vortex solutions is a nonmonotonic function of propagation constant, due to
the competition between the linear and nonlinear refractive index contributions [Fig. 10(a)].
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Figure 11. (a) Power of vortex solitons with unit charge versus b. Soliton profiles at b = 2.50 (b), 5.70 (c)
and 7.57 (d). Rings in (b-d) denote circular array of waveguides. In all panels n = 8, δ = 0.7, p = 6.

It increases firstly for small and moderate b and reaches a maximum, afterwards, the power
decreases gradually and approaches to a constant ultimately. The initial increase of power
indicates that the linear refractive index modulation plays a dominant role. However, the
nonlinear contribution to the refractive index dominates when the power decreases with b.
Thus, nonlinearity modulation imposes a restriction on the maximal power of vortex solitons.
Hamiltonian of vortex solitons has inflexion points corresponding to the propagation constant
value b = bin where dU/db = 0 [Fig. 10(b)]. Despite the fact that power is a decreasing
function when b > bin, the peaks of vortices still increase with the propagation constant,
which implies that the width of vortex lobes decreases rapidly for solitons at b > bin.

Next, we investigate the properties of vortex solitons with unit charge in circular waveguide
array with n = 8. The vortex solitons bifurcate from the linear modes at b = blow (U = 0)
and stop to exist at b = bupp [Fig. 11(a)]. The reason is that, for b > bupp, where the
nonlinearity modulation absolutely dominates, the strong focusing nonlinearity results in
vortex solitons with high peaks and narrow widths, which in return destroy the global
staircase-like phase connection between the neighboring lobes. In other words, the vortices
become eight independent components for b > bupp. Vortex solitons tend to shrink with the
propagation constant [Figs. 11(b)-11(d)], which is quite different from the necklace solitons
in the same regime, where necklace beams expand with the propagation constant [63]. It
can be interpreted in physics that the phase difference between the neighboring lobes is π/4
which results in an attractive force between the neighboring components of vortices. The net
attractive force strengthens with the propagation constant which leads to the radial shrinkage
of vortices. In fact, the positions of four lobes of vortex solitons in waveguide array with
n = 4 do not vary with the propagation constant because the phase difference between the
neighboring lobes is π/2.
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Figure 12. (a) Power of vortex solitons with m = 1, p = 6, n = 8 versus b at different δ values. (b) Power
of vortex solitons with different charges. (c) Instability growth rate of vortices with m = 1, n = 4 versus
b. (d) Instability growth rate of vortices with different m versus b. Field modulus distributions of vortex
solitons with m = 3 at b = 2.5 (e) and 7.17 (f). n = 8, p = 7 in (b-f) and δ = 0.7 except for (a, c).

4.4. Higher-charged vortices and their stability

The stability of vortex solitons, especially for higher-charged vortices, is always an important
problem. The following discussions will focus on the stability of vortex solitons with different
charges in circular waveguide arrays with different n and δ values. Figure 12(a) displays
the power curves of vortex solitons with unit charge in the waveguide array with n = 8 for
varying nonlinearity modulation depth δ. Vortex solitons cease to exist at b = bupp if the
nonlinearity modulation depth exceeds a certain value, which is in contrast to the vortices in
linear lattices. The power curves at different δ share a common lower propagation constant
cutoff. It means that all vortices bifurcate from a common linear mode of linearized version of
Eq. (7). The existence domains of vortex solitons become narrower with the increase of δ.

The power curves of vortex solitons with different charges at fixed δ are shown in Fig. 12(b).
Due to the discrete symmetry group of the circular waveguide array, vortex solutions can only
be found when the condition 0 < m < n/2 is satisfied, just similar to the cases in azimuthally
modulated Bessel lattices [25]. The existence domain of vortex solitons with m = 2 is narrower
than those of m = 1 and 3 which may also be attributed to the group symmetry.

For vortex solitons with unit charge in a waveguide array with n = 4, the stability area shrinks
quickly with the growth of nonlinearity modulation depth δ [Fig. 12(c)]. However, vortex
solitons with unit charge in waveguide array with n = 8 are unstable in their entire existence
domain. Interestingly enough, vortex solitons with higher topological charges can propagate
stably in the same configuration [Fig. 12(d)]. The stability analysis results shown in Fig. 12(d)
suggest that vortex solitons in a circular array can be stable only when the condition n/4 ≤
m < n/2 is satisfied. Furthermore, the stability area of vortex solitons with m = 3 is broader
than that of vortices with m = 2. That is to say, vortex solitons with higher charges are
more stable than those with lower charges which constitutes one of our central findings. We
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Figure 13. Stability (white) and instability (shaded) areas on the (δ, b) plane for vortex solitons at
m = 1, n = 4 (a) and m = 3, n = 8 (b). Vortices in regions above bin suffer V-K instability. In all panels
p = 7.

conclude that waveguide array with larger n tends to stabilize the vortices with charges close
to n/2.

Typical examples of vortices with m = 3 at different b are displayed in Figs. 12(e) and
12(f). Contrary to the vortices with m = 1 shown in Figs. 11(b)-11(d), vortices with m = 3
expand with the increase of b. As can also be explained by the phase difference between
the neighboring lobes. The phase difference between the neighboring lobes of vortices with
m = 1, 2 and 3 is π/4, π/2 and 3π/4 respectively. The net force contributed by the eight
lobes is attractive for vortices with m = 1, zero for vortices with m = 2 and repulsive for
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Figure 14. Field modulus distributions of vortex solitons at m = 3, b = 2.1, δ = 0.5 (a) and
m = 5, b = 5, δ = 0.7 (b). (c) Phase structure of (b). (d) Instability growth rate of solitons with different m.
In all panels p = 7, n = 12.
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vortices with m = 3. Since the peaks of lobes grow with the propagation constant, the net
force becomes stronger and the lobes cannot be trapped on the waveguide sites, which leads
to the shrinkage of vortices with m = 1 and expansion of vortices with m = 3. The lobes of
vortices with m = 2 do not change their positions with the variation of b, just similar to the
vortices with m = 1 in waveguide array with n = 4 [Fig. 10]. Thus, we draw a conclusion
that the expansion or shrinkage of vortices is solely determined by the radio between the
topological charge and the number of waveguides.

To comprehensively understand the stability characteristics of vortex solitons, we conduct
linear stability analysis on the stationary solutions with different m in circular waveguide
array with different n for varying nonlinearity modulation depth δ. Representative stability
and instability domains on the (δ, b) plane are illustrated in Fig. 13. At larger b where dU/db <

0 (b > bin), vortices are expected to be linearly unstable according to the Vakhitov-Kolokolov
(V-K) criterion [44]. This is in good agreement to the numerical analysis results. However,
other types of instability (e.g. oscillatory instability with complex growth rates) may arise
when b < bin.

For vortex solitons with m = 1, n = 4 and m = 3, n = 8, the stability domains shrink with
the growth of nonlinearity modulation depth. Note again vortex solitons with m = 1, n = 8
are completely unstable. Comparing Fig. 13(a) with Fig. 13(b), one can immediately find that
the stability area of vortices with m = 3, n = 8 is broader than that of m = 1, n = 4. Thus,
increasing waveguide number can significantly suppress the instability of vortex solitons with
higher charges. There is an instability band near blow for vortex solitons with m = 2, n = 8
[Fig. 12(d)]. We stress that vortex solitons with higher topological charges are stable in a
wide parameter window which is hardly realized in other settings except in Bessel-like lattice
modulated media [25, 26].

Figure 15. Propagation simulations of stable (b-d, f) and unstable (a, e) vortex solitons. (a) Difference
between a vortex soliton at z = 120 and z = 0. m = 1, b = 4.5, n = 4. Propagation results of vortex
solitons at m = 2, b = 3.6, n = 8 (b), m = 3, b = 5.16, n = 8 (c), m = 3, b = 2.1, n = 12, δ = 0.5, z = 69 (e),
and m = 5, b = 5, n = 12 (f). (d) Phase structure of (c). δ = 0.7 except for (e) and z = 512 except for (a, e).
In all cases p = 7.
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To shed more light on the vortex solitons in circular waveguide array, we explore the
stationary solutions, stability and propagation dynamics of vortices in a circular array with
larger n (e. g. n = 12, 18 etc.). Figures 14(a) and 14(b) show the field modulus distributions
of vortex solitons at m = 3, δ = 0.5, b = 2.1 and m = 5, δ = 0.7, b = 5 in waveguide array
with n = 12 respectively. As mentioned above, the stability of vortex solitons weakens with
the increase of nonlinearity modulation depth. Yet, vortex solitons with m = 3, δ = 0.5 are
stable in a very narrow area near blow while vortex solitons with m = 5, δ = 0.7 are stable in
a wide parameter window [Fig. 14(d)]. It reveals again that vortex solitons tend to be more
stable when m approaches to n/2.

Finally, we perform extensive propagation simulations of vortex solitons by the split-step
Fourier method to verify the linear stability analysis results. Typical stable and unstable
propagation examples are shown in Fig. 15. Figure 15(a) plots the difference of vortex
profiles at z = 120 and 0. One can infer from the simultaneous increase of four lobes that
the soliton experiences a V-K instability, that is, the unstable eigenvalues of λ are purely
real, which do not destroy the phase distribution. On the other hand, vortex soliton at
m = 3, b = 2.1, n = 12, δ = 0.5 suffers oscillatory instability (growth rate with both real
and imaginary parts) [Fig. 15(e)]. In the numerical simulations, we add white noises into the
initial inputs for stable vortices and add no noises for unstable vortices.
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