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1. Introduction 

The application of four-wave mixing (FWM) in semiconductor optical amplifiers (SOAs) has 

been widely demonstrated to all-optical devices, such as wavelength converters (Vahala et 

al., 1996; Nesset et al., 1998), optical samplers (Kawaguchi & Inoue, 1998), optical 

multiplexers/ demultiplexers (Kawanishi et al., 1997; Uchiyama et al., 1998; Tomkos et al., 

1999; Buxens et al., 2000; Set et al., 1998), and optical phase conjugators (Dijaili et al., 1990; 

Kikuchi & Matsumura, 1998; Marcenac et al., 1998; Corchia et al., 1999; Tatham et al., 1993; 

Ducellier et al., 1996), which are expected to be used in future optical communication 

systems. Kikuchi & Matsumura have demonstrated the transmission of 2-ps optical pulses at 

1.55 µm over 40 km of standard fiber by employing midspan optical phase conjugation in 

SOAs (Kikuchi & Matsumura, 1998). An ideal phase conjugator must reverse the chirp of 

optical pulses while maintaining the pulse waveform. Kikuchi & Matsumura (Kikuchi & 

Matsumura, 1998) have shown that the second-order dispersion is entirely compensated by 

the optical phase-conjugation obtained using SOAs with a continuous wave (cw) input 

pump wave. All-optical demultiplexing (DEMUX), based on FWM in SOAs, was also 

demonstrated. When a single pulse of a time-multiplexed signal train (as probe pulses) and 

a pump pulse are injected simultaneously into an SOA, the gain and refractive index in the 

SOA are modulated, and an FWM signal pulse is created by the modulations. Thus, we can 

obtain a demultiplexed signal as the FWM signal by Das et al., (Das et al., 2000). All-optical 

DEMUX has been experimentally demonstrated up to 200 Gbit/s by Kawanishi et al., 

(Kawanishi et al., 1997). Many research reports have been published recently on the 

theoretical investigaton of the characteristics of FWM for short optical pulses in SOAs. Tang 

and Shore (Tang & Shore, 1999) theoretically examined the dynamical chirping of mixing 

pulses and showed that all mixing pulses have negative pulse chirp except in the far edges 

of trailing pulses, indicating that pulse spectra are primarily red-shifted. The demultiplexed 

signals obtained as FWM signals may still have optical phase-conjugate characteristics, 
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although they may include waveform distortion and additional chirp. If the demultiplexed 

signal obtained as the FWM signal has optical phase-conjugate characteristics, the 

demultiplexed signal can be compressed using a dispersive medium. However, such optical 

phase-conjugate characteristics of FWM signals have not yet been reported to the best of 

author’s knowledge. Another advantage of FWM with short duration optical pump pulses is 

the high conversion efficiency. In conventional systems, the FWM conversion efficiency in 

an SOA is limited due to gain saturation. However, high FWM conversion efficiency can be 

achieved with short duration optical pump and probe pulses as it is possible to reduce gain 

saturation and hence increase FWM conversion efficiency in an SOA by applying strong 

pump intensity (Shtaif & Eisenstein, 1995; Shtaif et al., 1995; Kawaguchi & Inoue, 1996a; 

Kawaguchi & Inoue, 1996b).  

In this chapter, we present the detail numerical simulation results of optical phase-conjugate 

characteristics of picosecond FWM signal pulses generated in SOAs using the FD-BMP (Das et 

al., 2000; Razaghi et al., 2009). These simulations are based on the nonlinear propagation 

equation considering the group velocity dispersion, self-phase modulation (SPM), and two-

photon absorption (TPA), with the dependencies on the carrier depletion (CD), carrier heating 

(CH), spectral-hole burning (SHB), and their dispersions, including the recovery times in SOAs 

(Hong et al., 1996). The main purpose of our simulations is to provide answers to the following 

questions: 1) how is the nature of the optical phase-conjugate maintained for a short FWM 

signal pulse? 2) how does the chirp observed in the FWM signals affect the nature of the 

optical phase-conjugate? For this reason, we have analyzed the system in which the Fourier 

transform-limited Gaussian optical pulse is linearly chirped by transmission through a fiber 

(Fiber I) and then injected into an SOA as a probe pulse, together with a pump pulse that has a 

1 ~ 10 ps pulsewidth. The FWM signal is generated by the mixing of the pump pulse and the 

probe pulse, and is selected by an optical narrow band-pass filter. The FWM signal is then 

transmitted through another fiber (Fiber II) that has the same group velocity dispersion (GVD) 

as Fiber I and an appropriate length. The simulations are based on the nonlinear propagation 

equation considering the GVD, SPM, and TPA, with dependencies on CD, CH, SHB, and 

dispersion of those properties (Das et al., 2000; Hong et al., 1996).  

The FD-BPM is useful to obtain the propagation characteristics of single pulse or milti-

pulses using the modified nonlinear Schrödinger equation (MNLSE) (Hong et al., 1996 & 

Das et al., 2000), simply by changing only the combination of input optical pulses. These are: 

(1) single pulse propagation (Das et al., 2008), (2) FWM characteristics using two input 

pulses (Das et al., 2000), (3) optical DENUX using several input pulses (Das et al., 2001), (4) 

optical phase-conjugation using two input pulses with chirp (Das et al., 2001) and (5) 

optimum time-delayed FWM characteristics between the two input pump and probe pulses 

(Das et al., 2007).  

2. Analytical model 

In this section, we briefly discuss the important nonlinear effects in SOAs, mathematical 

formulation of modified nonlinear Schrödinger equation (MNLSE), finite-difference beam 
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propagation method (FD-BPM) that is used in the simulation, and nonlinear propagation 

characteristics of solitary optical pulses in SOAs.  

2.1. Important nonlinear effects in SOAs 

There are several types of “nonlinear effects” occurs in SOAs. Among them, the important 

four types of “nonlinear effects” are shown in Fig. 1. These are namely: (i) spectral hole-

burning (SHB), (ii) carrier heating (CH), (iii) carrier depletion (CD) and (iv) two-photon 

absorption (TPA).  

 

Figure 1. The important nonlinear effects in SOAs: (i) spectral hole-burning (SHB) with a life time of 

less than 100 fs (i.e., < 100 fs), (ii) carrier heating (CH) with a life time of ~ 1 ps, (iii) carrier depletion 

(CD) with a life time is ~ 1 ns and (iv) two-photon absorption (TPA).  

Figure 1 shows the time-development of the population density in the conduction band after 

excitation (Das, 2000). The arrow (pump) shown in Fig. 1 is the excitation laser energy. 

When the life time is less than 100 fs (i.e., < 100 fs), the SHB effect is dominant. The SHB 

occurs when a narrow-band strong pump beam excites the SOA, which has an 

inhomogeneous broadening. The SHB arises due to the finite value of intraband carrier-

carrier scattering time (~ 50 – 100 fs), which sets the time scale on which a quasi-equilibrium 

Fermi distribution is established among the carriers in a band. After the life time ~ 1 ps, the 

SHB effect is relaxed and the CH effect becomes dominant. The process tends to increase the 

temperature of the carriers beyond the lattice’s temperature. The main causes of heating the 

carriers are (1) the stimulated emission, since it involves the removal of “cold” carriers close 

to the band edge and (2) the free-carrier absorption, which transfers carriers to high energies 

within the bands. The “hot”-carriers relax to the lattice temperature through the emission of 

optical phonons with a relaxation time of ~ 0.5 – 1 ps. The effect of CD remains for about 1 

ns. The stimulated electron-hole recombination depletes the carriers, thus reducing the 

optical gain. The band-to-band relaxation also causes CD, with a relaxation time of ~ 0.2 – 1 

ns. For ultrashort optical pumping, the TPA effect also becomes important. An atom makes 

a transition from its ground state to the excited state by the simultaneous absorption of two 

laser photons. All these nonlinear effects (mechanisms) are taken into account in the 
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modeling/ simulation and the mathematical formulation of modified nonlinear Schrödinger 

equation (MNLSE).  

2.2. Mathematical Formulation of Modified Nonlinear Schrödinger Equation 

(MNLSE) 

In this subsection, we will briefly explain the theoretical analysis of short optical pulses 

propagation in SOAs. We start from Maxwell’s equations (Agrawal, 1995; Yariv, 1991; 

Sauter, 1996) and reach the propagation equation of short optical pulses in SOAs, which are 

governed by the wave equation (Agrawal & Olsson, 1989) in the frequency domain.  

 2 2
2

( , , , ) ( , , , ) 0rE x y z E x y z
c

εω ωω+ =∇  (1) 

where, ( , , , )E x y z ω  is the electromagnetic field of the pulse in the frequency domain, c is the 

velocity of light in vacuum and rε  is the nonlinear dielectric constant which is dependent 

on the electric field in a complex form. By slowly varying the envelope approximation and 

integrating the transverse dimensions we arrive at the pulse propagation equation in SOAs 

(Agrawal & Olsson, 1989; Dienes et al., 1996).  
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where, ( , )V zω  is the Fourier-transform of ( , )V t z  representing pulse envelope, ( )mχ ω  is 

the background (mode and material) susceptibility, ( )χ ω  is the complex susceptibility 

which represents the contribution of the active medium, N is the effective population 

density, 0β  is the propagation constant. The quantity Γ represents the overlap/ confinement 

factor of the transverse field distribution of the signal with the active region as defined in 

(Agrawal & Olsson, 1989).  

Using mathematical manipulations (Sauter, 1996; Dienes et al., 1996), including the real part 

of the instantaneous nonlinear Kerr effect as a single nonlinear index n2 and by adding the 

TPA term we obtain the MNLSE for the phenomenological model of semiconductor laser 

and amplifiers (Hong et al., 1996). The following MNLSE (Hong et al., 1996; Das et al., 2000) 

is used for the simulation of FWM characteristics and optical phase-conjugation 
characteristics with input pump and probe pulses in SOAs. 
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 (3) 

Here, we introduce the frame of local time τ (=t - z/ gv ), which propagates with a group 

velocity gv  at the center frequency of an optical pulse. A slowly varying envelope 
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approximation is used in (3), where the temporal variation of the complex envelope function 

is very slow compared with the cycle of the optical field. In (3), ( , )V zτ  is the time domain 

complex envelope function of an optical pulse, 
2

( , )V zτ  represents the corresponding 

optical pulse power, and 2β  is the GVD. γ is the linear loss, 2pγ  is the TPA coefficient, 2b  (=

0 2nω /cA) is the instantaneous SPM term due to the instantaneous nonlinear Kerr effect 

2 0,n ω  (= 2π
0

f ) is the center angular frequency of the pulse, c is the velocity of light in 

vacuum, A (= wd/Γ) is the effective area (d and w are the thickness and width of the active 

region, respectively and Γ is the confinement factor) of the active region.  

The saturation of the gain due to the CD is given by (Hong et al., 1996) 
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where, ( )Ng τ  is the saturated gain due to CD, 0g  is the linear gain, Ws is the saturation 

energy, sτ  is the carrier lifetime.  

The SHB function f(τ) is given by (Hong et al., 1996) 
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where, f(τ) is the SHB function, shbP  is the SHB saturation power, shbτ  is the SHB relaxation 

time, and Nα  and Tα  are the line width enhancement factor associated with the gain 

changes due to the CD and CH.  

The resulting gain change due to the CH and TPA is given by (Hong et al., 1996) 
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where, ( )Tg τΔ  is the resulting gain change due to the CH and TPA, u(s) is the unit step 

function, chτ  is the CH relaxation time, 1h  is the contribution of stimulated emission and 

free-carrier absorption to the CH gain reduction and 2h  is the contribution of TPA.  

The dynamically varying slope and curvature of the gain plays a shaping role for pulses in 

the sub-picosecond range. The first and second order differential net (saturated) gain terms 

are (Hong et al., 1996), 
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 0 0 0( , ) ( , ) / ( ) ( , )N Tg g f gτ ω τ ω τ τ ω= + Δ   (9) 

where, 1A  and 2A  are the slope and curvature of the linear gain at 0ω , respectively, while 1B  

and 2B  are constants describing changes in 1A  and 2A  with saturation, as given in (7) and (8).  

The gain spectrum of an SOA is approximated by the following second-order Taylor 

expansion in Δω:  
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 are related to 1 1 2, ,A B A  and 2B  by (7) and (8). 

Here we assumed the same values of 1 1 2, ,A B A  and 2B  as in (Hong et al., 1996) for an 

AlGaAs/GaAs bulk SOA.  

The time derivative terms in (3) have been replaced by the central-difference approximation 

in order to simulate this equation by the FD-BPM (Das et al., 2000). In simulation, the 

parameter of bulk SOAs (AlGaAs/GaAs, double heterostructure) with a wavelength of 0.86 

µm (Hong et al., 1996) is used and the SOA length is 350 µm. The input pulse shape is sech2 

and is Fourier transform-limited. The detail parameters are listed in Table 1 (Section 3). 

 

Figure 2. (a) The gain spectra given by the second-order Taylor expansion about the center frequency of 

the pump pulse 
0

ω . The solid line shows the unsaturated gain spectrum (length: 0 µm), the dotted and 

the dashed-dotted lines are a saturated gain spectrum at 175 µm and 350 µm, respectively. Here, the 

input pump pulse pulsewidth is 1 ps and pulse energy is 1 pJ. (b) Saturated gain versus the input pump 

pulse energy characteristics of the SOA. The saturation energy decreases with decreasing the input 

pump pulsewidth. The SOA length is 350 µm. The input pulsewidths are 0.2 ps, 0.5 ps, and 1 ps 

respectively, and a pulse energy of 1 pJ.  

The gain spectra of SOAs are very important for obtaining the propagation and wave 

mixing (FWM and optical phase-conjugation between the input pump and probe pulses) 
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characteristics of short optical pulses. Figure 2(a) shows the gain spectra given by a second-

order Taylor expansion about the pump pulse center frequency 0ω  with derivatives of g(τ, 

ω) by (7) and (8) (Das et al., 2000). In Fig. 2(a), the solid line represents an unsaturated gain 

spectrum (length: 0 µm), the dotted line represents a saturated gain spectrum at the center 

position of the SOA (length: 175 µm), and the dashed–dotted line represents a saturated gain 

spectrum at the output end of the SOA (length: 350 µm), when the pump pulsewidth is 1 ps 

and input energy is 1 pJ. These gain spectra were calculated using (1), because, the 

waveforms of optical pulses depend on the propagation distance (i.e., the SOA length). The 

spectra of these pulses were obtained by Fourier transformation. The “local” gains at the 

center frequency at z = 0, 175, and 350 µm were obtained from the changes in the pulse 

intensities at the center frequency at around those positions (Das et al., 2001). The gain at the 

center frequency in the gain spectrum was approximated by the second-order Taylor 

expression series. As the pulse propagates in the SOA, the pulse intensity increases due to 

the gain of the SOA. The increase in pulse intensity reduces the gain, and the center 

frequency of the gain shifts to lower frequencies. The pump frequency is set to near the gain 

peak, and linear gain 0g  is 92 cm-1 at 0ω . The probe frequency is set -3 THz from for the 

calculations of FWM characteristics as described below, and the linear gain 0g  is -42 cm-1 at 

this frequency. Although the probe frequency lies outside the gain bandwidth, we selected a 

detuning of 3 THz in this simulation because the FWM signal must be spectrally separated 

from the output of the SOA. As will be shown later, even for this large degree of detuning, the 

FWM signal pulse and the pump pulse spectrally overlap when the pulsewidths become short 

(<0.5 ps) (Das et al., 2001). The gain bandwidth is about the same as the measured value for an 

AlGaAs/GaAs bulk SOA (Seki et al., 1981). If an InGaAsP/InP bulk SOA is used we can expect 

much wider gain bandwidth (Leuthold et al., 2000). With a decrease in the carrier density, the 

gain decreases and the peak position is shifted to a lower frequency because of the band-filling 

effect. Figure 2(b) shows the saturated gain versus input pump pulse energy characteristics of 

the SOA. When the input pump pulsewidth decreases then the small signal gain decreases due 

to the spectral limit of the gain bandwidth. For the case, when the input pump pulsewidth is 

short (very narrow, such as 200 fs or lower), the gain saturates at small input pulse energy 

(Das et al., 2000). This is due to the CH and SHB with the fast response.  

Initially, the MNLSE was used by (Hong et al., 1996) for the analysis of “solitary pulse” 

propagation in an SOA. We used the same MNLSE for the simulation of FWM and optical 

phase-conjugation characteristics in SOA using the FD-BPM. Here, we have introduced a 

complex envelope function V(τ, 0) at the input side of the SOA for taking into account the 

two (pump and probe) or more (multi-pump or prove) pulses.  

2.3. Finite-Difference Beam Propagation Method (FD-BPM) 

To solve a boundary value problem using the finite-differences method, every derivative 

term appearing in the equation, as well as in the boundary conditions, is replaced by the 

central differences approximation. Central differences are usually preferred because they 
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lead to an excellent accuracy (Conte & Boor, 1980). In the modeling, we used the finite-

differences (central differences) to solve the MNLSE for this analysis.  

Usually, the fast Fourier transformation beam propagation method (FFT-BPM) (Okamoto, 

1992; Brigham, 1988) is used for the analysis of the optical pulse propagation in optical fibers 

by the successive iterations of the Fourier transformation and the inverse Fourier 

transformation. In the FFT-BPM, the linear propagation term (GVD term) and phase 

compensation terms (other than GVD, 1st and 2nd order gain spectrum terms) are separated 

in the nonlinear Schrödinger equation for the individual consideration of the time and 

frequency domain for the optical pulse propagation. However, in our model, equation (3) 

includes the dynamic gain change terms, i.e., the 1st and 2nd order gain spectrum terms 

which are the last two terms of the right-side in equation (3). Therefore, it is not possible to 

separate equation (3) into the linear propagation term and phase compensation term and it 

is quite difficult to calculate equation (3) using the FFT-BPM. For this reason, we used the 

FD-BPM (Chung & Dagli, 1990; Conte & Boor, 1980; Das et al., 2000; Razagi et al., 2009). If we 

replace the time derivative terms of equation (3) by the below central-difference 

approximation, equation (11), and integrate equation (3) with the small propagation step Δz, 

we obtain the tridiagonal simultaneous matrix equation (12) 
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where, τΔ  is the sampling time and n  is the number of sampling. If we know ( )kV z ,  

( 1, 2, 3, ..........,k n= ) at the position z , we can calculate ( )kV z z+ Δ  at the position of z z+ Δ  
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which is the propagation of a step zΔ  from position z , by using equation (12). It is not 

possible to directly calculate equation (12) because it is necessary to calculate the left-side 

terms ( )ka z z+ Δ , ( )kb z z+ Δ , and ( )kc z z+ Δ  of equation (12) from the unknown ( )kV z z+ Δ . 

Therefore, we initially defined ( ) ( )k ka z z a z+ Δ ≡ , ( ) ( )k kb z z b z+ Δ ≡ , and ( ) ( )k kc z z c z+ Δ ≡  

and obtained (0)( )kV z z+ Δ , as the zero-th order approximation of ( )kV z z+ Δ  by using 

equation (12). We then substituted (0)( )kV z z+ Δ  in equation (12) and obtained (1)( )kV z z+ Δ  

as the first order approximation of ( )kV z z+ Δ  and finally obtained the accurate simulation 

results by the iteration as used in (Brigham, 1988; Chung & Dagli, 1990; Das et al., 2000; 

Razagi et al., 2009). 

 

Figure 3. A simple schematic diagram of FD-BPM in the time domain, where, ( / )gt z vτ = −  is the 

local time, which propagates with the group velocity gv  at the center frequency of an optical pulse and 

Δτ is the sampling time, and z is the propagation direction and Δz is the propagation step.  

Figure 3 shows a simple schematic diagram of the FD-BPM in time domain. Here, 

( / )gt z vτ = −  is the local time, which propagates with the group velocity gv  at the center 

frequency of an optical pulse and Δτ is the sampling time. z is the propagation direction and 

Δz is the propagation step. With this procedure, we used up to 3-rd time iteration for more 

accuracy of the simulations.  

The FD-BPM (Conte & Boor, 1980; Chung & Dagli, 1990; Das et al., 2000; Razagi et al., 2009a 

& 2009b) is used for the simulation of several important characteristics, namely, (1) single 

pulse propagation in SOAs (Das et al., 2008; Razaghi et al., 2009a & 2009b), (2) two input 

pulses propagating in SOAs (Das et al., 2000; Connelly et al., 2008), (3) Optical DEMUX 

characteristics of multi-probe or pump input pulses based on FWM in SOAs (Das et al., 

2001), (4) Optical phase-conjugation characteristics of picosecond FWM signal in SOAs (Das 
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et al., 2001), and (5) FWM conversion efficiency with optimum time-delays between the 

input pump and probe pulses (Das et al., 2007).  

2.4. Nonlinear pulse propagation model in SOAs 

Nonlinear optical pulse propagation in SOAs has drawn considerable attention due to its 

potential applications in optical communication systems, such as a wavelength converter 

based on FWM and switching. The advantages of using SOAs include the amplification of 

small (weak) optical pulses and the realization of high efficient FWM characteristics.  

For the analysis of optical pulse propagation in SOAs using the FD-BPM in conjunction with 

the MNLSE, where several parameters are taken into account, namely, the group velocity 

dispersion, SPM, and TPA, as well as the dependencies on the CD, CH, SHB and their 

dispersions, including the recovery times in an SOA (Hong et al., 1996). We also considered 

the gain spectrum (as shown in Fig. 2). The gain in an SOA was dynamically changed 

depending on values used for the carrier density and carrier temperature in the propagation 

equation (i.e., MNLSE).  

Initially, (Hong et al., 1996) used the MNLSE for the simulation of optical pulse propagation 

in an SOA by FFT-BPM (Okamoto, 1992; Brigham, 1988) but the dynamic gain terms were 

changing with time. The FD-BPM is capable to simulate the optical pulse propagation taking 

into consideration the dynamic gain terms in SOAs (Das et al., 2000 & 2007; Razaghi et al., 

2009a & 2009b; Aghajanpour et al., 2009). We used the modified MNLSE for nonlinear 

optical pulse propagation in SOAs by the FD-BPM (Chung & Dagli, 1990; Conte & Boor, 

1980). We used the FD-BPM for the simulation of optical phase-conjugation characteristics of 

picosecond FWM signal pulses in SOAs.  

 

Figure 4. A simple schematic diagram for the simulation of nonlinear single pulse propagation in SOA. 

Here, 
2

( ,0)V τ  is the input (z = 0) pulse intensity and 
2

( , )V zτ  is the output pulse intensity (after 

propagating a distance z) of SOA.  

Figure 4 illustrates a simple model for the simulation of nonlinear optical pulse propagation 

in an SOA. An optical pulse is injected into the input side of the SOA (z = 0). Here, τ  is the 

local time, 
2

( ,0)V τ  is the intensity (power) of input pulse (z = 0) and 
2

( , )V zτ  is the 

intensity (power) of the output pulse after propagating a distance z at the output side of 

SOA
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SOA. We used this model to simulate the FWM and optical phase-conjugation 

characteristics in SOAs. 

3. FWM characteristics between optical pulses in SOAs 

In this section, we will discuss the FWM characteristics between optical pulses in SOAs. 

When two optical pulses with different central frequencies fp (pump) and fq (probe) are 

injected simultaneously into the SOA, an FWM signal is generated at the output of the SOA 

at a frequency of 2fp - fq (as shown in Fig. 5). For the analysis (simulation) of FWM 

characteristics, the total input pump and probe pulse, Vin(τ), is given by the following 

equation 

 ( ) ( ) ( )exp( 2 )in p qV V V i fτ τ τ π τ= + − Δ  (16) 

where, ( )pV τ  and ( )qV τ  are the complex envelope functions of the input pump and probe 

pulses respectively, ( / )gt z vτ = −  is the local time that propagates with group velocity gv  

at the center frequency of an optical pulse, fΔ  is the detuning frequency between the input 

pump and probe pulses and expressed as p qf f fΔ = − . Using the complex envelope function 

of (16), we solved the MNLSE and obtained the combined spectrum of the amplified pump, 

probe and the generated FWM signal at the output of SOA.  

For the simulations, we used the parameters of a bulk SOA (AlGaAs/GaAs, double 

heterostructure) at a wavelength of 0.86 µm. The parameters are listed in Table 1 (Hong et 

al., 1996; Das et al., 2000). The length of the SOA was assumed to be 350 µm. All the results 

were obtained for a propagation step Δz of 5 µm. We confirmed that for any step size less 

than 5 µm the simulation results were almost identical (i.e., independent of the step size).  

 

Figure 5. A simple schematic diagram for the simulation of FWM characteristics between pump and 

probe pulses in SOAs. The input pump and probe pulses with the center frequency of pf  and qf  are 

injected into the SOA. The pump and probe pulse detuning is fΔ . The FWM signal is generated at the 

output of the SOA.  
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Name of the Parameters Symbols Values Units 

Length of SOA L 350 µm 

Effective area A 5 µm2 

Center frequency of the pulse f0 349 THz 

Linear gain  g0 92  cm-1 

Group velocity dispersion  β2 0.05 ps2 cm-1 

Saturation energy Ws 80 pJ 

Linewidth enhancement factor due to the CD αN 3.1  

Linewidth enhancement factor due to the CH αT 2.0  

The contribution of stimulated emission and FCA to the 

CH gain reduction  

h1 0.13 cm-1pJ-1 

The contribution of TPA h2 126 fs cm-1pJ-2 

Carrier lifetime  τs  200  ps  

CH relaxation time  τch 700 fs 

SHB relaxation time  τshb  60  fs 

SHB saturation power Pshb  28.3  W  

Linear loss  γ 11.5 cm-1 

Instantaneous nonlinear Kerr effect n2  -0.70 cm2 TW-1 

TPA coefficient  γ2p 1.1 cm-1 W-1 

Parameters describing second-order Taylor expansion 

of the dynamically gain spectrum  

A1  

B1 

A2  

B2 

0.15  

-80 

-60  

0 

fs µm-1  

fs 

fs2 µm-1  

fs2 

Table 1. Simulation parameters of a bulk SOA (AlGaAs/GaAs, double heterostructure) (Hong et al., 

1996; Das et al., 2000).  

For the simulation of optical phase-conjugate characteristics in SOAs, we used the above 

model (Fig. 5). Fig. 5 shows a simple schematic diagram illustrating the simulation of the 

FWM characteristics in an SOA between short optical pulses. In SOA, the FWM signal is 

generated by mixing between the input pump and probe pulses, whose frequency appears 

at the symmetry position of the probe pulse with respect to the pump. For our simulation 

(as shown in Fig. 7), we have selected the detuning frequency between the input pump and 

probe pulses to +3 THz. The generated FWM signal is filtered using an optical narrow 

bandpass filter from the optical output spectrum containing the pump and probe signal. 

Here, the pass-band of the filter is set to be from +2 THz to +4 THz, i.e., a bandwidth of 2 

THz is used. The shape of the pass-band was assumed to be rectangular.  
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4. Optical phase-conjugation of picosecond FWM signals in SOAs  

4.1. Chirp of FWM signal pulses for Fourier transform-limited input pulses 

In this sub-section, first, we obtain the frequency shift characteristics of FWM signal pulses 

for Fourier transform-limited input pulses. Fig. 6(a) shows the normalized output power of 

the pump, probe and FWM signal pulses. Fig. 6(b) shows the center frequency shifts of these 

pulses. Here, the input pump and probe pulses are Fourier transform limited (non-chirped) 

Gaussian pulses with a pulsewidth of 2 ps (full width at half maximum: FWHM). The pum-

probe detuning is +3 THz. The input pump and probe pulse energy levels are 1 pJ and 0.1 

pJ, respectively. The solid, dotted, and dotted-broken curves represent the pulse waveforms 

of the pump, probe, and generated FWM signal pulses, respectively. We have obtained 

these output waveforms by the method that have reported by Das et al., (Das et al., 2000). 

The output waveforms of the pump and probe pulses are close to the input waveforms. 

However, the peak position of the pump pulse is slightly shifted toward the leading edge 

due to the gain saturation of teh SOA (Shtaif & Eisenstein, 1995; Das et al., 2000). This is 

because the pulses have a larger gain at the leading edge than at the trailing edge. The 

pulsewidth of the FWM signal becomes narrower than that of the pump and probe pulses, 

because the FWM signal intensity is proportional to 2

p qI I , were pI  is the pump pulse 

intensity and qI  is the probe pulse intensity (Das et al., 2000).  

The frequency shift characteristics of the pump, probe, and FWM signal pulses are shown in 

Fig. 6(b). The frequency shift of the FWM signal pulse is plotted for output power, which is 

greater than 1% of the output peak power. The vertical axis indicates the frequency shifts of 

the output pulses from the center frequencies of each input pulse. Two components of 

frequency shifts can be observed; negative frequency shift in the vicinity of the pulse peaks, 

and a frequency shift that is almost constant with time. In the vicinity of the pulse peaks, all 

the mixing pulses have negative pulse chirp, indicating that the pulse spectra are mainly 

red-shifted. A similar frequency shift was reported by Tang & Shore (Tang & Shore, 1999) 

for SOAs operating at a wavelength of 1.55 µm and attributed to the self- and cross- phase 

modulation under gain saturation. The origin of another frequency shift that is almost 

constant with time may be the effect of the gain spectrum of the SOA. The pump pulse 

frequency was set to near the gain peak. Therefore, both the higher and lower frequency 

components of the pump pulse have about the same optical gain. Thus the frequency of the 

pulse does not shift during the propagation in the SOA except for the frequency shift caused 

by the self- and cross- phase modulation as mentioned above. However, the probe pulse 

frequency was set at –3 THz from the center frequency of the pump pulse. Therefore, the 

higher frequency component of the probe pulse was enhanced more than the lower 

frequency component due to the gain spectrum, and the frequency of the output probe 

pulse is shifted toward the higher frequency side. This gain spectrum effect caused a +25 

GHz shift in the probe pulses. The FWM signal is obtained at about +3 THz from the center 

frequency of the pump pulse. The lower frequency component of the FWM signal pulse was 

enhanced more than the higher frequency component. In addition, the probe pulse was 
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shifted toward the higher frequency side. Therefore, the center frequency of the FWM signal 

pulse is shifted by about –35 GHz.  

 

Figure 6. Normalized output power (a) and frequency shift (b) of the pump, probe, and generated 

FWM signal pulses. Input pump and probe pulses are Fourier transform-limited Gaussian shape with a 

pulsewidth of 2 ps (FWHM), detuning of the input pump and probe pulse is +3 THz. The input pump 

and probe energy levels are 1 pJ and 0.1 pJ, respectively.  

4.2. Optical phase-conjugate characteristics for linearly-chirped input probe 

pulse 

In this sub-section, we have analyzed the optical phase-conjugate characteristics of the FWM 

signal pulses. The outline of our simulation model, which is similar to the experimental 

setup used by Kikuchi & Matsumura (Kikuchi & Matsumura, 1998), is the following one, as 

shown in Fig. 7, the Fourier transform-limited optical pulse is linearly-chirped by 

transmission through a fiber (Fiber I) and then injected into the SOA as the probe pulse 
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together with a pump pulse. The FWM signal is generated by the mixing of the probe pulse 

and the pump pulse, and selected by an optical narrow band-pass filter. The FWM signal is 

then transmitted through another fiber (Fiber II) that has the same GVD as Fiber I and is an 

appropriate length.  

 

 

Figure 7. A simple schematic diagram for the simulation of optical phase-conjugate characteristics of 

picosecond FWM signal pulses in SOAs. Fourier transform-limited Gaussian optical pulse is linearly-

chirped by transmitting through a fiber (Fiber I) and injected into the SOA as the probe pulse together 

with a pump pulse. The FWM signal is generated by the mixing of the chirped-probe pulse and the 

pump pulse, and it is selected by an optical narrow band-pass filter. Then, the FWM signal is 

transmitted through the fiber (Fiber II) with the same GVD value as Fiber I and the appropriate fiber 

length.  

We have assumed that the input probe pulse is the Fourier transform-limited Gaussian 

pulse with a pulsewidth of 1 ps (FWHM). Therefore, the incident field is given by Agrawal 

(Agrawal, 1995; Das et al., 2001) 

 

0

2

2
(0, ) exp

2

T
E T

T

 
 = −
 
 

 (17)  

where, 0T  is the half-width at the 1 e -intensity (power) point and 0.60056 ps in this case. 

The input probe pulse energy is chosen to be 0.1 pJ. This unchirped Gaussian pulse has 

propagated through the fiber (length fZ ) from position A to position B in Fig. 7 and is 

chirped by the second-order GVD of the fiber, and the duration of the pulse is broadened. 

The spectrum of the broadened pulse at position B is calculated using the following 

equation (Agrawal, 1995; Das et al., 2001) 

 2
2( , ) (0, )exp

2f f f
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where, (0, )E ω  is the Fourier transform of the incident field given by equation (17) at fZ  = 0 

(at position A of Fig. 7), 2 ( )qf fω π= − , qf  is the center frequency of the probe pulse, and 

2 fβ  is the second-order GVD of the fiber. Equation (18) shows that GVD changes the phase 

of each spectral component of the pulse by an amount that depends on the frequency and 

the propagation distance. Even though such phase changes do not affect the pulse spectrum, 

they can modify the pulse shape. Taking the inverse Fourier transform of the Eq. (18), the 

broadened pulse can be calculated at position B of Fig. 7 using the following equation 

(Agrawal, 1995; Das et al., 2001): 

2
2

1
( , ) (0, )exp

2 2f f f

i
E Z T E Z i T dω β ω ω ω

π

∞

−∞

 
= − 

 
 

 

 

( ) ( )
2

0
1 2

2 2 0 2
0 2

exp

f f
f f

T T

T i ZT i Z ββ

 
 = −
 − −  

      (19) 

A Gaussian pulse preserves its shape on propagation, yet its width increases and becomes 

(Agrawal, 1995; Das et al., 2001):  

 ( )
1

2 2

0 1b f DT T Z L
 

= +  
     (20) 

where the dispersion length 2
0 2D fL T β= . The input probe pulse is chirped by the Fiber I 

with 2 22f f f DZ Lβ β=  = –0.72135 ps2 and is broadened to approximately 2.2 ps.  

The FWM signal generated by the chirped probe pulse is expressed by Eq. (18) and the 

Fourier transform-limited Gaussian pump pulses, is obtained from the output facet of a 350 

µm length SOA. The detuning between the input pump and the probe pulses is set at 3 THz. 

The FWM signal is obtained by taking the spectral component between +2 THz and +4 THz 

(i.e., the bandwidth of the optical filter is 2 THz).  

Figure 8 shows the waveforms and the frequency shift of the FWM signal at the output end 

of the SOA, shown as position C in Fig. 7 together with those of the input probe pulse. The 

input probe pulse is a chirped Gaussian pulse with a pulsewidth of 2.2 ps (FWHM), as 

described above, and with an energy of 0.1 pJ. The input pump pulses are the Fourier 

transform-limited Gaussian pulses with pulsewidths of 1 ps, 2 ps, 3 ps, and 10 ps. The 

pulsewidth of the FWM signal is increased in step with the increase in the pump 

pulsewidth. The peak positions of the FWM signals are slightly shifted toward the leading 

edge due to the gain spectrum of the SOA. As shown in Fig. 8(b) later, the frequency of the 

probe pulse is linearly chirped from higher frequencies to lower frequencies. As the probe 

pulse frequency is set to the low frequency side of the SOA gain spectrum, the probe pulse 

has a larger gain at its leading edge. The center frequency shift of the FWM signal pulses at 

the output end of the SOA for different input pump pulsewidths is shown in Fig. 8(b), 

demonstrating the frequency shift of the chirped probe pulse at the input side of the SOA.  



 
Optical Phase-Conjugation of Picosecond Four-Wave Mixing Signals in SOAs 101 

 

Figure 8. Waveforms and frequency shift of the generated FWM signal at the output end of the SOA 

shown as the position C in Fig. 7 together with those of the input probe pulse.  

We have defined zero frequency shift to be that at 0 ps. If the SOA acts as an ideal optical 

phase conjugator, the frequency shift of the FWM signal should be symmetrical with that of 

the input probe pulse. The frequency shift of the FWM signal is plotted for output power, 

which is greater than 1% of the FWM peak power. For the input pump pulsewidth of 10 ps, 

the frequency shift of the FWM signal is very similar to the symmetrical shape of the input 

probe. With a decrease in the input pump pulsewidth, the symmetry breaks due to a change 

in the refractive index of the SOA, as caused by the pump pulse. For a 1 ps pump 

pulsewidth, the symmetry is strongly degraded. In the model, we have taken into account 

carrier depletion, CH, SHB, and the instantaneous nonlinear Kerr effect, as the origins of 

nonlinear refractive index changes. For the case of a 1 ps pump pulse, the anomalous 

frequency shift at the leading edge of the pump pulse primarily originates from the Kerr 

effect. By contrast, all mechanisms contribute to the frequency shift at the trailing edge. As a 

result of this simulation, we found that the phase-conjugate characteristics are almost 

entirely preserved, even for a 2 ps input pump pulsewidth.  
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Figure 9. Spectra and phase in the frequency domain of the FWM signal at the output end of the SOA 

shown as the position C in Fig. 7 together with those of the probe input pulse. 

The spectra and phase of the generated FWM signal in the frequency domain at the 

output end of the SOA shown as the position C in Fig. 7, together with the spectra and 

phase of the input probe pulse, as shown in Fig. 9. Although the center frequency of the 

probe pulse is at –3 THz, the spectrum and the phase of the input probe pulse are plotted 

at +3 THz to aid for comparison with the FWM signal pulse. We assumed a Fourier 

transform-limited Gaussian pulse as the input of the fiber, and so the power spectrum 

does not change during the propagation in the fiber. Therefore, the input probe spectrum 

is the same as the input pulse to the fiber. The phase of the probe pulse in the frequency 

domain should vary according to ( )
2

qf f−  against the frequency f . Here, qf  is the center 

frequency of the probe pulse. The results shown in Fig. 9 are in complete agreement with 

the above considerations. The peak frequencies of the FWM spectra are shifted to the 

lower frequency side of the frequency spectra. These shifts are mainly due to the SPM 

caused by the gain saturation effect (Das et al., 2000; Das et al., 2001). The phase of the 

0

0.2

0.4

0.6

0.8

1

1 ps

2 ps

3 ps

10 ps
N

o
rm

al
iz

ed
 F

W
M

 P
o
w

er

Input Pump :(a) Spectra at C

Input Probe 

-10

-5

0

5

10

2 2.5 3 3.5 4

1 ps

2 ps

3 ps

10 ps

P
ha

se
 (

R
ad

ia
n)

Frequency (THz)

Input Pump :

(b) Phase

Input Probe 



 
Optical Phase-Conjugation of Picosecond Four-Wave Mixing Signals in SOAs 103 

FWM spectra at the output of the SOA is shown in Fig. 9(b). If the SOA acts as an ideal 

optical phase conjugator, the phase of the FWM spectra should be symmetrical with that 

of the input probe pulse spectrum. From the figure, the phase of the FWM signal for a 

pump pulsewidth of 10 ps is almost symmetrical to the phase of the input probe pulse. 

With a decrease in the input pump pulsewidth, this symmetry decreases. This tendency is 

the same as that found for time domain (see Fig. 9(a)).  

 

Figure 10. FWM signal pulsewidth versus the 2 f fZβ  value characteristics at position D in Fig. 7.  

The chirped pulse can be easily compressed using the phase-conjugate characteristics of the 

FWM signal pulse and the second-order GVD of a fiber. Figure 10 shows the pulsewidth of 

the FWM signal versus the 2 f fZβ  value characteristics at position D in Fig. 7. For a 10 ps 

pump pulse, the SOA acts as a nearly ideal phase conjugator within the confines of 

reversing the chirp of optical pulses. The pulsewidth of the output pulse becomes the 

shortest, 1.03 ps, at 2 f fZβ  = –0.70 ps2 (Dijaili et al., 1990; Kikuchi & Matsumura, 1998), 

which is slightly smaller (~3%) than the assumed 2 f fZβ of the input fiber we assumed. The 

shortest pulsewidth compresses to 1 ps, which is equal to the input pulsewidth of the 

Fourier transform-limited probe pulse. This result confirms that the SOA acts as a nearly 

ideal phase conjugator (i.e., reverse chirp) when the input pump pulsewidth is relatively 

long (10 ps). When the input pump pulsewidth becomes shorter, the 2 f fZβ  value for 

obtaining the shortest pulsewidth becomes smaller, and the shortest pulsewidth becomes 
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wider than the input pulsewidth of 1 ps. For example, for a 3 ps pump pulse, the shortest 

pulsewidth is ~1.1 ps which is obtained at 2 f fZβ  = –0.45 ps2. This result can be understood 

as follows: The FWM process acts as both a temporal and a spectral window depending on 

the pulsewidth and the spectral width of the pulses. By the FWM characteristics described in 

III-A, the pulsewidth of the FWM signal becomes shorter than the chirped probe pulse. 

Therefore, only a part of the phase information is copied to the FWM signal. For a 1 ps 

pump pulse, the temporal window effect is enhanced. In addition, the pump pulse loses 

phase information due to the optical nonlinear effect that is induced by their strong pulse 

peak intensity, as shown in Fig. 7. Therefore, the FWM signal pulsewidth becomes less than 

1 ps at = 0 and the shortest FWM signal pulsewidth was obtained for 2 f fZβ  = –0.07 ps2.  

 

Figure 11. Normalized FWM signal waveforms having minimum pulsewidth (a) and the frequency 

shift (b) at position D in Fig. 7 after the pulse compression by the fiber. This figure also shows those of 

the input pulse at position A in Fig. 7, which correspond to the case that the SOA acts as the ideal phase 

conjugation.  
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Figure 11 shows the normalized FWM signal waveforms with minimum pulsewidth (a), and 

the frequency shift (b) at the position D in Fig. 7 after the pulse compression by the same 

fiber. The normalized waveform of the input pulse at position A in Fig. 7 is also shown, 

corresponds to the case where the SOA acts as an ideal phase conjugator. The normalized 

waveforms of the FWM signal pulse for various pump pulsewidths are shown in the figure. 

Although all the FWM signal pulses are compressed to ~ 1 ps when the values of 2 f fZβ  is 

optimized, the FWM signal waveform is close to that of the ideal phase conjugator for the 

longer pump pulse of 10 ps. The frequency shift of the FWM signals after fiber dispersion 

compensation shows that for the longer pump pulse of 10 ps, the frequency shift becomes 

nearly zero, which indicates that chirp becomes nearly zero. This suggests that the 

compressed FWM signal almost becomes a transform-limited pulse. For the pump 

pulsewidth of 1 ps, the phase of the FWM signal was significantly distorted.  

 

Figure 12. Spectra and phase in the frequency domain of the FWM signal pulse at the output end of the 

dispersion compensation fiber shown as the position D in Fig. 7, together with those for the ideal case. 
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The spectra and phase in the frequency domain of the FWM signal pulse at the output end 

of the dispersion compensation fiber, shown as the position D in Fig. 7, are shown in Fig. 12 

with the spectra and phase for the ideal case. For the 10 ps pump pulsewidth, the spectrum 

is almost identical to the ideal case except for the center frequency. The red shift of the 

center frequency originates from the gain spectrum of the SOAs. For the shorter pump pulse 

of 1 ps, the spectral width increased because the pulsewidth of the FWM signal becomes 

short, as shown in Fig. 11(a). From the figure, the output signal phase becomes nearly 

constant when the input pump pulsewidth is 10 ps. As a result of this simulation (modeling 

results), we can conclude that pump pulses longer than 10 ps are needed in order to obtain 

nearly ideal optical phase-conjugate characteristics for the ~2.2 ps chirped pulse.  

5. Conclusion 

We have presented a detail numerical analysis of optical phase-conjugate characteristics of 

the FWM signal pulses generated in SOAs using the FD-BPM. We have shown that the input 

pump pulsewidth is an important factor in determining the optical phase-conjugate 

characteristics of the FWM signal pulse. If we use relatively long input pump pulses, nearly 

ideal phase-conjugate characteristics, within the confines of reversing the chirp of optical 

pulses, can be obtained even for very short optical probe pulses. From the simulated 

example, it has been clarified that the nearly ideal phase-conjugate characteristics are 

obtained for ~2.2 ps chirped probe pulses using a 10 ps pump pulse. When the pulsewidth 

of pump pulse decreases, the minimum compressed pulsewidth is obtained using the fiber 

with a smaller 2 f fZβ  than that of the input fiber. For much shorter pump pulses such as 1 

ps, short FWM signals can be obtained via the gating characteristics of the FWM. However, 

only a part of the phase information is copied to the FWM signal, and the phase information 

is lost due to the nonlinear effect. Thus, the pulsewidth is not compressed by propagation 

through a dispersive medium.  
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