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1. Introduction 

Due to the fast development of Internet, the traffic load of data network has increased 

dramatically in past decades. Accordingly, optical network, as the major carrier for data 

transmission, needs to increase its capacity to meet the increasing data rate requirement. As 

stated in the white paper of Optical Internetworking Forum (OIF) (see [1]), the rapid growth 

of data flow demands optical network to double its capacity every 12-18 months. As a result, 

this critical requirement pushes various types of optical transmission systems to improve 

their delivered data rate at the same time. 

Generally, in high-speed optical communication, the increase on data rate usually comes 

with the increase on signal bandwidth and sampling rate. In this case, due to the 

sensitiveness of optical and electronic devices, the additive transmission noise will 

inevitably increase as well. Therefore, how to increase the throughput of optical network 

without loss of robustness is an essential task when designing modern high-speed optical 

network. 

To date, various techniques have been employed to enhance the quality of data transmission 

in optical network. Among those approaches, Forward error correction (FEC), or commonly 

called error correction coding (ECC), is viewed as the most cost-effective solution, and has 

been widely adopted in many industrial optical transmission systems. Many specific FEC 

codes, including Reed-Solomon (RS), BCH, and LDPC codes, are proposed in different 

industrial standards for error correction in physical layer. Among them, RS code is the 

earliest and most widely used FEC code in optical communication. For example, RS (255, 

239) was the first generation FEC code for submarine fiber-optical transmission in [2], and 

its code rate is still the standard parameter for frame design. In addition, for Ethernet 

network such as 10GBase-LR in [3], Reed-Solomon (255, 239) code is also the standard FEC 

code. 
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There are several reasons for the wide application of RS code. First, modern long-distance 

optical network, especially long-haul network, is very high-speed system (10Gbps and 

beyond). For other promising FEC codes, such as LDPC or Turbo code, the corresponding 

decoding throughput usually can not meet such stringent requirement on data rate, or with 

the penalty of very high hardware complexity. Instead, RS decoder can achieve such high 

throughput with affordable hardware resource. Second, for local optical network, such as 

Ethernet network, the real-time response is an important metric for system design. 

Compared with its counterpart, RS code has the particular advantage on low decoding 

latency. Therefore, RS codes are widely employed in modern optical transmission system 

and are believed to play an important role in next generation optical networks. 

Considering the importance of RS code, its efficient implementation is quite important for 

the optical transmission system. A low-complexity high-speed RS encoding/decoding 

system will improve the overall performance significantly. Particularly, since RS decoding is 

the most complex procedure in the RS-based FEC system, efficient RS decoder design 

should be well-studied. Therefore, targeted to different level of optical communication 

ranging from short-distance Ethernet network to long-haul backbone system, this chapter 

fully introduces efficient VLSI design of RS decoder. In addition, to meet the requirement of 

100Gbps era, this chapter also discusses some new FEC schemes for ultra high-speed 

application (beyond 100Gbps). 

The chapter is organized as follows. Section 2 reviews the RS decoding. The low-complexity 

high-speed RS decoders for short-distance network are discussed in Section 3. Section 4 

analyzes performance-improved RS burst-error decoder for medium-distance system. Some 

recent FEC schemes targeted to 100Gbps long-haul network are introduced in Section 5. 

Section 6 draws the conclusion. 

2. Review of RS decoding 

According to the coding theory in [4], the procedure for decoding RS code contains three 

main steps: syndrome computation (SC), key equation solving (KES) and Chien search & 

error evaluation (CSEE). Therefore, the decoding procedure of RS code is summarized as 

below: 

Step 1. (Syndrome computation): For an (n, k) RS code defined over GF(2m) whose 

primitive element is α in reference [4], let C(x) and R(x) be the transmitted and received 

codeword polynomial respectively, and then assumes R(x) = C(x) + E(x), where E(x) is 

the error polynomial which reflects the errors induced by transmission channel noise. 

Then, the syndrome polynomial S(x) is computed as follows: 

  S(x)=s0+s1x+s2x2+…+s2t-1x2t-1, where si=R(αi+1) and t=(n-k)/2.  (1) 

The architecture of SC block of an example RS (255, 239) decoder is shown in Fig. 1. Here 

R(x)=rn-1xn-1+rn-2xn-2+…+r1x+r0 is serially transmitted to SC block with the sequence of rn-1 , rn-2 

,…,r0. Every partial syndrome is calculated with shown multiply-accumulate circuits (MAC) 
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in every clock cycle. After n=255 clock cycles, the 2t=16 syndromes are computed and 

serially transmitted to the next KES block. 

 

Figure 1. The block diagram of syndrome computation for example RS (255, 239) code. 

Step 2. (Key equation solving): With the help of inputted S(x), in this step, Key equation 

solver (KES) block will calculate error evaluator polynomial Ω(x) and error locator 

polynomial Λ(x) by solving key equation: Λ(x)S(x)≡Ω(x) mod x2t. This part is the most 

important step in the whole RS decoding procedure, which usually dominates the 

performance of the overall decoder. Therefore, in this chapter, we focus on the 

algorithm and architecture optimization of KES block. 

Generally, Berlekamp-Massey (BM) algorithm or modified Euclidean (ME) algorithm can be 

employed to solve key equation. To data, many efforts have addressed for efficient VLSI 

implementation of the above two algorithms. In [5], BM algorithm was reformulated as 

RiBM with the same regular architecture format compared with conventional ME algorithm 

in [6] and [7], and a folded BM algorithm based on RiBM was introduced in [8]. Reference 

[6] and [7] implemented conventional ME algorithm with systolic and recursive 

architecture. In Section 3 and Section 4, based on the above efforts, some improved KES 

algorithms and their corresponding hardware implementations will be discussed for 

efficient RS decoder design. 

Step 3. (Chien search & error evaluation): After KES block finishes its computation for the 

current codeword, the calculated error locator polynomial Λ(x) and the error evaluator 

polynomial Ω(x) will be outputted to CSEE block to generate the error positions and 

magnitudes. 

Chien search is a widely employed approach to look for error position. Its basic idea is 

simple but efficient: If Λ(α-i)=0 for current i, it indicates that the i-th symbol of the received 

codeword is wrong and needs to be corrected. After obtaining the position of error, the 

following Forney algorithm is applied to determine the error value: 

 
'
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  (2) 

where Yi is the error magnitude for the i-th erroneous symbol. 
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Based on the above described Chien search and Forney algorithm, the architecture of CSEE 

block for example RS (255, 239) code is illustrated in Fig. 2. It consists of several unit cells 

(shown in Fig. 2(a)). Both of the sub-blocks that carry out Chien search and Forney algorithm 

consist of these basic cells. In the beginning, λi, and ωi, (represented by Ui in the figure), as the 

coefficients of Λ(x) and Ω(x), are parallel loaded into these basic cells (enable=1). Then, during 

the next 255 cycles, those basic cells will carry out multiply iteratively. Fig. 2(b) is the overall 

architecture for CSEE block. Once a zero is detected in Chien search, the corresponding error 

magnitude will be computed via executing the above Forney algorithm. 

 

Figure 2. (a) The diagram of CSEE cell. (b) The block diagram of CSEE. 

The overall architecture of RS decoding is summarized in Fig. 3. 

 

Figure 3. The overall architecture of RS decoder. 

As mentioned in previous paragraph, since KES is the dominating step in the whole RS 

decoding, Section 3 and 4 will focus on the algorithm and architecture optimization of KES 

block. 

3. Low-complexity high-speed RS decoders for short-distance network 

For short-distance optical transmission, such as 10GBase-LR, since the noise rendered from 

transmission distance is quite limited, the requirement of coding gain is not as strict as long-

(a) (b)



 
Efficient Forward Error Correction Decoder Design for High-Speed Optical Networking 

 

271 

distance backbone network (which will be discussed later). Therefore, as discussed in 

Section 1, Reed-Solomon (255, 239) code is widely used in this kind of network due to its 

high code rate and good error correction capability. 

Although coding gain is not the major concern in this scenario, because of limited hardware 

resource, in order to implement efficient RS decoder, the designers have to consider the 

challenge of achieving high data rate with low hardware complexity. Accordingly, 

optimization of RS decoding architectures is necessary for high-efficiency hardware 

implementation. 

In this section, based on the two main RS decoding algorithms, the improved ME-based and 

BM-based decoders are introduced. 

3.1. rDCME-based RS decoder 

In traditional ME algorithm, the inherent degree computation and systolic architecture 

renders large consumption of area and power (see [6] and [7]), which is not suitable for the 

discussed application. To reduce the unnecessary degree computation, DCME algorithm 

was introduced in [9]. By generating internal switch and shift signals, the DCME algorithm 

can achieve the same function as ME algorithm without degree computation. 

2
0 0 0 0
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It is needed to point out that the initialization of DCME and ME is different due to the 

consideration of the design of the following introduced FSM. 
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Fig. 4 shows the FSM for generating control signals. In each iteration, there are two possible 

states: S0 and S1. S0 represents the case when both of ai and bi are nonzero; otherwise the 

state of FSM is S1. The different combinations of the current and previous states will 

determine control signals in the current iteration. 

When the leading coefficients of Ri and Qi are both nonzero, it denotes that polynomial 

computation can be carried out (pc=1), otherwise shift operation would be performed (pc=0) 

to reduce leading coefficient (and in this case the leading coefficient must be zero, the details 

will be shown in next paragraph). In each iteration, the possible shift operation would be 

executed once at most. The whole shift process would not stop until both of ai and bi are 

nonzero, which means the degrees of Ri and Qi are equal again. And in that case KES block 

starts executing polynomial computation. So it is clear that in each iteration the algorithm 

would perform only shift operation or only polynomial computation operation. 

It should be pointed out that after every polynomial computation, if being carried out, the 

original leading coefficient of Ri+1 must be zero due to the arithmetic character of Ri+1 = biRi + 

aiQi. Different from the leading coefficients referred in above paragraph, this kind of leading 

zero is a “false” leading coefficient which will cause logic errors in next iteration. (For 

example, after polynomial computation if Ri+1 is represented by 0, 0, 0, α2, α3, the “false” 

leading coefficient is the first zero, and the real representation of Ri+1 should be0, 0, α2, α3.) 

So in every possible polynomial computation process, the designed rDCME KES block has 

automatically eliminated this kind of leading zero with the aid of “start” signal in hardware 

design (Fig.5): the coefficients which arrive simultaneously with “start” signal are selected as 

the leading coefficients. So once polynomial computations are finished, by delaying Qi+1, Ui+1 

and start signal one more clock cycle, the “false” leading zero is eliminated, and degRi+1 is 

one less than deg Ri or equal to it (this condition happens when the previous iteration’s 

actual input is xRi brought by initial input R0=xS(x)). Then ai and bi represent the real leading 

coefficients respectively. 

 

Figure 4. The FSM for generating control signals. 

If the previous state and the current state are both S0, it indicates that the polynomial 

computation is able to be executed in the two successive iterations. So pc=1 since the current 

operation is polynomial computation. Due to the fact the previous state is S0, after the 

previous polynomial computation and the degree reduction, degRi is one smaller than deg 
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Ri-1 or equal to it. So deg Ri is the same with degQi or one smaller than degQi. These two 

possible conditions occur successively and the switch signal (sw) alternates successively 

(sw=~sw). 

If the previous state is S0 and the current state is S1, KES block would process shift 

operation to eliminate leading zero (pc is set to 0) in the current iteration, because S1 shows 

leading coefficient is zero. sw is also 0 because switch operation always be carried out with 

polynomial operation. 

If the previous state and the current state are both S1, it indicates that the two successive 

iterations are both in shifting operations. Similar with the above condition, sw and pc are 

both set to 0. 

If the previous state is S1 and the current state is S0, the polynomial computation would be 

executed (pc=1) in the current iteration. Since in the previous iteration Ri is in shift operation 

(Qi is never in shift operation because of its character in polynomial computation, it is also 

guaranteed by rDCME’s initial conditions), actual degree of Ri must be smaller than Qi, so 

sw is set to 1. 

After 2t=16 iterations, the rDCME KES block stops and outputs error value polynomial 

R(x)=Ω(x) and error locator polynomial L(x)=Λ(x). 

 

Figure 5. The block diagram of KES. 

Fig. 5 shows the detailed architecture of rDCME algorithm. The KES block is designed 

with single PE. It is commonly known that recursive architecture usually can not be 

pipelined due to data dependency. And recursive architecture is always a bottleneck for 
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high-speed. However, in the rDCME architecture, these disadvantages can be avoided. A 

11-stages (2t-5=11) shifter registers are used to store the last iteration results and feedback 

to the next iteration for avoiding dependency between successive iterations: At the end of 

each iteration, the leading coefficients of five updated inputs (R, Q, L, U and start) are just 

stored back into the leftmost registers of shift registers and ready to be updated in the 

next iteration. Because during the computation procedure the whole iteration process of 

KES block is a close loop, the property of leading coefficients’ in-time arrival makes 

dependency between iterations be avoided and logical validity guaranteed. Furthermore, 

because the former SC block takes n clock cycles to output one codeword, the PEs in 

conventional systolic DCME architecture in [10] and [11] are idle in the most of processing 

time and at the same time it occupies a large amount of chip area. So the multi-stages 

pipeline can be employed in the area efficient recursive KES block with valid logic and 

only a little data processing rate degradation. Note that in Fig. 5 the multipliers are 

pipelined. 

 

Architect. rDCME 
pDCME

in [10] 

DCME

in [11] 

PrME 

in [7] 

Tech.(μm) 0.18 0.13 0.25 0.13 

PE 1 2t 3t+2 1 

SC 2900 2900 2900 2900 

KES 11400 46200 21760 17000 

CSEE 4100 4100 4100 4100 

Total gates 18400 53200 28760 24000 

fmax(MHz) 640 660 200 625 

Throughput

(Gb/s) 
5.1 5.3 1.6 5 

Table 1. Implementation results and comparisons 

Table 1 presents performance comparisons between the rDCME RS decoder and other 

existing RS decoders. It can be observed that the rDCME decoder has very low hardware 

complexity and high throughput. Compared with the existing ME architectures, the total 

gate count of the rDCME architecture is reduced by at least 30.4%. Therefore, the hardware 

efficiency is improved at least 1.84 times, which means under the same technology condition 

our design would be much more area-efficient compared with other existing RS decoder 

designs for multi-Gb/s optical communication systems. 

3.2. PI-iBM-based RS decoder 

Besides ME algorithm, BM algorithm is another main decoding approach for RS codes. An 

important and inevitable disadvantage of traditional iBM/RiBM algorithms is the high cost 

of area or iteration time for computing error value polynomial Ω(x). In iBM architecture 

stated in [12], one third of total iteration time or half of hardware complexity is employed to 

compute Ω(x); in RiBM architecture stated in [5], one third of processing elements (PE) are 
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utilized to calculate and store Ω(x). Therefore, the calculation of Ω(x) impedes further 

performance improvement of current BM architectures. 

The PI-iBM algorithm employs simplified Forney algorithm to compute error values. 

Simplified Forney algorithm, presented in [13] and [14], replaces Ω(x) with scratch 

polynomial B(x) as follows: 

0
'( ) ( ) i

i

x

Y
xB x x 

 






 

In each iteration, scratch polynomial B(x), discrepancy δ, error locator polynomial Λ(x) and 

its coefficient λ0 are simultaneously updated. After completing iteration, KES block outputs 

them to CSEE block for calculating error values Yi. So the computation of Ω(x) is completely 

eliminated, which enables KES block to reduce a large amount of extra computation 

circuitry and iteration time. 

Furthermore, in order to reduce hardware complexity significantly without sacrificing 

throughput per unit area, pipeline interleaving techniques in [15] is employed in the PI-iBM 

algorithm and architecture proposed in [16]. 

As depicted in the following PI-iBM algorithm, interleaving factor g is a crucial factor to 

design overall architecture. In practical RS (n, k, t) codes, such as (255, 239, 8) code, t=8 is a 

common value. So in this paper we set both p and g as 3 for demonstrating PI-iBM 

architecture. 

The PI-iBM architecture consists of two blocks: pipeline interleaving error locator update 

(PI-ELU) block and pipeline interleaving discrepancy computation (PI-DC) block. As it is 

illustrated in Fig. 6, PI-ELU block is designed to execute Step3 for updating polynomials. 

Fig. 6(a) shows the internal architecture of the i-th PE. Initial values of upper and leftmost 

registers are shown in the figure and other registers are initialized to zero. For the i-th PE, in 

each iteration 10 cycles are required to update the stored coefficients of Λ(x) and B(x), 

meanwhile “ctrl” signal is set to be “1 0 0 0 0 0 0 0 0 0”. At the beginning of r-th iteration, 

b3i(r), b3i+1(r), b3i+2(r) are stored in the leftmost three registers with λ3i(r-1)γ(r-1), λ3i+1(r-1)γ(r-1), 

λ3i+2(r-1)γ(r-1) in the upper three registers, then they are shifted in the upper and lower 

loops to be updated. During the first 3 cycles, λ3i(r), λ3i+1(r), λ3i+2(r) are successively 

computed and outputted to PI-DC block for calculating discrepancy δ(r) (Step 1). After 

current iteration is completed, b3i(r+1), b3i+1(r+1), b3i+2(r+1) and λ3i(r)γ(r), λ3i+1(r)γ(r), λ3i+2(r)γ(r) 

are just fed back to the initial registers which stored them at the beginning. The two dashed 

rectangles indicate that the critical path between lower multiplier and adder has been 3-

stage fine-grain pipelined; the path between upper multiplier and adder is tackled in the 

same way. 

In addition, PI-DC block mainly implements the function of updating discrepancy δ(r) 

(Step1). A low-complexity and high-speed architecture of PI-DC block is shown in Fig. 7. As 

shown in Fig. 7, 2t-1 syndromes are serially sent to PI-DC block and shifted in the upper t+1 
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registers every 10 cycles. The initialization of leftmost register is S0 while other registers are 

initialized to zero. In each iteration “ctrl 1”signal is set to be “0 0 0 0 0 0 1 0 0 0”. In the first 5 

cycles of each iteration, input λj, λ3+j, λ6+j and corresponding syndromes selected by 

multiplexers are multiplied by three 3-stage pipelined multipliers (shown by dashed lines). 

At the end of 6-th cycle accumulator circuit computes δ(r) and outputs it to control block for 

updating γ(r) and SEL(r). Passing another register which cuts path between PI-ELU and PI-

DC in control block, the three signals are fed back to PI-ELU block. In the overall 

architecture of PI-iBM (Fig. 8), it takes 7 cycles to calculate and output δ(r) (PI-DC block), 

and another 3 cycles is the cost for calculating new coefficients (PI-ELU block), so the total 

time for one iteration is 10 cycles. 

0

The PI-iBM Algorithm                                                                                

Initialization and Input:
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Table 2 gives the implementation results of PI-iBM decoder and also lists some other 

designs. From this table we can find that the PI-iBM architecture deliver very high 

throughput with relatively low hardware complexity: the total throughput rate and 

throughput per unit area in the PI-iBM design are at least 200% more than those existing 



 
Efficient Forward Error Correction Decoder Design for High-Speed Optical Networking 

 

277 

works. To achieve data rates from 10 Gb/s to 100 Gb/s, PI-iBM decoder has the lowest 

hardware complexity. If 65 nm CMOS technology is used in the implementation, the 

throughput of our design can be increased significantly. Thus the current designs can fit 

well for 10 Gb/s-40 Gb/s optical communication systems. For 100 Gb/s applications, we may 

need two to three independent hardware copies of the designs. However, the PI-iBM 

architecture will remain to have the lowest hardware complexity compared with existing 

designs. In short, the PI-iBM decoder is very area-efficient for very high-speed optical 

applications. 

 

Figure 6. The diagram of PI-ELU block. (a) The internal architecture of the i-th PE. (b) The overall 

architecture of PI-ELU block. 
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Figure 7. The diagram of PI-DC block. 
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Figure 8. The diagram of overall PI-iBM architecture. 

Design 
Tech.

(μm) 

Total of 

gates 

fmax 

(MHz) 

Throughput 

(Gb/s) 

Latency 

(cycles) 

Retimed iBM 

in [17] 
0.18 8423 654 5.23 288 

Multi-mode

RiBM in [18] 
0.18 9566 400 3.20 128 

Systolic ME

in [19] 
0.13 102500 770 6.16 80 

Folded ME in [7] 0.13 17000 625 5.00 256 

PI-iBM 0.18 10951 980 12.5 160 

Table 2. Implementation results and comparisons 
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4. High-performance low-complexity RS burst-error decoders for mediate 

distance network 

For mediate distance optical network, such as Metro Ethernet network, traditional RS 

decoding can not provide enough coding gain for the data transmission in this scenario. 

Instead, enhanced FEC scheme should be employed for improved error-correcting 

capability. Notice that in this kind of systems, long burst error is the major error pattern in 

transmission procedure; therefore, burst-error decoding algorithm and architecture are 

attractive solutions for this case. In this chapter, we introduce efficient burst-error-correcting 

RS decoder to meet the requirement in this type of application. 

4.1. Reformulated inversionless burst-error correcting (RiBC) algorithm 

As excellent Maximum Distance Separable (MDS) code [20], RS code is very effective in 

correcting long burst errors. However, previous RS burst decoding algorithms in [21] and 

[22] are infeasible for hardware implementation due to their high computation complexity. 

In [20], Wu proposed a new approach to track the position of burst of errors. By introducing 

a new polynomial that is a special linear function of syndromes, this approach can correct a 

long burst of errors with length up to 2t-1-2β plus a maximum of β random errors. Here β is 

a pre-chosen parameter that determines the specific error correcting capability. In this case, 

the miscorrection probability is upper bounded by (n-2f)(n-f)β2m(β+f-2t). 

Although the approach in [20] has reduced computation complexity, it still contains 

inversion operation and long data path, which impedes its efficient VLSI implementation, 

therefore, the algorithm in [20] was reformulated to the RiBC algorithm. The RiBC algorithm 

is a kind of list decoding algorithm. 8 polynomials are updated simultaneously in each 

iteration. After every 2β inner iterations, 
(2 )

( )x


 , as the candidate of the error locator 

polynomial of the random errors, is computed for current l-th outer iteration. When l 

reaches n, we track the 
(2 )

( )x


  that is identical for longest consecutive l, and record the last 

element l* of the consecutive l’s. Then the corresponding (2 )( )x  and 
(2 )

( )x


  at the l*-th 

loop are marked as overall error locator polynomial * ( )x  and error evaluator polynomial

*( )x  respectively. Finally Forney algorithm is used to calculate the error value in each 

error position with the miscorrection probability up to (n-2f)(n-f)β2m(β+f-2t. 

The RiBC algorithm is targeted for correcting burst error plus some random errors. By 

observing step2.3 and step 2.4, it can be founded that both of them are quite similar to the 

essential update equations in RiBM algorithm (see [5]). Therefore, it inspires us that both of the 

RiBC algorithm for burst-error correction and RiBM for random error correction can be 

implemented one the same hardware. Furthermore, considering single burst error correcting 

algorithm in [20] is a specific instance of RiBC algorithm with β=0, so it can also be implemented 

on the RiBC architecture. Accordingly, a unified hybrid RS decoder, which can be configured to 

the above three types of error correcting mode, is introduced in the next subsection. 
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4.2 Unified hybrid decoding (UHD) architecture 

The overall UHD architecture is shown in Fig. 9. Here different blocks are used to process 

different steps in algorithm. Since excluding KES and PT blocks, other blocks are quite 

straightforward to be implemented; in this section we only introduce the architectures of 

KES and PT blocks and focus the discussion for the case of RiBC work mode. Interested 

readers can refer to [23] for the introduction of other blocks and other modes. 

 

Figure 9. The overall architecture of the UHD decoder. Three types of lines illustrate data flows for 

different work modes: solid line (mode-1) for burst combined with random error correction RiBC 

algorithm, dashed line (mode-2) for only burst-error correction and dotted line (mode-3) for only 

random error correction. 

4.2.1. KES block architecture 

For RiBC algorithm, KES block is employed to carry out steps 2.4. Fig. 10 presents the 

overall architecture of KES block and the internal structure of its two types of processing 

elements (PE): PE0 and PE1. As shown in Fig. 10(a), the KES block consists of 2t-1 PE0’s and 

2t PE1’s. In the r-th iteration, each register in PE0i/PE1i stores the corresponding coefficients 

of different polynomials (Fig. 10(b) (c)). For each outer iteration, it takes 2β cycles to 

compute (2 )
i

  and 
(2 )
i


 as the coefficients of (2 )( )x  and 
(2 )

( )x


 . Meanwhile, 
(2 )

i


  will 

also be computed and outputted into PT block to track the longest consecutive 
(2 )

( )x


  that 

are identical. 

4.2.2. Position track (PT) block architecture 

PT block is used to track the longest consecutive polynomials that are identical (step 3). 

Fig. 11 illustrates the architecture of PT block. The input 
(2 )
i


 , (2 )
i

 and 
(2 )
i


 from KES 

block at the l-th outer iteration are denoted as  ( )i l , ( )i l and  ( )i l . In addition, 
 ( )i temp  represents  ( 1)i l  , while  ( )i store are the coefficients of current continuously 

identical 
(2 )

( )x


 . Moreover,  ( )i longest  stores the coefficients of current longest 

continuously identical 
(2 )

( )x


 . Control signals shift and equal are generated from the 

signal generation schedule. After l reaches n, ( )i longest  and  ( )i longest are outputted as 

the coefficients of overall error locator polynomial * ( )x  and overall error evaluator 

polynomial *( )x . 
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Figure 10. (a) The overall architecture of KES block. (b) The block diagram of PE0i.  

(c) The block diagram of PE1i. 
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Figure 11. The architecture of PT block for mode-1. 

Table 3 presents the comparison between UHD and RiBM decoder. Here for the example RS 

(255, 239) code, n=255, t=8 and m=8. The hardware complexity is estimated based on the 

work in [24]. Although the area requirement of the UHD decoder is about 1.7 times of that 

of the RiBM decoder, the UHD decoder can achieve significantly enhanced burst-error  



 
Efficient Forward Error Correction Decoder Design for High-Speed Optical Networking 

 

283 

 

 

1 2

(2 )

Track Control Signal Generation Schedule for RiBC Algorithm                 

Initiliazation: 0,  1;

Step S1: Input:  for current ,denote them as ( ) for 0,1...2 - 2 ;

Step S2: If  ( )

i i

i i

l l

l l i t

l


  

 

 



 2 2

2 1

2 1

1 2

( ) for all 0,1...2 - 2  then 1,  1;

                else 0,  ;

Step S3: If  then 1;

                else 0;

Step S4: If 1 then ;

                else 

temp i t equal l l

equal l l

l l shift

shift

shift l l

l

   
 

 


 

1  remains;

Step S5: Output ,  ;

Step S6: Goto Step S1                                                                                    

equal shift

 

 

Architecture UHD RiBM 

Total gates(# of XOR gates) 

34308 

18968 
44392 

(two 

codewords) 

Critical path (# of gates) 10 8 

(Mode-1) 

(f=11, β=1) 

Latency 4846 

Unavailable to decode 

Throughput

(Normalized) 
1 

Miscorrection 

Probability 

(n-2f)(n-f)β2m(β+f-2t) 

=1.32*10-5 

(Mode-2) 

(f=12) 

Latency 
542 

(the worst case) 

Unavailable to decode 
Throughput

(Normalized) 
8.9~16.8 

Miscorrection 

Probability 

(n-2f)2m(f-2t) 

=5.38*10-8 

(Mode-3) 

(t ≤ 8, 2t+ρ≤16) 

Latency 255 255 

Throughput 

(Normalized) 

19 

23.8 
38 

(two 

codewords) 

Miscorrection 

Probability 
0 0 

Table 3.  Comparisons of performance on hardware and error correction capability. 

correcting capability. In the channel environments that likely generate long burst of errors 

(f>8), the traditional RiBM decoder fails to decode the codewords for its limited error 
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correcting capability, while UHD decoder can be still effective. In short, the UHD design 

provides an efficient and attractive unified solution for multi-mode RS decoding in optical 

applications that demands enhanced error correcting capability. 

 

Figure 12. The timing charts for RiBC architecture. 

5. Ultra high performance FEC schemes for long-haul network 

For long-haul optical transport networks (OTN), because the performance loss mainly 

results from long distance transmission, the requirement on coding gain is very strict. 

This requirement even gets more and more strict when optical backbone networks enter 

100Gbps era. Based on OIF whitepaper, the new FEC schemes applied in 100G long-haul 

systems should achieve waterfall performance at very low BER region. Meanwhile the 

other requirements for OTN FEC such as capable of achieving very high speed and 

having very low error floor still remain. Therefore, 100Gbps era puts more challenges on 

FEC schemes. In this section, some recent FEC schemes targeted to 100Gbps applications 

are introduced. 

 

Figure 13. The hard-decision product BCH scheme. 

5.1. Hard-decision BCH product codes 

One candidate for 100Gbps application is BCH-based binary product codes such as the one 

presented in [25]. The component BCH (992, 960) and (987, 956) codes are constructed 

carefully over GF(210) for hardware amenity, which have the 3-error correction capability, 
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therefore its decoder design can be developed based on simple PGZ algorithm in [4]. The 

simulation results show the performance of this FEC scheme can be very close to the 

Shannon limit. 

 

Figure 14. Decoding performance of product BCH codes based on maximum 7 iterations. 

5.2. Some other soft-decision based concatenated codes 

The above binary product scheme is based on hard-decision. If soft information is available 

in the system, soft-decision decoding approach can work with the product codes to enhance 

the overall decoding performance. Fig. 15 illustrates a LDPC code concatenated with BCH-

based product code for long-haul network systems in [26]. In this scheme, LDPC code is 

used as inner code and BCH-based product code is used as outer code. Some other soft-

decision based concatenated FEC scheme such as RS code concatenated with LDPC coding 

system in [27] can also provide significant coding gain for targeted ultra high-speed optical 

communication. 

 

Figure 15. Product BCH-LDPC concatenated scheme in [26]. 
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6. Conclusion 

With the evolution of optical network, the employed FEC scheme has been developed in 

several generations. The requirement on high data rata and large coding gain is always 

challenging the design for efficient FEC decoder. In this chapter, targeted to different types 

of optical transmission networks, ranging from local Ethernet to long-haul backbone system, 

different FEC solutions with efficient VLSI implementations are discussed. For short-

distance networks, two kinds of area-efficient high-speed RS decoders are analyzed for the 

scenario. For mediate distance networks, which require some tradeoff between decoding 

performance and hardware efficiency, the introduced RS burst-error decoder can be 

employed to meet such requirement. For long-haul systems, which have stringent 

requirement on decoding performance, some candidate FEC schemes targeted to the future 

100Gbps era are discussed. In summary, these various FEC architectures and schemes are 

good candidates for their specific targeted optical transmission applications. 
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