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1. Introduction 

Acute renal failure (ARF) that requires replacement therapy is a common problem in critically 

ill patients. The treatment of ARF is one the aspects that has evolved over the management of 

critically ill patients in the last 25 years. Conventional Hemodialysis presents problems when 

used in these patients, often being unable to remove enough fluid, due to hemodynamic 

instability and hypotension that often results. In 1977, Kramer et al. describe the technique of 

continuous arteriovenous hemofiltration, which, by eliminating slow and continuous 

ultrafiltration allows good control of electrolyte balance in patients with ARF and oliguria, 

with good hemodynamic tolerance in critically ill patients. Later modifications of the 

technique, continuous venovenous hemodiafiltration and hemofiltration get the plasmatic 

clearance depends less on the ultrafiltration rate determined by blood pressure, and allow 

more effective clearance. This coupled with the fact that different forms of continuous 

hemofiltration allow control of uremic and intravascular volume without restriction of protein 

intake or liquids and requires no specialized personal in dialysis techniques, has become a 

technique widely used in intensive care units (1,2). 

However, the use of continuous renal replacement techniques therapies (CRRT) in patients 

with severe sepsis or multiple organ dysfunction syndrome (MODS) to remove 

inflammatory mediators and, therefore, anticipate or mitigate multiorgan dysfunction is still 

controversial, since this involves the use of hemofiltration in patients that do not require (or 

not yet needed) replacement of their kidney function (3-6). The sequence of events leading 

to septic shock and MODS is initiated by endotoxins  or other structural components of 

microorganisms that cause inappropriate inflammatory response through the cells 

responsible for immunity, and release of inflammatory mediators such as cytokines, active 

products of complement, arachidonic acid metabolites, nitric oxide, oxygen reactive 

substances, proteases, etc.. The consequences are tissue damage and hypotension by 
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myocardial depression and vasodilation (7). Current therapeutic strategies against sepsis are 

still based on the pharmacology of the immunoinflammatory cascade, however so far very 

few studies in stage III and IV with these "pro-sepsis" drugs who have achieved favorable 

results in improving the survival of patients. For this reason the hypothesis that CRRT may 

modulate this broad and inappropriate tissue inflammation by eliminating inflammatory 

mediators remains highly attractive (8,9). 

2. Principal advantages of CRRT in severe sepsis patients 

Theoretically, hemofiltration has several advantages over the pharmacological approach of 

the sepsis treatment: 

- The simultaneous extraction of various mediators should be more effective than 

selective treatment against a single mediator. 

- Hemofiltration only removes plasmatic mediators and thus limits the deleterious 

systemic effect preserving the local effect (which is considered essential for the 

elimination of microorganisms and damaged tissue). 

- The effect of hemofiltration is more pronounced for those mediators who are in a higher 

plasma concentration (10). 

But although hemofiltration may have some advantages over “prosepsis” drugs, is not a 

perfect solution, because this treatment also has limitations (2): 

1. Hemofiltration can only extract substances present in plasma in unbound form to 

proteins, but the mediators may be absent because of transient release (TFN and IL-1 for 

example), being limited effect and release the tissue compartment, and so on. In 

addition, although they may be inflammatory mediators in the ultrafiltrate of CRRT, 

has not yet been able to demonstrate that their removal produces a significant decrease 

in serum levels or there is clinical improvement of the inflammatory response. 

2. Most mediators have a molecular weight range (between 600 and 54,000 daltons) and 

thus can be eliminated by diffusion as this is a process dependent on molecular 

weight. However, this molecular weight if it is compatible with the extraction 

convective through high-flux membranes (threshold passage of substances close to 

30,000 daltons). 

3. Hemofiltration may even be detrimental for all substances indiscriminately remove 

circulating mediators including beneficial counterregulatory substances, other essential 

endogenous substances and drugs such as antimicrobials. 

4. The use of biocompatible membranes may generate mediators of inflammation. 

5. Hemofiltration is an invasive technique that requires the placement of catheters and 

continuous anticoagulation, and, 

6. CRRT are expensive and represent a significant workload (2). 

The choice of dialytic technique in severe sepsis patients is dependent upon a variety of 

factors including availability, the expertise of the clinician, hemodynamic stability, and the 
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degree to which solutes and/or fluid must be removed. In addition, comorbid conditions 

may affect the decision: 

 Abdominal drains and/or new incisions generally preclude peritoneal dialysis.  

 Severe peripheral vascular disease or coagulopathy are general contraindications to 

cannulation of a major artery. Patients at high risk for bleeding during CAVH can be 

treated with minimal dose heparin or regional citrate anticoagulation (if there is a 

diffusion component) to prevent clotting in the dialyzer (1). 

Although hemodialysis is the standard modality in hemodynamically stable patients with 

acute renal failure, CRRT is used in selected cases. The determining factors of which 

modality is chosen include the catabolic state, hemodynamic stability, and whether the 

primary goal is solute removal (eg, uremia, hyperkalemia), fluid removal, or both (11,12). 

CRRTs in patients with acute kidney injury are most often selected when hemodynamic 

instability precludes the use of standard three to four hour intermittent dialysis. While 

randomized controlled trials have failed to prove better outcomes with CRRTs when 

compared to intermittent dialysis, many clinicians prefer them because of their ease of use 

and the security perceived by slow therapy. Since there is no proven benefit of CRRT versus 

intermittent dialysis in this setting, the renal replacement modality selection is based on ease 

of operation and perceived benefit. 

Solute removal occurs primarily by diffusion from the plasma into the dialysate during 

dialysis and, to a much lesser degree, by convection during ultrafiltration as solvent drag 

carries small and intermediate sized solutes with the water. Smaller solutes (such as urea and 

electrolytes) are removed in roughly the same concentration as the plasma with hemofiltration; 

as a result, the rate of solute clearance is equal to the ultrafiltration rate unless there is 

concurrent diffusive loss. There is also no change in the plasma concentrations of small solutes 

with hemofiltration alone, unless they are lowered by dilution by the administration of 

replacement fluid to prevent extracellular volume depletion. 

The rate of solute diffusion is determined by a number of factors including: 

 The surface area and unit solute permeability of the dialysis membrane.  

 The blood and dialysate flow rates which, if increased, maintain a maximum 

concentration gradient between these two compartments.  

 The duration of dialysis (only if a favorable concentration gradient persists for 

continued diffusion). 

In comparison, the rate of solute removal by ultrafiltration is influenced by: 

 The transmembrane pressure gradient that provides the driving force for ultrafiltration.  

 The surface area and unit water permeability of the dialysis membrane.  

 The duration of hemofiltration.  

 The blood flow rate, which acts indirectly by moving nonfiltered plasma proteins away 

from the inner wall of the dialysis membrane; preventing local protein accumulation 

maintains water permeability. 
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These determinants apply to hemodialysis/hemofiltration, but not to peritoneal dialysis. 

Hypotension, either at baseline or during the procedure, may be a limiting feature with 

conventional hemodialysis but should not occur with slow fluid and solute removal in 

peritoneal dialysis. However, the latter is often not an option in acutely ill patients. 

Slow fluid and solute removal can also be achieved with CRRT. In addition to being better 

tolerated hemodynamically, CRRT is also as efficient in removing solutes over the course of 

24 to 48 hours as conventional hemodialysis. Although the clearance rate of small solutes 

(such as urea) is slower per unit time with CRRT (17 mL/min with CAVHD versus more 

than 160 mL/min with hemodialysis), the rates are closer at 24 hours and more urea is 

removed over 48 hours with CRRT than with a single run of hemodialysis (13-18). 

Hemodynamic stability: Daily or every other day conventional hemodialysis is the 

standard dialytic regimen for the hemodynamically stable patient with severe acute renal 

failure. However, hypotension, due in part to rapid fluid and solute removal, is one of the 

most common complications with this technique, making it less desirable in the patient who 

is hypotensive or hemodynamically unstable. In contrast, the rate of fluid and solute 

removal is slow and hypotension is less common with the CRRTs, such as continuous 

arteriovenous hemofiltration or hemodialysis (19-22). A review of the characteristics of the 

different types of CRRT is available elsewhere. 

CRRT has the additional advantage of effectively removing excess fluid in hypotensive 

patients, while hemodialysis is frequently limited by a further reduction in blood pressure 

in this setting. 

The relative hemodynamic instability associated with hemodialysis is related to several 

factors: 

 The rapid rate of solute removal results in an abrupt fall in plasma osmolality that 

induces further extracellular volume depletion by promoting osmotic water movement 

into the cells. The reduction in plasma osmolality itself may contribute to the 

development of hypotension. 

 Hemodialysis may impair the protective sympathetic response to volume depletion. 

It must be emphasized, however, that the protection afforded by CRRT is relative, not absolute. 

Hypotension can still occur if too much fluid is removed or if fluid is removed too quickly. 

Solute removal: In addition to being better tolerated hemodynamically, CRRT is also as 

efficient in removing solutes over the course of 24 to 48 hours as conventional hemodialysis. 

Although the clearance rate of small solutes (such as urea) is slower per unit time with 

CRRT (17 mL/min with CAVHD versus more than 160 mL/min with hemodialysis), the rates 

are closer at 24 hours and more urea is removed over 48 hours with CRRT than with a single 

run of hemodialysis (Table 1) (23). 

Removal of immunomodulatory substances in sepsis: The less porous membranes used 

with conventional hemodialysis are less efficient in removing middle to large molecules 

with cardiodepressant, vasodilatory, or immunomodulatory properties in septic or highly 
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catabolic patients. Examples of such toxins are endotoxin, interleukin-1, complement 

anaphylatoxins, platelet activating factor, and tumor necrosis factor (21,24,25). 

 

Technique 
Operating 

conditions 

Urea 

clearance 

mL/min

L/day 

Inulin 

clearance 

mL/min

Inulin 

clearance 

L/day 

CAVH Postdilution, UFR 8 

mL/min

8 11.5 6.4 9.2 

CAVH Postdilution, UFR 14 

mL/min

14 20 11 16 

CAVH Predilution, UFR 14 

mL/min

16 23.5 11 16 

CAVHD Qd 1 L/h, UFR 3 

mL/min

19.7 28 2.4 3.5 

CVVH UFR 17 mL/min 17 24 13.6 19.6 

CVVHD Qd 1 L/h, UFR 12 

ml/min Postdilution

29 42 9.6 13.8 

CEPD 8 L/day, 1 L 

ultrafiltration

6.3 9 2 3 

HD 4 hours 160 38 6 2 

The clearance of small (urea) and intermediate (inulin) sized solutes with the different forms of continuous renal 

replacement therapy, continuous equilibrium peritoneal dialysis (CEPD), and standard hemodialysis (HD). Although 

urea clearance is much slower with CRRT than with hemodialysis per unit time, the quantity of urea cleared is almost 

the same over the course of one or two days because of the continuous therapy. When there is no dialysis (as with 

CAVH or CVVH), the urea clearance is equal to the ultrafiltration rate (UFR) unless there is predilution with 

replacement fluid. Intermediate sized solutes are cleared to a much greater degree with CRRT, since more permeable 

membranes are used. The values for inulin clearance assume a sieving coefficient of 0.8.  

Qd: dialysate flow rate. 

Table 1. Solute clearance continuous renal replacement therapy (23). 

Experimental and some clinical evidence suggest that large volume hemofiltration more 

effectively removes some of these substances, possibly leading to better preservation of 

cardiovascular function (26-29). One report, for example, evaluated 16 patients with sepsis, 

multiple organ dysfunction, and acute renal failure (28). Hemofiltration did not induce 

significant mediator activation and did not lead to cytokine removal. There was, however, 

increased removal of complement anaphylatoxins. Furthermore, the ultrafiltrate from these 

patients significantly stimulated peripheral blood mononuclear cells in vitro and enhanced 

tumor necrosis factor release; on the other hand, it reduced lymphocyte production of IL-2 

and IL-6. These effects were not seen with ultrafiltrate from normal volunteers. 

The ability of hemofiltration to remove immunomodulatory substances may lead to an 

improvement in patient outcome among those with sepsis and acute kidney injury. Although 

not yet studied in large randomized prospective controlled studies, there is some evidence that 

hemofiltration may provide some benefit in those with sepsis and acute renal failure (30-36): 

 In a pilot prospective study, 20 patients with septic shock and acute renal failure were 

randomly assigned to either high (65 mL/kg per hour) or low volume (35 mL/kg per 
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hour) hemofiltration (36). High volume hemofiltration was associated with decreased 

mean norepinephrine dose and increased urine output. Survival at 28 days was the 

same in both groups.  

 One retrospective study evaluated the effects of isovolemic hemofiltration on 

physiological and clinical outcomes in 80 patients with septic shock and oliguric acute 

kidney injury (31). Prior to 1999, 40 patients had received conventional supportive 

therapy; subsequently, 40 patients received hemofiltration at 45 mL/kg per hour over 

the first six hours, which was followed by conventional CVVH. Incorporation of 

isovolemic hemofiltration into the treatment regimen significantly improved 

oxygenation and mean arterial pressure. Survival at 28 days was also significantly 

better (55 versus 28 percent). 

Further study in larger better designed studies is required to understand the role of this 

modality in acute renal failure and sepsis. Furthermore, the early initiation of this 

intervention (isovolemic hemofiltration) may be very important. However, a randomized 

prospective study found that early intervention with low volume hemofiltration (25 mL/kg 

per hour) was deleterious in those with severe sepsis (37). 

Effect on mortality: No modality of renal replacement therapy in the critically ill patient 

with acute renal failure, including intermittent hemodialysis, peritoneal dialysis, and the 

many forms of CRRT, has been clearly shown to have a survival benefit (1,38). 

3. Terminology - Different models of CRRT  

There are many variations of CRRT and the remainder of this topic will provide a general 

overview of the nomenclature that has been developed. The different modalities are 

categorized according to the access characteristics (blood or peritoneal, venovenous or 

arteriovenous) (Table 2) (39). 

 

Blood access 

Arteriovenous 

Continuous arteriovenous hemofiltration

Continuous arteriovenous hemodialysis 

Continuous arteriovenous hemodiafiltration

Venovenous 

Continuous venovenous hemofiltration

Continuous venovenous hemodialysis

Continuous venovenous hemodiafiltration 

Slow continuous ultrafiltration

Slow low efficiency dialysis or dialfiltration

Slow low efficiency daily dialysis

Extended daily dialysis

Peritoneal access

Continuous equilibrium peritoneal dialysis

Table 2. Continuous renal replacement therapies (39) 
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Arteriovenous or venovenous: Arteriovenous (AV) refers to the use of an arterial catheter 

that allows blood to flow into the extracorporeal circuit by virtue of the systemic blood 

pressure. A venous catheter is placed for return. Venovenous (VV) is an alternative modality 

in which both catheters or one dual lumen catheter are placed in veins. An extracorporeal 

blood pump is required to circulate blood through the extracorporeal circuit. 

The advantage of arteriovenous access is that it is simple to set up and does not require an 

extracorporeal blood pump. It does, however, require arterial puncture with an attendant 

risk of arterial embolization. Blood flow may also be unreliable in patients who are 

hypotensive or have severe peripheral vascular disease. 

Venovenous access, on the other hand, does not require arterial access, involves less 

systemic anticoagulation, uses only one dual lumen catheter, and has faster and more 

reliable blood flow than with arterial access. The only disadvantage is the requirement for 

an extracorporeal blood pump (39). 

Hemodialysis: Hemodialysis (HD) refers to the transport process by which a solute 

passively diffuses down its concentration gradient from one fluid compartment (either 

blood or dialysate) into the other. During HD, urea, creatinine, and potassium move from 

blood to dialysate, while other solutes, such as calcium and bicarbonate, move from 

dialysate to blood. The dialysate flows countercurrent to blood flow through the dialyzer to 

maximize the concentration gradient between the compartments and therefore to maximize 

the rate of solute removal. The net effect is the production of desired changes in the plasma 

concentrations of these solutes: a reduction in the blood urea nitrogen and plasma creatinine 

concentration; and an elevation in the plasma calcium and bicarbonate concentrations (39). 

Hemofiltration: Hemofiltration (HF) refers to the use of a hydrostatic pressure gradient to 

induce the filtration (or convection) of plasma water across the membrane of the hemofilter. 

The frictional forces between water and solutes (called solvent drag) results in the 

convective transport of small and middle molecular weight solutes (less than 5000 Daltons) 

in the same direction as water. Substitution fluid is usually required to prevent excessive 

fluid removal. 

The process of HF itself removes smaller solutes (such as urea and electrolytes) in roughly 

the same concentration as the plasma. There is therefore no change in the plasma 

concentrations of these solutes by HF, in contrast to those achieved by HD. However, the 

administration of substitution fluid will lower by dilution the plasma concentrations of 

those solutes (such as urea and creatinine) not present in the substitution fluid (39). 

Hemodiafiltration: Hemodiafiltration (HDF) refers to a combination of dialysis and 

filtration. Solute loss primarily occurs by diffusion dialysis but 25 percent or more may 

occur by hemofiltration (39). 

Continuous replacement therapies (CRRT): the acronyms that have derived from the above 

concepts describe continuous therapies with the following general characteristics. 

Continuous arteriovenous hemofiltration (CAHV): CAVH uses AV access to remove fluid 

and solutes by convection. Its per hour efficiency of solute removal is generally quite low, 
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since no diffusion occurs. Thus, 24 hour/day operation or the addition of enhancing 

techniques is required. Ultrafiltration in CAVH is allowed at a greater degree than required 

for the restoration of euvolemia to increase solute removal. As a result, replacement fluid is 

necessary to prevent volume depletion. However, the rate of solute clearance with CAVH is 

still relatively low even at a high UFR (table 1). One method to increase the removal of urea 

(and probably other small, lipid-soluble solutes) is to administer the replacement fluid 

before the filter; this predilution lowers the plasma urea concentration, thereby allowing 

urea to diffuse from within red cells into the plasma water. The increased total extracellular 

urea entering the filter enhances the urea clearance rate by approximately 15 percent, 

especially if 200 mmHg of suction is also used (40,41). 

As with any hemofiltration procedure, the aim is to keep the filtration fraction at 10 to 20 

percent. At 40 percent and above, sludging occurs in the filter, compromising further fluid 

removal (42). 

Continuous venovenous hemofiltration (CVVH): CVVH is similar to CAVH except that an 

extracorporeal blood pump is required that allows the physician to control the flow rates 

within the system (43). The blood pump assures a fast and stable Qb that can be set, for 

example, at approximately 250 mL/min. If the hematocrit is 33 percent, then the plasma flow 

rate will be 167 mL/min. A filtration fraction of 10 percent in this setting results in a UFR of 

16.7 mL/min, which is equal to 1 L/h or 24 L/day (four times greater than that with SCUF). 

Most of this fluid will need to be replaced; if given before the filter (predilution), the urea 

clearance will again be enhanced by approximately 15 percent. Water exchanges of 40 to 60 

L/day are usually sufficient, but catabolic patients with an increased urea load may require 

more than 60 L/day (44). 

The more predictable blood flow rate and the associated ability to achieve a high 

ultrafiltration rate make CVVH preferable to CAVH when solute removal is important, as in 

hypercatabolic patients with a high BUN (table 1). 

Slow continuous ultrafiltration (SCUF): SCUF is strictly a dehydrating procedure with no 

intent to substantially remove solute. Access can be arteriovenous or venovenous. SCUF is 

similar to CAVH or CVVH except that the ultrafiltration rate is held at a lower rate; thus, 

SCUF is primarily used when the fluid removal goals are modest. 

Slow continuous ultrafiltration (SCUF) is designed to remove up to 6 to 7 L of fluid per day 

without requiring replacement fluid other than for hyperalimentation. Solute removal is 

minimal with this technique, being limited by the low ultrafiltration rate and lack of 

dialysis. As an example, the clearance of urea and other small solutes is equal to the 

ultrafiltration rate of approximately 4 to 5 mL/min. Thus, SCUF is not useful in patients who 

are uremic or hyperkalemic. 

Either arteriovenous or venovenous access can be used for SCUF. Arteriovenous access, 

without an extracorporeal pump, is generally sufficient to achieve the desired rate of fluid 

loss. The low ultrafiltration rate (UFR) of about 5 mL/min does not require a high rate of 

blood flow (Qb) through the filter. The Qb can be estimated by flushing the extracorporeal 
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circuit with saline and then measuring the time for blood to refill the circuit. The volume of 

the lines and filter are noted in the manufacture's package literature. 

Practical goals are a UFR of 5 mL/min and a Qb of 80 mL/min. If the hematocrit is between 

35 and 40 percent, then this Qb represents a plasma flow of approximately 50 mL/min with a 

filtration fraction of 10 percent. If necessary, the UFR can be increased by raising Qb or by 

adding suction to the filtrate drainage system (45). The Qb can be raised by increasing the 

systemic blood pressure or by inserting an extracorporeal blood pump into the circuit. Short 

catheters with wide internal diameters that have been specifically designed for CAVH 

should be used for arterial access, since they maximize Qb (46). 

In some cases, however, the UFR is too rapid. In this setting, ultrafiltration can be slowed by 

raising the level of the bag into which the ultrafiltrate drains. Most SCUF is now performed 

with venovenous access, and UFR is completely controlled by the operating parameters of 

the automated equipment. 

Continuous arteriovenous hemodialysis (CAVHD or CAVD respectively): CAVHD or CAVD 

is similar to CAVH with two exceptions: dialysate is run at a low flow rate countercurrent to 

the direction of blood flow; and the ultrafiltration rate is not maximized to protect against 

the development of hypotension. Fluid removal is slower than with CAVH alone, but a 

greater reduction in solute concentration is achieved. 

CAVHD differs from CAVH in that dialysis fluid flows through the filter in a compartment 

separated from the blood by the dialysis membrane. The efficiency of CAVHD is, as with 

CAVH, dependent upon Qb. However, the UFR is not as high as that achievable with 

CAVH alone. Thus, fluid removal with CAVHD is slower, but a greater rate of solute 

clearance can be achieved (table 1). 

Clearance rates with CAVHD are dependent upon both blood and dialysate flow rates, 

which determine the concentration gradient between these two compartments. At Qb values 

above 80 mL/min, the dialysate fluid tends to become saturated with small solutes (ie, the 

concentration in the dialysate approaches that in the plasma, preventing further diffusive 

loss). In this setting, the main way to increase clearance is to raise the dialysate flow rate 

(Qd) from 1 up to 2 L/h (47,48). Once the Qd reaches 2 L/h, additional attempts to enhance 

clearance should be directed at increasing Qb, either by using a blood pump or turning up 

the pump rate if it is already in use. 

A final way to raise solute clearance above that achieved by diffusion is to increase 

convective clearance. This can be achieved by enhancing ultrafiltration beyond the amount 

necessary to reestablish euvolemia, with replacement fluid then being given to prevent 

volume depletion. Thus, the highest solute clearances are achieved in CAVHD with a high 

Qb, high Qd, high UFR, and high rate of fluid replacement. For all the therapies discussed 

the highest clearances are in the extracorporeal pumped venovenous therapies.  

Continuous venovenous hemodialysis (CVVHD or CVVD): CVVHD or CVVD utilizes 

venovenous access and a blood pump, but is otherwise similar to CAVHD. CVVHD 

combines the processes of diffusive and convective clearances; as with CVVH, it utilizes a 
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blood pump to maximize the delivery of blood to the extracorporeal device. The 

transmembrane pressure generated by the blood pump assures net ultrafiltration unless the 

dialysate outflow is regulated to ensure that ultrafiltration is retarded. Under routine 

operating conditions, the blood flow (Qb) varies from 150 to 300 mL/min and the dialysate 

flow (Qd) from 1 to 2 L/hour.  

The equipment required to provide CVVHD can be simple or complex. As an example, 

components, such as a blood pump, may be combined with separate infusion pumps; by 

comparison, specialized equipment made by many vendors can be utilized alone to deliver 

fresh dialysate to the filter and to govern the rate of dialysate exiting the filter.  

Some machines also can be utilized for CVVHD. This system uses a proportioning system to 

generate bicarbonate dialysate from concentrate. The Qd can be adjusted to as high as 6 L/h, 

thereby providing an enormous clearance potential with continuous therapy. This approach 

can be applied for as little as eight hours per day (or nocturnally) because the solute 

clearance is high and the ultrafiltration needs can frequently be realized in this short period 

(49,59). This hybrid dialytic intervention, named sustained or slow low efficiency dialysis 

(SLED), or extended daily dialysis (EDD), may soon become the "gold standard" for renal 

replacement therapy during acute renal failure. 

Continuous arteriovenous hemodiafiltration (CAVHDF): CAVHDF is similar to CAVHD 

except that ultrafiltration is allowed at a rate beyond that necessary to reestablish euvolemia. 

From the viewpoint of solute removal, CAVHDF combines diffusion to aggressively removal 

small solutes with convection to remove large solutes. Because the volume of fluid ultrafiltered 

is so large, replacement fluid must be given to maintain euvolemia. 

Continuous venovenous hemodiafiltration or CVVHDF is similar to CAVHDF, except that 

venovenous access is utilized and a blood pump is required. 

Continuous equilibrium peritoneal dialysis (CEPD): CEPD is a long-dwell procedure 

similar to CAPD. A semipermanent peritoneal dialysis catheter is placed. Rapid exchanges 

are used initially to attain fluid and solute balance (as in acute PD). This is followed by 

longer dwell times to maintain this balance. 

Continuous flow peritoneal dialysis: In this variant of peritoneal dialysis, there are two 

points of access into the peritoneal cavity, one for continuous inflow of fresh dialysate, the 

other for efflux of used dialysate. Clearances still primarily depend upon the flow rate of 

dialysate up to a point in PD, because peritoneal blood flow is limited. However, continuous 

flow PD clearances exceed those of CEPD (39). 

4. Efficacy of CRRT in patients with severe sepsis or septic shock 

Continuous renal replacement therapies (CRRTs) involve either dialysis (diffusion-based 

solute removal) or filtration (convection-based solute and water removal) treatments that 

operate in a continuous mode (22,51-53). Variations of CRRT might run 12 to 14 hours, 

especially during daytime periods of full staffing. This regimen has become more prevalent 
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in Europe and has been called "go slow dialysis." The major advantage of continuous 

therapy is the slower rate of solute or fluid removal per unit of time. Thus, CRRT is 

generally better tolerated than conventional therapy, since many of the complications of 

intermittent hemodialysis are related to the rapid rate of solute and fluid loss.  

Severe sepsis and septic shock carry a high mortality and account for a large proportion of 

patients admitted to intensive care units (54-57). It is widely accepted that the release of 

large amounts of pro- and anti-inflammatory mediators that occurs in severe sepsis 

contributes to the development of multiple organ dysfunction syndrome (MODS) (8,58-60), 

including ARF. Theoretically, high-dose CRRT could remove mediators by convection 

and/or adsorption (44,61) and reduce mortality, even in the absence of ARF (62). However, 

most current clinical practice guidelines suggest that the traditional doses of CRRT used in 

ARF, with or without sepsis, are insufficient to remove these mediators and recommend 

using at least 35 ml/kg/hour of ultrafiltration (10,63). 

In order to assess the efficacy of CRRT in patients with severe sepsis or septic shock, we 

performed a systematic search in Medline, Embase, Web of Knowledge, Cochrane Library 

and Clinicaltrials.gov and a hand search of the retrieved studies. We included both 

randomised controlled clinical trials and subgroups of randomised trials that assessed the 

effect of continuous renal replacement therapies (at traditional or high doses) and reported 

clinical outcomes in adult patients with severe sepsis or septic shock (effect on mortality, 

hemodinamic effect, pulmonary function, etc.). Recently, two large randomised clinical trials 

in patients with ARF (ATN study (64,65) and RENAL study (66,67) have seriously 

challenged these recommendations. Additionally, four recent meta-analyses about 

effectiveness of CRRT in critical patients with ARF have described no impact on the 

mortality or secondary outcomes of these techniques. The uncertainty regarding the 

effectiveness of CRRT in patients with sepsis without renal failure is even greater. 

The results of systematic review about the efficacy in severe septic patients with ARF suggest 

that the addition of CRRT or its use at high doses does not improve the clinical outcomes of 

patients with severe sepsis or septic shock with or without ARF and irrespective of the 

technique used or the definition of ARF. Albeit conventional haemofiltration, haemofiltration 

using high cut-off filters, high volume haemofiltration and haemodiafiltration are clearly 

different, the results are consistent and homogeneous, evidencing a lack of effect. With regard 

to mortality, only one trial (68) reported a significant reduction in mortality. However this was 

a small study (based on 28 events) (69), which was stopped early by benefit (70-72), which 

reported an unusual reduction in mortality (risk ratio of 0.31). Therefore, there is a high 

probability that it was a false positive. After exclusion of this trial, the heterogeneity was 

greatly reduced and the pooled relative risk was 1.  

A specific consideration should be done with respect to three studies comparing 

conservative treatment versus CVVH or high volume haemo-filtration (37,73), or in patients 

without ARF (8) respectively. Although it is doubtful whether these studies should be 

analysed together due to differences in design, a subgroup analysis did not reveal any 

subgroup effect.  
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Only one study (64) included different types of renal replacement therapies, specially 

continuous and intermittent, showed specifically that the schedule of application of renal 

replacement therapies was not a factor capable to modifying the effect on mortality. 

With respect to other outcomes such as improvement in haemodynamic status or 

pulmonary oxygenation, much of the available evidence comes from animal and non-

randomised studies (mainly pre-post studies without external control groups (35,74-76) not 

included in this review. However, the evidence based on randomised controlled trials is 

consistent with that of mortality. Only one study with significant methodological limitations 

reported a reduction in the use of vasopressors in the experimental group (36), and none of 

the trials reviewed reported an improvement in gas exchange, duration of mechanical 

ventilation, development of MODS or length of stay. Respect to other outcomes, two recent 

meta-analyses (77,78) found no effect of high-dose renal replacement therapy on dialysis 

dependence or length of stay in patients with ARF.  

We did not detect any difference of effect of haemofiltration according to the three groups of 

doses used. However, only two small studies used doses higher than 65 ml/kg/hour. The 

dose for attaining a sepsis could very likely be different from the dose used for renal 

support in ARF. Currently there is an ongoing randomised clinical trial (79) addressing this 

issue. In any case, the results of our review do not support the routine use of doses higher 

than 35 ml/kg in patients with severe sepsis with or without ARF. 

Similarly, this review is limited to studies comparing high-dose haemofiltration-

haemodiafiltration or standard haemofiltration-haemodiafiltration versus traditional dosage or 

no haemofiltration. Thus, the study results cannot be generalised to other haemofiltration 

techniques with dialysis (e.g. highadsorption filters, filters of high porosity or plasmapheresis). 

A further limitation of studies is that six of the 12 studies which met the inclusion criteria 

were actually not designed to study patients with severe sepsis and septic shock. These 

studies evaluated patients with ARF and some had very low numbers of septic patients. 

Furthermore, these groups of septic patients may not have been defined in the same way 

across studies. Therefore, the external validity of our study is limited by the scarcity of 

randomised controlled trials addressing specifically clinical outcomes of renal replacement 

therapies in septic patients. Indeed, almost all the studies that compared high versus low 

doses were performed in patients with ARF. The effect of high doses in septic patients 

without acute kidney injury therefore cannot be fully evaluated until well-designed and 

powered trials are performed. 

Finally, the efficacy of haemofiltration in patients with non-infectious systemic 

inflammatory response syndrome is beyond the scope of this chapter. It is possible that 

patients with systemic inflammatory response syndrome (post-cardiac arrest syndrome (80), 

severe trauma (81,82), pancreatitis (83), severe burns (84) experience a massive release of 

mediators and therefore may benefit from early haemo-filtration. In contrast, patients with 

sepsis undergo haemofiltration at a later stage in the course of the disease. It can be 

hypothesised that the haemofiltration in patients with sepsis is performed outside the 

therapeutic window when organ damage has already occurred. Further research is needed 

to address this issue. 
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5. Conclusions 

Regarding these theoretical limitations and potential deleterious effects, it is clear that we 

can not indicate sistematically hemofiltration in sepsis and SMDO according to hypothesis, 

however attractive they may be. We have to assess the use of these techniques derived from 

the knowledge of studies with scientific evidence. The systematic review of the Literature 

gives us the following conclusions: 

1. Is not very strong the evidence that ultrafiltrate obtained from the septic patient's 

employing continuous hemofiltration remove any clinically important mediator. This is 

not so with respect to the NTF and the IL-1, two proinflammatory cytokines that are 

believed to play an important role in the pathogenesis of inflammatory syndrome 

(Evidence Class IIa or evidence for its usefulness or effectiveness) (85-87). 

2. Most animal models using endotoxic or bacterial stimulus or suggest that 

hemofiltration plays a beneficial effect on survival. However, when we use a true model 

of infection in humans, nobody has been able to show beneficial effects. Clinical studies 

do not establish, nor excluded, a positive impact on mortality (Evidence Class IIb 

evidence or less evidence for utility and effectiveness) (88,89). 

3. Experimental animal models of hypodynamic sepsis, again with the exception of true 

infection model, suggest that continuous hemofiltration allows the extraction of cardio 

depressor mediators, thereby producing a beneficial effect greater the higher filtration 

rate. Also controlled clinical studies show an attenuation of the hemodynamic response, 

suggesting a modulation of the inflammation (Evidence Class I or evidence or general 

agreement beneficial use, useful and effective) (90-94). 

4. When analyzing the oxygen transport respiratory parameters they demonstrated a 

strong evidence of improved oxygenation and peripheral oxygen extraction with the 

use of continuous hemofiltration (Evidence Class I or evidence or general agreement 

beneficial use, useful and effective). The mechanism It is not clear. It may be reflect an 

improvement in blood flow through redistribution to peripheral level in hypoxic cells, 

or it may be that there are circulating factors that are eliminated by hemofiltration and 

they are responsible for the inadequate peripheral oxygen extraction (95). 

5. Finally, the beneficial effects observed with hemofiltration it may be not necessarily 

attributed to the removal of inflammatory mediators. Some of these findings may be 

explained by reduced temperature, handling of the water balance (reducing the water 

extravascular lung or optimizing the Starling curve of patients) or metabolic changes (as 

may be the correction of acidosis), which increases the effect of catecholamines 

(5,6,15,96,97). 

In summary, Continuous Renal Replacement Therapy (CRRT) may be required in patients 

with severe ARF. Although most patients are treated with hemodialysis, an alternative 

approach is the use of CRRT. A number of possible differences between intermittent 

hemodialysis and CRRT include hemodynamic stability, solute removal, removal of 

substances in those with sepsis, and effects on mortality. However, the best evidence 

available does not support the routine use of CRRT in patients with sepsis. Further research 
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is necessary regarding the efficacy of early high-dose CRRT in patients with severe systemic 

inflammatory response syndrome of non-infectious origin. 
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