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1. Introduction 

1.1. Background and brief history  

The definition for dielectric constant relates to the permittivity of the material (symbol use 

here ε). The permittivity expresses the ability of a material to polarise in response to an 

applied field. It is the ratio of the permittivity of the dielectric to the permittivity of a 

vacuum. Physically it means the greater the polarisation developed by a material in an 

applied field of given strength, the greater the dielectric constant will be. Traditionally 

dielectric materials are made from inorganic substances eg. mica and silicon dioxide. 

However polymers are gaining wider use as dielectric materials. This is due to the easier 

processing, flexibility, able to tailor made for specific uses and better resistance to chemical 

attack. As early as mid-60’s polymers eg polyvinyl fluoride [1] and aromatic-containing 

polymers [2] are used as dielectric materials in capacitors. Further improvement in organic 

film fabrication was established as revealed in US Patent 4153925. Polymers can be 

fabricated fairly easily into thin film by solution casting and spin coating, immersion in 

organic substrate, electron or UV radiation and glow discharge methods. This is mainly due 

to lower thermal properties such as glass transition and melting temperature which 

contribute to a lower temperature processing windows. Their solubility is controllable 

without offsetting their intrinsic properties. In the case of inorganic material and ceramic, 

they have much higher thermal properties hence temperature requirement leads to an 

extreme end of processing temperatures. On the other hand polymers cannot stand too high 

a temperature. Their coefficient of thermal expansion is relatively larger than ceramic 

materials and susceptible to atmospheric and hydrolytic degradation. Table 1 shows the 

values of dielectric properties of several polymers with comparisons with several inorganic 

materials.  

Inorganic/ceramics materials have higher dielectric constant than polymers. Water has a 

relatively high dielectric constant. This is quite cumbersome as any traces of moisture 

trapped or absorb will dramatically alter the desired dielectric properties. Inorganic 
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materials generally have higher dielectric constant compared to polymeric materials. 

Intrinsically they contains ions and polar groups which contribute to their high dielectric 

constant. Air having a dielectric constant of 1.02 is taken as reference dielectric. 

 

Materials Dielectric constant, ε Materials Dielectric constant, ε 
TiO2 100 Fluorinated polyimide 2.5 – 2.9 

H2O 78 Methylsilsesquioxane 2.6 – 2.8 

neoprene 9.8 Polyarelene ether 2.8 – 2.9 

PVDF 6.0 Polyethylene 2.3 – 2.7 

SiO2 3.9 – 4.5 Polystyrene 2.5 – 2.9 

Fluorosilicate glass 3.2 – 4.0 Teflon AF 2.1 

Polyimide 2.8 – 3.2 Air 1.02 

Table 1. Dielectric constant of several polymers and inorganic materials. (Adapted from Ref 3) 

1.2. Application of polymeric dielectric materials.  

Both dielectrics with low and high dielectric constant are essential in electronic industries. 

Low dielectric constant is required basically as insulators. They are known as passivation 

materials. Their applications ranged in isolating signal-carrying conductors from each other, 

fast signal propagation, interlayer dielectric to reduce the resistance-capacitance (RC) time 

delays, crosstalk and power dissipation in the high density and high speed integration [4]. 

They are of necessity in very dense multi-layered IC's, wherein coupling between very close 

metal lines need to be suppressed to prevent degradation in device performance. This role 

involve packaging and encapsulation. In electronic packaging, they separate interlayers and 

provide isolated pathways for electronic devices connection in multilayer printed circuit 

boards. As the trends are towards miniaturization in microprocessor fabrication, any 

decrease in relative permittivity will reduces the deleterious effect of stray and coupling 

capacitances. Dielectric naterials are also employed to encapsulate the balls which bridged 

the die and substrate. This encapsulation is specifically called underfill which helps to 

protect any circuitary failures as well as reducing thermal mismatch between the bridging 

layers.(Figure 1) In LED encapsulation low dielectric materials is used for insulation at the 

lead frame housing. 

 

 

Figure 1. Application of dielectric polymers in IC packaging 
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As an active components, designing is geared towards high ε value and are used as 

polarizable media for capacitors, in apparatus used for the propagation or reflection of 

electromagnetic waves, and for a variety of artifacts, such as rectifiers and semiconductor 

devices, piezoelectric transducers, dielectric amplifiers, and memory elements. Despite 

being insulators, hence non-polar, these materials can be made polar by introducing small 

amount of impurities. In this state, the material is able to store large amount of charges at 

small applied electrical field. This is the case with polyvinylidene fluoride when introduced 

with impurities chlorotrifluoroethylene.[5] Indeed several works have been performed on 

polymers like polyimide with added Al2O3, BaTiO3 and ZrO3 ‘impurities’ [6,7,8] which 

showed an improved dielectric constant. Once there is large charge storage, it can be readily 

released on demand. In a rectifier, a capacitor is used to smooth off the pulsating direct 

current.  

2. Theory of dielectric properties in polymer 

2.1. Mechanism of interaction with electric field 

Quantitative treatment of a dielectric in an electric field can be summarized using Clausius–

Mossotti equation (1).  
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P is the molar polarisability, ߝ௥ is the relative permittivity, ߝ௢ is the permittivity in vacuum, 

M is molecular weight of a repeat unit, ρ is density, ߙ is polarisability, Na is the Avogadro 

constant. This equation shows that dielectric constant is dependent on polarisability and free 

volume of the constituents element present in the materials. Polarisability refer to the 

proportionality constant for the formation of dipole under the influence of electric field. 

Thus its value is typical for each different type of atom or molecule.[9] The relation between 

polarizability with the permittivity of the dielectric material can be shown as in Equation (2): 

 0

1r

N


 
         (2) 

It shows that relative permittivity	ߝ௥ is the ratio of total permittivity of one mole of material 

with that in vacuum. The dependency of free volume of relative permittivity thus originate 

from the volume involved in one mole of the material. Again the molar volume is 

characteristic of each different type of atom or molecule. Molar polarization therefore is 

obtained if the molar volume is introduced into these derivations leading to Clausius–

Mossotti equation.  

Physically, polarisability is induced when there is electric field applied onto the materials. 

In the absence of electric field, the electrons are distributed evenly around the nuclei. 
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When the electric field is applied the electron cloud is displaced from the nuclei in the 

direction opposite to the applied field. This result in separation of positive and negative 

charges and the molecules behave like an electric dipole. There are three mode of 

polarizations [10]: 

i. Electronic polarization – slight displacement of electrons with respect to the nucleus. 

ii. Atomic polarization – distortion of atomic position in a molecule or lattice 

iii. Orientational polarization – For polar molecules, there is a tendency for permanent 

dipole to align by the electric field to give a net polarization in that direction  

When a static electric field is applied on to these materials the dipoles become permanently 

polarized giving a dielectric constant as εstatic. However if the field changes as when 

alternating electric current is applied, polarization will also oscillate with the changing 

electric field. All three modes of polarization contributing to the overall dielectric constant 

will be dependent on the frequency of the oscillating electric field. Obviously the electronic 

polarization is instantaneous as it is able to follow in phase with the changing electric field 

compared to atomic polarization which in turn better able to follow the oscillating electric 

field compared to the orientational polarization. Certain structures and elements display a 

higher polarisibility than the others. Aromatic rings, sulphur, iodine and bromine are 

considered as highly polarisable. The present of these groups induced an increase in 

dielectric constant. The π bond in the aromatic rings is loosely attached compared to the 

sigma bond. Therefore it is easily polarized. For large size atoms like bromine and iodine, 

the electron cloud is so large and further apart from the influence of electrostatic attraction 

of the positive nucleus. It is expected to display a high polarisibility. This is as oppose to 

fluorine which has small atomic radius and concentrated negative charge. It is able to hold 

the electron cloud much tightly resulted in a low polarisability. This will induce a lower 

dielectric constant.  

Free volume is also an important factor in determining the dielectric constant. Free 

volume is defined as the volume which is not occupied by the polymeric material. The 

free volume associated with one mole of repeat units of the polymer may be estimated by 

subtracting the occupied molar volume of a repeat unit, Vo, from the total molar volume, 

M/ρ, where M is the molar mass of the repeat unit. [10] The fractional free volume Vn is 

given by Equation (3):  
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The addition of pendant groups, flexible bridging units, and bulky groups which limit chain 

packing density have been utilised to enhance free volume. [21] The presence of free volume 

in the form of pores will similarly result in a decrease in dielectric constant as it being 

occupied by air whose relative permittivity is about one. A higher fractional free volume 

means that the density of the material will be lower resulting in a lower polarisible group 
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per unit volume. Replacement of hydrogen with fluorine result in lowering of dielectric 

constant since fluorine occupies higher volume. Thus beside being low polarisability, 

introduction of fluorine induce a significant decrease of dielectric constant through an 

increase in free volume.  

2.2. Effect of chain polarity 

Polymers can be polar or non-polar. This feature affect significantly the dielectric properties. 

Examples of polar polymers include PMMA, PVC, PA (Nylon), PC while non-polar 

polymers include PTFE (and many other fluoropolymers), PE, PP and PS. Under alternating 

electric field, polar polymers require sometime to aligned the dipoles. At very low 

frequencies the dipoles have sufficient time to align with the field before it changes 

direction. At very high frequencies the dipoles do not have time to align before the field 

changes direction. At intermediate frequencies the dipoles move but have not completed 

their movement before the field changes direction and they must realign with the changed 

field. The electronic polarization and to some extent atomic polarization, is instantaneous 

weather at high or low frequency for both polar and non polar polymers. Therefore, polar 

polymers at low frequencies (eg 60 Hz) generally have dielectric constants of between 3 and 

9 and at high frequencies (eg 100 Hz) generally have dielectric constants of between 3 and 5. 

For non-polar polymer the dielectric constant is independent of the alternating current 

frequency because the electron polarization is effectively instantaneous hence they always 

have dielectric constants of less than 3. The chain geometry determines whether a polymer 

is polar or non-polar. If the polymer is held in a fix confirmation, the resulting dipole will 

depend whether their dipole moments reinforce or cancell each other. In the case of 

extended configuration of PTFE, the high dipole moment of –CF2- units at each alternating 

carbon backbone cancelled each other since their vector are in opposite directions. Its 

dielectric constant therefore is low (2.1). On the other hand, PVC has its dipole moment 

directing parallel to each other resulting in reinforcement of dipole. Its dielectric constant is 

4.5. This is illustrated as in Figure 2. 

  

Figure 2. PTFE (a) and PVC (b) with arrow showing the net dipole moment. 

The designing of dielectric material so as to achived the desired dielectric properties should 

take careful consideration of net polarity of the structure. This has been exemplified by the 

opposite effect in indiscriminately subsitituting fluorine atom into a polyimide chain 

resulting in an increase in otherwise low dielectric constant material.[11] There is no dipole 

polarization contribution for non-polar polymers as found in polar polymers. This different 
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mode of mechanism lead to the resonance spectra in the case of electronic polarization 

which occur at frequency beyond 1012 Hz. At below this frequency, the relaxation spectra 

prevail relating to the behavior of dipole polarization. This observation can best be 

summarized as in the following Figure 3: 

 

Figure 3. Dielectric constant and loss dispersion of dielectric materials against frequency (adapted from 

Wikipedia) 

2.3. Relaxation and dielectric loss 

Relative permittivity can be express in complex form as in Equation (4) below: 

 
* j    

 (4) 

It consist of the real part which is dielectric constant and the imaginary part which is the 

dielectric loss. The ratio between the dielectric loss with the dielectric constant is quantified 

as tan δ ie: 

tan  
"

'
 


  

Dielectric loss result from the inability of polarization process in a molecules to follow the 

rate of change of the oscillating applied electric field. This arise from the relaxation time (τ) 
in a polymer which is the time taken for the dipoles to return to its original random 

orientation. It does not occur instatntaneously but the polarization diminished 

exponentially. If the relaxation time is smaller or comparable to the rate of oscillating electric 

field, then there would be no or minimum loss. However when the rate of electric field 

oscillate well faster than the relaxation time, the polarization cannot follow the oscillating 

frequency resulting in the energy absorption and dissipated as heat. Dipole polarisability is 

frequency dependent and can be shown as in Equation (5) 
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where αd is the dipole polarisability and αo is the low frequency (static) polarisability.  

It normally occur in the microwave region. Figure 3 above shows the variation in real 

dielectric constant with the imaginary dielectric loss. There is a sudden drop in dipole 

polarization region (< 1012 Hz) for dielectric constant ε accompanied with the maximum 

dielectric loss ε”. This maximum represent the complete failure for the dipole to  

follow the oscillating electric field beyond which the dipole remain freeze with no 

effective contribution to the dielectric constant. The mechanism for electronic and  

atomic polarization occur at higher frequency (shorter wavelength eg. infra-red region).  

This region involved excitation of electrons which is characterized by the quantized 

energy level hence is known as resonance behaviour. The dielectric constant display a  

maximum before a symmetrical drop about a certain frequency. These maximum and  

minimum represent the optimum polarization in phase with the oscillating frequency.  

The frequency at which the turning point occur is term the natural frequency ωo. At this  

point the frequency of applied electric field is at resonant with the natural frequency  

hence there is a maximum absorption. Consequently this lead to maximum dielectric  

loss ε’.  

2.4. Effect of temperature 

Temperature affect dielectric properties. As the temperature is increased  

the intermolecular forces between polymer chains is broken which enhances thermal 

agitation. The polar group will be more free to orient allowing it to keep up with  

the changing electric field. At lower temperature, the segmental motion of the chain is 

practically freezed and this will reduce the dielectric constant. At sufficiently higher 

temperature, the dielectric constant is again reduced due to strong thermal motion which 

disturb the orientation of the dipoles. At this latter stage the polarization effectively 

contribute minimal dielectric constant. Beside the kinetic energy acquired, free space  

in the polymer matrix is of necessity so as to induce segmental movement. Throughout 

the measured frequency and temperature, electronic and atomic polarization  

are spontaneous. The dipole polarization, on the other hand, would significantly be 

affected during heat treatment by effectively reducing the relaxation time (τ) since the 

polymer chain τ would reduced as the temperature is increased hence the polymer 

segment would be better able to follow in phase with the oscillating electric field. 

Significant chain and segmental motions occur in polymers and they are identified as 

follows [39]: 

i. α relaxation: Micro-Brownian motion of the whole chain. Formally this motion is 

designated as glass transition.  

ii. β relaxation: Rotation of polar groups about C-C bond eg. CH2Cl and –COOC2H5, 

conformational flip of cyclic unit.  

iii. γ relaxation: libration of phenyl ring and limited C-H segmental chain movement.  
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The dielectric loss will show maxima at respective relaxation mechanisms as the 

temperature is increased. The loss in dielectric can be schematically represented as in the 

following Figure 4 

  

Figure 4. Schematic dielectric loss curve for polymer as temperature is increased. 

The γ relaxation occur at lower temperature as it involved small entities of phenyl rings and 

C-H units whose motion are readily perturbed at low thermal energy. This is followed by β 

relaxation and finally α relaxation corresponding to the longer scale segmental motion. The 

broadness for each peaks signify dispersion in relaxation time as the result of different local 

environment of polarisable groups. 

3. Structure-properties relationship.  

3.1. Dielectric relaxation. 

The earliest model of relaxation behavior is originally derived from Debye relaxation model 

[12] In this model, real and imaginary part of dielectric constant can be represented as in 

Figure 5 

 

Figure 5. Debye dielectric dispersion curve. 
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where  
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This model relates the dielectric properties with the relaxation time. The relationship 

between ε’and ε’’ can be formulated by eliminating the parameter ωτ to give Equation (6):  
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This is a form of a semispherical plot which is popularly known as Cole-Cole plot. See 

Figure 6. 

 

Figure 6. Cole-Cole Plot showing the relationship between dielectric constant and dielectric loss. 

The plot shows that at dielectric constant of infinite frequency, ε∞ and static dielectric 

constant, εs there will be no loss. Maximum loss occur at the midpoint between the two 

dielectric values. The larger the different between the static and infinite dielectric constant, 

the higher will be the loss. This model fit very well with polar small molecular liquids. 

However, polymeric materials are bigger in size, higher viscosity with entanglement 

between chains. This contribute to visco-elastic properties which requires some 

modifications to the original model. It can be noted that the above relationship involved 

only one specific relaxation time. This is contrary in polymeric system whose relaxation time 

is dependent on mobility of dipoles which behave differently in varying local environments. 

This result in distribution in relaxtion time. Modification include Cole and Cole 

semiemperical equation [13] Davidson and Cole [14] Williams and Watt [15] and Navriliak 

and Nagami [16]. The last modification lead to the new equation (7): 
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where α and β is in the range 0 and 1. No physical meaning as yet is assignable to these 

parameters.[17] This modification result in a broader peak and smaller loss value with 

asymmetrical in features. The behaviour of dielectric constant and loss at variable 

frequencies and temperatures is exemplified in the following Figure 7 for 

polyvinylchloride. 

 

 

Figure 7. Plot of dielectric constant (a) and dielectric loss with the change in frequency and temperature 

for polyvinylchloride. (From Ref 18) 

Figure 7a shows the variation of ε’ and ε” at the region of glass transition (85 0C) of 

polyvinylchloride. At the onset of glass transition the PVC showed a relatively low dielectric 

constant of 4.1 to 3.2 within the measured frequency range. With the increased in 

temperature, chain mobility begin to increase thus reducing the relaxation time. The dipole 

polarization of the polymer chain is better able to align in phase with the changing 

frequency and this account for the increase in dielectric constant as the temperature is 

increased. However this alignment with the applied oscillating field gradually failed as the 

frequency is increased. The optimum rate of decreased of dielectric constant occur at higher 

frequency as the temperature is increased. This correspond to the maximum dielectric loss 

in Fig 7b. Based on Cole-Cole plot, when there is a big difference in static and infinite 

dielectric constant, as under high thermal treatment, then the dielectric loss will be 

correspondingly large. It can be noted that at temperature 128 oC, there is a large dielectric 

loss occurring at higher frequency compared to those of lower temperature. Glass transition 

of polymer is a vital consideration that need to take into account during use of polymers as 

this affect the dielectric properties substantially. Substitution of fluorine into polyimide, for 

example, only affect the electronic polarization since PI is mostly used at temperature lower 

then its Tg (<260 oC). At this temperature, no effective polar orientation occurr which reduce 

any possibility of intrusion effect from this mechanism into the dielectric properties. The 

following Table 2 present the dielectric constant and loss of commercially used polymers.  

(a) (b)
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Material Dielectric constant (ε’) Loss tangent (tan δ) Frequency (Hz) 

ABS (plastic) 2.0 – 3.5 0.005 – 0.0190  

Butyl rubber 
2.35 

2.35 

0.001 

0.0009 

1 MHz 

3 GHz 

Gutta percha 2.6   

HDPE 1.0 – 5.0 0.00004 – 0.001  

Kapton (Type 100) 

              (Type 200) 

3.9 

2.9 
  

Neoprene rubber 
6.26 

4.0 

0.038 

0.34 

1 MHz 

3 GHz 

Nylon 3.2 - 5   

Polyamide 2.5 – 2.6   

Polycarbonate 2.8 – 3.4 0.00066 – 0.01  

Polypropylene 2.2   

Polystyrene 2.5 – 2.6 
0.0001  

0.00033 

100 MHz 

3 GHz 

PVC 3   

Silicone (RTV) 3.6   

Teflon (PTFE) 2.0 – 2.1 
0.0005 

0.00028 

100 Hz 

3 GHz 

Table 2. Dielectric parameters for some polymers at various frequencies. 

3.2. Effect of cross-link between chains 

Polymers are often cross-linked to improve their properties. The cross linking or curing 

process can be conveniently monitored based on relaxation time changes with the progress 

of reaction. This is exemplified during curing of diglycidylether bisphenol A (DGEBA) with 

diethyltetraamine (DETA)[19]. During the cross-linking process, the chains are covalently 

bonded to each other which induce chain rigidity.  

 

Scheme 1. Affect of crosslink network on rigidity of polymer chains 

This rigidity is proportional to cross-link density henceforth affecting the change in 

relaxation time. This can be illustrated in the following Figure 8: 

Uncross-link chains  Cross-link network 
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Figure 8. Effect of degree of reaction on the α and β relaxation time of DGEBA-DETA system 

Figure 8 shows that both the α and β relaxation time increase with the increase in amount of 

cross-linking reaction. With the increase in cross-link density, the polymer chains are mostly 

bounded to each other much tighter hence inducing a longer time to return to their original 

equilibrium configuration. The rate of increase in α relaxation is higher as it approaches 

glassy state compared to β relaxation as the former relates to the segmental chain motion of 

larger in scale compared to the latter. The dielectric constant ε and loss is illustrated in the 

following Figure 9. In Figure 9a there is a significant drop in dielectric constant which 

correspond to the maximum frequency for dielectric loss in Figure 9b . This transition 

represent the frequency at which the dipole polarization is completely out of phase with the 

applied oscillating electric field. The maximum frequency ωmax of dielectric loss was 

extracted and applied into the equation τ = 1/ ωmax to yield the α relaxation time. It can be 

observed that as the level of curing is increased the maximum dielectric loss shift towards 

lower frequency while the change in dielectric constant at αstatic with αinfinity become 

diminished. This behaviour represent the gradual transition from the rubbery state to glassy 

state of the polymer with the increase of cross-link density. 

3.2.1. Polarizability and free volume 

Polarizability and free volume are two important factors that influence the dielectric 

properties as formulated in the Clausius–Mossotti equation. These effects can be 

exemplified by introducing fluorine into a polymer chains.[20] Fluorination of polyimide 

film was performed through gaseous phase in a vacuum chamber. The impregnated fluorine 

content was determined using XPS analysis and the dielectric constant is shown as in 

following Table 3: 
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Figure 9.  Effect of cross-link density on dielectric constant (ε’ above) and dielectric loss (ε” below) for 

DGEBA-DETA system 

 

 
 

Scheme 2. Repeat unit of the polyimde (from Ref 20) 

Frequency(Hz) 
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Sample F1s/C1s(%) 
Dielectric constant,ε 

102(Hz) 106 (Hz) 

F0 0 2.93 2.90 

F2 57.8 2.64 2.60 

F3 67.7 2.42 2.41 

F4 78.6 2.28 2.27 

F5 87.4 2.37 2.26 

Table 3. The effect of Fluorine content on the dielectric constant of a polyimide 

Similar result was obtained in a series of polyimides synthesised from starting monomers 

bearing varying percentage of fluorine content. [21] The decreased in dielectric constant as 

the fluorine content is increased can be explained as due to the low polarizability of fluorine. 

The electrons of fluorine being very tightly held and close to the nucleus. The polarizability 

of the fluorinated polyimides is decreased as the number of fluorine atoms is increased, due 

to the lower electronic polarizability of a C–F bond relative to that of a C–H bond that has 

been displaced. [22,23] The free volume concomitantly increases due to the relatively large 

volume of fluorine compared with hydrogen, which reduces the number of polarizable 

groups per unit volume.  

The effect of free volume can be seen when introducing adamantane into a polyimide chain. 

[24] Adamantane is a bulky group which induce an increase in the free volume. The 

dielectric constant achieved was 2.7 at 1 KHz. This value is well below the commercial 

Kapton H film (25.4 μm) with a dielectric constant of approximately 3.5 at 1 kHz and 3.3 at 

10 MHz. Besides, hydrophobicity was reduced thus preventing absorption of moisture. Low 

dielectric loss is important for a good capacitors and insulation. The strategy of introducing 

bulky substituents is further exemplified in a commercial Avatrel™ dielectric polymer made 

up of polynorbonene for passivation applications. It has a dielectric constant of 2.55, a loss 

tangent less than 0.002. These electrical properties held constant up to above 1 GHz. The 

bulky structures in these polymers are illustrated in the following Figure 10: 

 

Figure 10. Adamantane structure incorporated into polyimide chain (a, from Ref 12) and the generic 

structure for polynorbonene (b). 

3.3. Dielectric breakdown  

Electrical breakdown occurs when the dielectric strength which is the maximum electric 

field applicable on dielectric material is exceeded. It underwent catastrophic failure leading 

(a) (b)
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to short circuit or blown fuse. This occurs when at a given applied voltage the heat 

generated due to the losses is greater than the heat dissipated and if the voltage is applied 

long enough period then the dielectric is unable to reach a state of internal thermal 

equilibrium. The favourable condition for the occurrence of breakdown is large thickness of 

the dielectric, high temperature of both the dielectric and the surrounding, continous 

application of high voltage and large dielectric loss (high tan δ). The last factor is the most 

important to occur at high frequency. The high humidity in air can similarly affect dielectric 

breakdown through electrolytic process. 

4. Designing of polymer dielectric materials 

Based on the preceding discussions, designing of polymer dielectric materials can be made 

using several approaches. The following examples review two approaches undertaken of 

late namely free volume and copolymerization. 

4.1. Free volume 

Based on Maxwell-Garnet theory, the presence of second phase of lower dielectric constant 

in a composite will affect a significant decrease in dielectric constant.[25] This concept was 

applied in generating foam structure with the introduction of air-filled pores. At least two 

methods were utilised. One is to synthesised block copolymer of different thermal lability 

[26] and the other is performing solution etching of soluble component in a composite 

matrix. [27] The former method involved the use of block copolymer composed of high 

temperature and high Tg polymer and a second component of lower thermal property 

which can preferentially undergoes thermal decomposition. One of such a triblock polymer 

is shown below: 

 

Scheme 3. Triblock polyimide structure illustrating the thermally labile and stable segments. 

This triblock composed of thermally stable polyimide and thermally labile phosphate ester 

block. This copolymer is subjected to thermal treatment such that the temperature is 

sufficient to degrade the thermally labile block and leaving the thermally stable block intact. 

A small size scale of microphase saparation is then generated with spherical pore 

morphology, monodispersed in size and discontinuous. These nanopores are filled with air 

(ε = 1.0) which is responsible for the reduction in dielectric constant. Thermally labile 

oligomers include polymethylstyrene, polypropylene oxide and polymethylmethacrylate. 



 

Dielectric Material 18 

Nanofoam with dielectric constant of 2.3 was achievable with system made-up from 

PMDA/4BDAF/PPO triblock of void volume 16%. Figure 11 illustrate the relationship 

between the void content with the dielectric constant for PMDA/3FDA/PPO triblock 

system.[28] 

 

 
 

Figure 11. Relation between the dielectric constant with the void fractional volume in 

PMDA/3FDA/PPO triblock system. 

In solution etching method, porosity were achieved by solution etching of soluble 

component in a nanocomposites leaving the chemically stable matrix intact. This was 

attempted using polyamic acid, a polyimide prepolymer, as the matrix while inorganic 

TEOS was incorporated through sol-gel method. Once the inorganic phase was 

homogeneously distributed in the polymer matrix, the composite was thermally cured 

followed by hydrofluoride etching. This will dissolved away the acid labile inorganic phase 

with the generation of nanosize closed cell pore of uniform density. The steps involved 

during its fabrication is illustrated as in the following Scheme (4): 

  

Scheme 4. Preparation of porous Polyimide using sol-gel method  

The level of porosity is dependent on the TEOS content incorporated into the polymer 

matrix. Table 4 shows the dependence in dielectric constant on fluorine content and level of 

porosity based on TEOS content added during the materials fabrication 
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F (Wt %) 0% TEO 10% TEOS % TEOS 

0 2.71 2.84 3.41 

15 2.45 2.71 3.25 

17 2.61 2.69 3.18 

33 2.50 2.62 2.98 

Table 4. Dielectric constant of a series of polyimides at varying TEOS content 

The results above display a general trend of decreasing dielectric constant as the TEOS 

concentration used during sol gel technique were increased. This was ascribed to an 

increased in void structures which reduced the dielectric property as the result of the 

presence of air. There was a linear decreased in dielectric constant as the weight percent of 

fluorine content in the structures were increased. Further the rate of decrease is almost 

constant between different TEOS content. Of the four synthesized polyimides, BAPP-BPDA 

showed the highest dielectric constant since this sample contains no fluorine.  The SEM 

picture for the fracture surface morphology is shown in the following Figure 12. 

 

 

Figure 12. SEM scan of fracture surface of pure (a) PI/SiO2 10% (b) and PI/SiO2 20 % porosity (c) 

Simpsons et al [21] concluded that the presence of fluorine increases the free volume, lower 

electronic polarization and can either increase or decrease the dielectric constant depending 

on whether the substitution of the atoms are symmetric or asymmetric. 

(a) (b) (c) 
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4.2. Copolymerisation 

Copolymerisation of two or more polymers together is a strategy to produce a new 

materials of tailored dielectric properties. In copolymersation, two or more different 

monomer units were covalently bound thus producing a synergesic effect of respective 

constituents. Copolymerisation of polyimide with polysiloxane is popularly performed due 

to the complementary chemical and mechanical properties between the two. The polyimide 

has superior thermal and mechanical properties but too intractable to normal processing 

methods. For example the modulus of polyimides are in the range of 109 to 1012 Pa but their 

Tg are above 260 oC. On the other hand the polysiloxane is flexible and easily processable 

beside having a stable thermal degradation (> 400 oC). Copolymers of these materials 

produce an optimized dielectric material of practical application for several electronic 

packagings. Attempt was made with the following structures. [29]  

 

Scheme 5. Series of PI-polysiloxane copolymers 

Their dielectric constant are shown in the following Table 5: 

 

Sample Dielectric constant at 1 kHz 293 oC n (Si-O repeat unit) 

S1 2.90 0 

S2 2.57 1 

S3 2.43 34 

Table 5. Effect of silicone content in silicon-polyimide copolymers on dielectric constant. 

The table above shows there is a decreasing trend in dielectric constant with the increase in 

siloxane units. Silicon is comparatively larger than a carbon atom and the Si - O bond is more 

flexible than the C - C bond. Thus, the bulky silicone units would be less mobile. Its presence 

affects the bulk movement of the whole polyimide network which reduces the efficiency of the 

dipole in reacting to polarity change during treatment with an alternating frequency. 

Furthermore, the molar polarization significantly decreases as the result of an increase in free 
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volume. Several recent studies have demonstrated a similar trend of a decreasing dielectric 

constant, with an increasing siloxane content into polyimide structures [30,31]  

5. Composites 

The traditionally used inorganic material as a dielectric possesses several superior qualities 

such as excellent thermal, dielectric and magnetic properties. However they are brittle and 

consume high energy for processing. [32] On the other hand polymers are more flexible, 

strong resistivity and offer a tractable prosessibility. The disadvantages of polymeric 

materials are that they possesses lower thermal and dielectric properties. Combining the 

two materials in the form of nanocomposites offer an alternative in fabricating material of 

synergesic properties which displayed a tremendous improvement in dielectric properties 

with high flexibility and ease of processing. Their combination could readily geared towards 

miniaturization of electronic devices fabrication.  

5.1. Polyimide-ceramic composites 

Of late several attempts were made towards this strategy. Incorporation of alumina (Al2O3), 

barium titanate (BaTiO3), titania (TiO2) and zirconia (ZrO2) into PI matrix were attempted.. 

[33,34] Several methods were employed in preparing these nanocomposites. It has been 

established that method of preparation affect the dielectric properties of these materials. A 

nanocomposite of PI/Al2O3 was prepared by mechanical stirring of prepolymer polyamic acid 

with the inorganic filler followed by thermal curing. [35] The nanocomposite showed an 

improved dielectric constant compared to a neat polymer material from about 3.0 to 3.4 at 1 

MHz. This values increases correspondingly with the amount of filler loading. A further 

increase in dielectric constant was achieved when mixing was performed using 

ultrasonication. It has been shown from SEM result that this improvement was due to a better 

mixing during the latter treatment. Under these processes, the crystal structure of the 

inorganic fillers remains intact as shown by XRD data. The effect of good miscibility in 

improving the dielectric constant was proven when using a 3-Aminopropyltrimethoxysilane-

treated (APS) ultrasonication. The APS served as an interface layer between the two 

immiscible organic PI with inorganic filler which reduced any agglomeration between the 

different phases. This is brought about possibly through the formation of hydrogen bond 

between the amine moeity of APS with the polar group of polyimide while the inorganic part 

of the methoxysilane of APS form secondary interaction with the inorganic fillers. Figure 13 

reveals the SEM images of PI/ Al2O3 composites doped by the treated Al2O3 powder. 

PA0 demonstrated a neat and clean morphology. The Al2O3 particles were homogeneously 

dispersed into PI matrix in all PA10, PA20 and PA30. The inset images revealed the average 

size of Al2O3 was around 2µm - 4µm. There was no obvious aggregation observed suggesting 

the improved compatibility between PI matrix and Al2O3 attributed to the APS coupling agent. 

The bahaviour of PI-nanocomposites for BaTiO3, TiO2 and ZrO2 displayed similar trend with 

that of PI-Al2O3 nanocomposites. They can be summarized as in the following Figures 14:  
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Figure 13. The morphology of PA0, PA10, PA20 and PA30 (a, b, c and d), respectively. 

 

Figure 14. Dielectric constant of PI/inorganic (a) with 30 wt% inorganic content at varying frequency 

and (b) at 1MHz for several type of inorganic fillers. 
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All composite systems displayed a decreased in dielectric constant with the increase in 

frequencies. The dielectric constants increased as the inorganic filler content were increased. 

This can be attributed to the increase in polarizability group with the incorporation of the 

inorganic fillers which replace significant part of the PI in the matrix. As the result the 

polarizable units per unit volume and the space charge polarizability which occurred at the 

interfaces between PI matrix and inorganic particles were increased. Fig 13(a) shows the 

dielectric constant of PI/BaTiO3 composite films demonstrating the highest value of 

dielectric constant followed by PI/TiO2, PI/Al2O3, PI/ZrO2 and neat PI films. Apparently this 

property is dependent on the dielectric constant of the respective fillers. BaTiO3 was known 

to display highest value of dielectric constant [36] followed by TiO2, ZrO2 and Al2O3 in their 

neat form. BaTiO3 possesed perovskite structure which is capable to polarize in the absence 

of electric field. This feature remains in the composite as the crystal structure remains intact 

as established in XRD data. The low dielectric constant for PI/ZrO2 was attributed to the 

poor compatibility between phases resulted in the presence of voids and even led to cracks. 

The presence of voids naturally induce a low dielectric constant. 

5.2. Composite models 

Several models were proposed in predicting the dielectric constant of the composites which 

include Maxwell-Wagner model, Logarithmic Mixing Law and Bruggeman Model. [37] 

These models allow designing of composite materials based on respective dielectric constant 

of the polymer, inorganic filler, composition ratio as well as the filler sizes. The slight 

discrepancy of these models which do not fit to most composite systems are mainly due to 

inconsistency in treatment for the interphase interaction hence further modification is 

required. An interphase interaction factor, K, was introduced during fitting into this 

models.[38] A typical plot of composite dielectric constant with respect to the volume 

fraction of the fillers is illustrated in the following Figure 15: 

 

Figure 15. The prediction of the effective dielectric constant as a function of filler volume fraction for 

different K values. (a) The case of εpolymer > εfiller. (b) The case of εpolymer > εfiller (Adapted from Ref 38) 
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At K = 0, there is no interaction between phases while a high K values showed a strong 

interaction. This interaction also dependent on the filler sizes. For a given volume fraction 

filler, a smaller particle size has a larger fraction of interphase volume in the region between 

the filler and the matrix granting more polarization to operate. Thus they lead to a relative 

increase in dielectric constant.  

A major concern with polymer/ceramic composites is the heterogeneity in phase which lead 

to formation of cracks and voids. This effect is known as Maxwell-Wagner effect which 

reduce the dielectric constant. A more serious type of heterogeneity is that the composite 

comprised of conductive inorganic fillers which could lead to a mistaken interpretation of 

dipole polarization occurring at very low frequency region. 

6. Conclusion 

Polymers offer an alternative to the traditionally inorganic and ceramic material as 

dielectric amterials. This is due to their highly flexible, tractable processing,  

good chemical stability and readily tunable properties. The main drawback is they have 

lower thermal stability which limit their wider applications. Generally their dielectric 

constant is lower than non-polymeric materials. The mechanism which contribute to the 

dielectric properties are the interaction of electric field with electronic, atomic and dipole 

poalarization. These are dependent on polarizabity of constituents structure and the  

free volume as formulated in Clausius-Mossotti equation. The electronic and to some 

extent the atomic polarization are instantaneous throughout the measureable range of 

frequencies. However in dipole polarization there is relaxation time allowing an 

exponential decay of motion to return to equilibrium state. This different behavior 

contribute significantly to the values of dielectric constant and dielectric loss.  

These properties can be utilized to detect for any local or segmental motion during 

change in frequency and temperature treatment. Dielectric properties can be design by 

introducing polarizable groups into polymer chains, increasing free volume by inducing 

porosity as well as copolymerization. Increasing dielectric constant can be effectively 

made by producing nanocomposites with inorganic fillers possessing high dielectric 

constant.  
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