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1. Introduction 

Ferroelectrics are well known tunable dielectric materials. Permittivity of these materials can 

be controlled by an applied electrical bias field. Controllable permittivity leads to alteration 

of characteristics of tunable microwave components such as propagation constants, resonant 

frequency etc. However, dielectric losses in the ferroelectric-type tunable components are 

comparatively high and show substantial increase approaching to the millimetre waves due 

to fundamental physical reason. 

Alternative way to achieve controllability of characteristics in tunable microwave devices 

is mechanical reconfiguration. In this case the alteration of microwave characteristics can 

be attained by displacement of dielectric or metallic parts of devices. Mechanical tuning is 

very promising to produce low insertion loss combined with good tunability in 

microwave subsystems. In the case of ferroelectric technique of tuning, microwaves 

interact with the ferroelectric material which is a part of microwave line. That is why 

transmitted energy is partially absorbed by this material. On the contrary, mechanical 

system of control is located out of microwave propagation route so it does not contribute 

to the microwave loss. Moreover, it will be shown that dielectric losses have a trend to 

reduce in such devices. Mechanical control is valid at any frequency range, including 

millimetre wave range. 

Transformation of microwave characteristics could be described in terms of medium's 

effective dielectric permittivity (eff). Effective dielectric permittivity of inhomogeneous 

medium can be defined as dielectric permittivity of homogeneous medium, which brings 

numerically the same macro parameters to the system of the same geometrical 

configuration. Effective permittivity is convenient parameter to describe devices with TEM 

wave propagating, where propagation constant is proportional to eff , however it can be 

used to describe other devices as well. 
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Application of piezoelectric or electrostrictive actuators opens an opportunity for 

electromechanical control over effective dielectric permittivity in microwave devices [1]. 

However for such applications a tuning system should be highly sensitive to rather small 

displacement of device components. The key idea how to achieve such a high sensitivity of 

system characteristics to small displacement of device's parts is to provide a strong 

perturbation of the electromagnetic field in the domain influenced directly by the 

mechanical control. For that, a tunable dielectric discontinuity (the air gap) should be 

created perpendicularly to the pathway of the electric field lines. This air gap is placed 

between the dielectric parts or the dielectric plate and an electrode. An alteration of the air 

gap dimension leads to essential transformation in the electromagnetic field, and revising of 

components' characteristics such as resonant frequency, propagated wave phase, and so on. 

The goal of this chapter is to describe electromagnetic field phenomena in structures suitable 

for electromechanical control of effective dielectric permittivity. 

2. Dispersion properties of one-dimensional dielectric discontinuity 

Simplest structure suitable for electromechanical alteration of microwave characteristics is 

presented in Figure 1. In this structure two dielectrics are placed between infinite metal 

plates. The thickness d of the dielectric in the domain 2 may be variable. 

 

Figure 1. One-dimensional dielectric discontinuity 

Electromagnetic field of this structure can be described in terms of LM and LE modes. 

Transverse wavenumber of the LM mode can be found from dispersion equations: 
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where  1(2)
e
y is the transverse wavenumber in the region 1 or 2 respectively, 1(2) is the 

permittivity of the region 1 or 2 respectively, h and d are thicknesses of regions 1 and 2 
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respectively, 


k
c

 is the wavenumber in free space,  is the circular frequency, c is the light 

velocity in vacuum. 

Using equations (1) calculations of the transverse wavenumbers are carried out in a wide 

range of the permittivities and thicknesses of dielectrics in domains 1 and 2. It is found that 

the transverse wavenumbers as the solutions of equations (1) depend on frequency, 

permittivities of dielectrics and sizes of domains 1 and 2. Computed results are shown in 

Figure 2. This figure illustrates a dependence of normalized transverse wavenumber of 

domain 1 for fundamental LM mode versus the normalized air gap while permittivity of 

domains 2 is  2 1 . 

 

Figure 2. Normalized transverse wavenumber of fundamental LM mode versus normalized air gap 

size: (a) for certain normalized wavenumbers kh while 1 = 80; (b) for various permittivities of dielectric 

in domain 1 while normalized wavenumber is kh = 2. 

As it is seen, transverse wavenumber of LM mode is very sensitive to variation of air gap 

between dielectric and metal plate. The change in only tenth or even hundredth part of 

percent from size of dielectric in domain 1 is sufficient for considerable alteration of 

transverse wavenumber. Required absolute change of air gap for significant alteration is not 

more than tens or hundreds micrometres depending on wavelength band and permittivity 

of dielectric in domain 1. 

In contrast to LM mode distribution of electromagnetic field of LE mode is significantly less 

sensitive to variation of air gap. Transverse wavenumbers  1
m
y and  2

m
y of the LE mode are 

solutions of the dispersion equations: 
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Figure 3 illustrates a dependence of transverse wavenumber  1
m
y  of the basic LE mode on 

normalized air gap thickness. As it is seen, for the LE mode required change of air gap is 

(a) (b)



 

Dielectric Material 284 

comparable with size of dielectric in domain 1 and quantitatively the alteration is 

appreciably less than for the LM mode. 

 

Figure 3. Normalized transverse wavenumber of basic LE mode versus normalized air gap size: (a) for 

certain normalized wavenumbers kh while 1 = 80; (b) for various permittivities of dielectric in domain 1 

while normalized wavenumber is kh = 2. 

Peculiarity of the LM mode is existence of yE -component of electrical field which is directed 

normally to the border of dielectric discontinuity. For the LE mode the component yE  is 

equal to zero. Therefore to achieve considerable alteration of electromagnetic field a border 

should be located between dielectric and air to perturb normal component of the electric 

field. This principle should be applied to all of electromechanically controlled microwave 

devices. 

If the domain 1 contains lossy dielectric characterized by the loss tangent tan, then 

transverse wavenumber is a complex value and its imaginary part defines dielectric loss. 

Figure 4 demonstrates dependences of imaginary part of normalized transverse 

wavenumber of domain 1 for fundamental LM mode versus the normalized air gap.  

Negative values of the imaginary part say, that dielectric losses in the structure would be 

reduced in comparison with homogeneous structure. Moreover, for certain frequency and 

air gap size the dielectric loss reaches a minimum. This effect is fundamental and is 

observed in more complicated tunable structures. 

Rigorous simulation of electromechanically controllable microwave devices requires solving 

of scattering problem on dielectric wedge placed between metal plates, Figure 5. Solution of 

the problem by the boundary element method (BEM) is discussed below. 

3. Scattering on dielectric wedge placed between metal plates 

Let’s consider an incident wave impinging from domain 1 loaded by dielectric with 

permittivity 3 upon dielectric discontinuity in domain 2, Figure 5. Electromagnetic field of 

(a) (b)
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this structure can be described in terms of LM and LE modes represented by y-component of 

electrical e and magnetic m  Hertz vectors. 

 

Figure 4. Imaginary part of normalized transverse wavenumber of fundamental LM mode versus 

normalized air gap size: (a) for certain normalized wavenumbers kh while 1=80; (b) for various 

permittivities of dielectric in domain 1 while normalized wavenumber is kh = 2. 

 

Figure 5. Structure that illustrated scattering problem 

An incident wave in domain 1 is described by a sum of partial waves of LM and LE types: 
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where ( )e m
ic  are amplitudes of partial waves,  1

e
iY y  and  1

m
iY y  are eigen functions of the 

domain 1,  eX x  and  mX x  are solutions of the Helmholtz equation 

(a) (b)
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     
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, x  is a constant,     2 2 2

3 1zi y i xk  is the propagation 

constant in domain 1, 


 
1y i

i

h d
 is an eigen value of the domain 1, ne is the quantity of 

incident LM modes, nm is the quantity of incident LE modes. Eigen functions of the domain 

1 are equal to 
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     
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sinm

i y iY y y
h d

. (5) 

Reflected wave is represented as series of the 1st domain's eigen functions as 
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 (6) 

where ( )
1
e m
ia  are amplitudes of eigen modes. 

Total electromagnetic field in the 1st domain is expressed as a composition of incident (3) 

and reflected (6) waves. 

Electromagnetic field in the 2nd domain is represented as series of domain's eigen functions 

as 
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where ( )
2
e m
ia  are amplitude of eigen modes in the domain 2,  

    
   

1

2

,             

,

y h
y

h y h d
 is the 

weight function,             
2 2
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k k  is the propagation constant 

of the domain 2, k is the propagation constant in free space,  1(2)
e
y i  are i-th solutions of the 

equations (1),  1(2)
m
y i  are eigen values of magnetic Hertz vector in the domain 2 computed 

from the equations (2),  ( )
2
e m
kY y  are eigen functions of the 2nd domain. 
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Eigen functions of the domain 2 are equal to 
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Using orthogonality property of eigen functions, amplitudes of eigen functions were 

expressed via indeterminate functions which are proportional to tangential components of 

electrical and magnetic field at the boundary of spatial domains: 
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where i=1,2,  
 
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Z  is the characteristic impedance of free 

space. 

Equality requirement for another tangential components of electromagnetic filed reduces 

the scattering problem to set of Fredholm integral equations of the first kind for functions 

 ef y  and  mf y : 
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where kernels of integral equations  ,e
jG y y  and  ,m

jG y y  are expressed via eigen 

functions of domains 1 and 2: 
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where  is the circular frequency, 0 is the dielectric constant in vacuum, 0 is the magnetic 

constant. Sign in (12) depends on relation between signs in 
 edX x

dx
 and  mX x . If 

    
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 then the sign “+” shall be applied in (12). However if 
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e

m
x

dX x
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 then the sign of (12) shall be “—“. 

Functions   j y  are described by incident partial waves: 
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The set of integral equations (11) was solved by Galerkin method. Functions  ef y  and 

 mf y  were expanded in respect to basis   ( )
0
e m y ,   ( )

1
e m y , … and set of integral 
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equations was reduced to a system of linear algebraic equations by ordinary Galerkin 

procedure. 

For small values of d/h eigen functions of domains 1 and 2 were selected as a basis of the 

Galerkin method. However, for large values of d/h to improve convergence for proper 

selection of basis it is necessary to take into account that in close proximity to dielectric edge 

electromagnetic field behaves according to the law:  
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where r is the distance to dielectric edge, 
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To satisfy (18) the Gegenbauer polynomials  
nC y  shall be used as a basis of the Galerkin 

method. As a consequence, scattered electromagnetic field is calculated from computed 

solution for functions  ef y  and  mf y . 

Multimode scattering matrix can be computed from the equations: 
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where indices je and jm define numbers of incident LM and LE modes, but indexes ke and km 

define numbers of scattered LM and LE modes, ez is the unit vector of z-axis,  
 1 1,E H  are 

transverse components of electrical and magnetic field in the domain 1 forward propagated, 
 
 1 1,E H  are transverse components of electrical and magnetic field in the domain 1 back 

propagated,  
 2 2,E H  are forward propagated transverse components of electrical and 

magnetic field in the domain 2. 

Figure 6 demonstrates a comparison of computed components of scattering matrix by the 

proposed (BEM) and finite-difference time-domain (FDTD) methods for the structure 
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characterized by the parameters: 1=10, 2=1, 3=1, d/h=0.01,    / 6xh . As it is seen, there is 

good agreement between proposed and FDTD methods. However computing time for BEM 

is much less than for FDTD method due to lower order of resulting system of linear 

algebraic equation. 

 

Figure 6. Reflection (S11) and transmission (S21) coefficients computed by boundary element (BEM) and 

finite-difference time-domain (FDTD) methods. 1=10, 2=1, 3=1, d/h=0.01,    / 6
x
h  

4. Effective permittivity of one-dimensional dielectric discontinuity 

Transverse wavenumber defines a propagation constant of the structure presented in Figure 

1, which contains a discontinuity. Effective permittivity of the structure can be stated as 

such permittivity of homogeneous structure, which gives numerically the same propagation 

constant as in inhomogeneous structure. The effective permittivity of basic LM mode can be 

easily recomputed from transverse wavenumber by the equation: 

 


   

2

1

1 2

e
y

eff
k

. (21) 

As it follows from the equation (21), nature of the dependence of effective permittivity on 

distance between metal plate to dielectric is determined by the function   1
e
y d . Let’s 

consider alteration limit of effective permittivity while displacement of metal plate under 

the dielectric. It follows from equation (21) that relative alteration of effective permittivity 

can be derived from the equation: 
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where   
1 1

e e
y y h  is normalized transverse wavenumber in domain filled by dielectric with 

permittivity 1 and k kh  is normalized propagation constant in free space. 

Utmost value of the normalized transverse wavenumber is equal to /2 (Figure 2). Therefore 

for large values of normalized propagation constant k  maximal alteration of normalized 

effective permittivity is restricted by the value 


 
 

2

max 2
14

eff
k

. Criterion of large and small 

values of k  will be determined below. 

As it follows from (22) relative alteration of effective permittivity is increased while 

normalized propagation constant is reduced. Utmost range of the alteration can be found on 

the assumption of  0k . At this assumption as it is seen from (1) normalized transverse 

wavenumber  1
e
y  tends to zero as well. In this case the equations (1) can be solved 

analytically: 
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. (23) 

Substitution of (23) into (22) gives utmost value of relative alteration of effective 

permittivity: 
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

1 2

0

2 1

 lim eff
k h

d

. (24) 

It is seen that on the assumption of  0k  effective permittivity can be controlled from 1 to 

2. If medium in domain 2 (Figure 1) is air, then the range of effective permittivity alteration 

due to displacement of metal plate is from 1 to 1. Such high controllability is not available in 

other methods of control including electrical bias control of ferroelectrics. 

Graphically dependence (24) is presented in Figure 7. This dependence demonstrates utmost 

controllability of effective permittivity of the dielectric discontinuity by alteration of 

distance between metal plate and dielectric if medium in the domain 2 is air. For certain 

permittivity 1 the dependence is an upper asymptote for other values of k . For  0k  

analogous dependences stand below those presented in Figure 7. 

Due to limitation of effective permittivity alteration from 1 to 2 and utmost value of 

normalized transverse wavenumber equal to /2, to achieve utmost controllability the 

normalized propagation constant shall satisfy to requirement: 
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


  


1 22

k . (25) 

 

Figure 7. Dependence of relative alteration of effective permittivity on distance between metal plate 

and dielectric on the assumption of  0k . 

Neglect of requirement (25) leads to decrease of controllability range and eff  is limited by 

the value 


   

2

1 224k
. The same conclusion can be derived from analysis of the formula 

(24) on the assumption of 
d

h
 and solution of equations (1).  

Figure 8 demonstrates influence of normalized propagation constant on utmost range of 

effective permittivity alteration. This picture reflects dependence of relative alteration of 

effective permittivity on normalized distance between metal plate and dielectric with 

permittivity  1 50 . For this permittivity of dielectric the requirement (25) is transformed to 


  0.224

14
k . As it is seen in Figure 8 if the last requirement is not satisfied then the range 

of effective permittivity alteration is considerably reduced and if  0.6k  is only equal to 

10% from 1 , and if  0.02
d

h
 then effective permittivity is almost independent on distance 

between metal plate and dielectric. Similar phenomenon in waveguides filled by multilayer 

dielectric if phase velocity of electromagnetic wave is almost independent on sizes of high-

permittivity dielectrics was named as dielectric effect or effect of dielectric waveguide. 

As it is seen in Figure 8 dependence of alteration of effective permittivity on normalized 

propagation constant has opposite trend than analogous dependence of alteration of 

transverse wavenumber (see Figure 2, a): controllability of transverse wavenumber is 

increased while propagation constant is risen up but controllability of effective permittivity 
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is reduced at the same condition. The point is that the controllability of effective permittivity 

depends on ratio of transverse wavenumber to propagation constant rather than transverse 

wavenumber. 

 

Figure 8. Dependence of relative alteration of effective permittivity on distance between metal plate 

and dielectric for certain normalized propagation constant kh while 1 = 50, 2 = 1. 

Requirement (25) can be considered as criteria of smallness of normalized propagation 

constant. If this requirement is satisfied then the normalized propagation constant may be 

considered as small, otherwise as large. 

Hereby to increase controllability of effective permittivity one should reduce normalized 

propagation constant. It can be done by two ways. The first method is decreasing of 

working frequency. However this way has limitation because for many implementations the 

frequency shall exceed cutoff frequency and cannot be reduced. The second way is to reduce 

thickness of dielectric h. It follows from (25) that efficient controllability of effective 

permittivity the thickness should to satisfy the requirement: 

 



  1 22

h
k

. (26) 

If requirement (26) is not satisfied then the range of effective permittivity alteration is 

decreased according to the law close to  2h . Moreover required displacement of metal 

plates for effective permittivity control would be increased. 

Effective permittivity model simplifies understanding and simulation of phenomena in 

controllable microwave devices. This model accurately describes wavelength of 

fundamental mode in controllable structure. However accuracy of scattering problem 

description should be investigated. Let’s compare scattering matrix derived from effective 

permittivity model and rigorous solution of scattering problem by the BEM described 

above. 
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Scattering matrix for effective permittivity approach can be found from equations: 

 
  

 
     

1 21 2
11 21

1 2 1 2

2
,   z zz z

z z z z

S S , (27) 

where  1z  is the propagation constant in domain 1 (Figure 5) but  2z  is the propagation 

constant in domain 2 filed by uniform dielectric with permittivity eff . 

Comparison of two techniques is demonstrated in Figure 9. Good agreement for reasonable 

parameters set is observed. 

 

Figure 9. Comparison of S-parameters computation using boundary element method (BEM) and 

effective permittivity approach for the structure with parameters: 1 = 10, 2 = 1, 3 = 1, d/h = 10-3 

Hereby effective permittivity approach is efficient method for investigation of controllable 

microwave structures. Below this technique is extended for microstrip and coplanar lines. 

5. Effective permittivity of microstrip and coplanar lines 

Microstrip and coplanar lines are the most widely used waveguide types in modern 

microwave systems. They interconnect oscillators, amplifiers, antennas and so on. Sections 

of transmission lines also used as coupling element for resonators. Usually characteristics of 

the transmission line are defined at design time and remain constant in fabricated device. 

However, transmission lines can get some agility. For example, movement of dielectric body 

above microstrip or coplanar line surface results in propagation constant change [2]. We 

have shown that the more efficient control can be achieved, if one of the conductors is 
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detached from substrate’s surface, Figure 10. Because controllable discontinuity crosses 

electric field strength lines, it results in higher sensitivity. 

 

Figure 10. Mechanically controllable microstrip (a, b) and coplanar (c) lines 

Conventional methods of microstrip lines analysis, such as Whiller equations [3], 

Hammerstad equations [4], and their extensions to coplanar lines [5] exploit symmetry of 

the line with aid of conformal mappings. These methods also introduce effective 

permittivity to relate quasi-TEM wave propagation characteristics to those of equivalent 

TEM wave. Transmission lines in Figure 10 still possess symmetry, but their rigorous 

analysis becomes cumbersome. Thus, numerical techniques could be applied to accurately 

calculate electromagnetic field distribution. 

Electromagnetic problem can be solved using electric and magnetic scalar e , m  and 

vector eA , mA  potentials: 
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0

; ;
e

e ei
A

E A H  (28) 
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m

m mi
A

E H A  (29) 

Using these potentials one can introduce electromagnetic filed distribution types with one of 

components being zero. If electrical vector potential oriented along z  axis ( e e
zAA e , 

where ze  is z -axis unit vector), then eA  and e  functions define E-type field, or TM-mode, 

for which  0zH . Similarly, if magnetic vector potential oriented along z  axis ( m m
zAA e

), then mA  and m  functions define Н-type filed, or ТЕ-mode, for which  0zE . Equation 

(28) is more convenient in the systems with dielectric only discontinuities, but with uniform 

permeability. 

Equations (28), (29) allow ambiguity in relation of vector and scalar potentials with 

electromagnetic field components. For example, if eA  and e  define certain electromagnetic 

filed distribution, then eA  and   e , where  is differentiable function, define the 

same distribution. This ambiguity is removed applying Lorentz’s calibration: 

   
      

2
2

2
0e e

c
. (30) 

In case of axial symmetry and absence of external currents solution of (30) may be presented 

in the form: 
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  ( , ) ( )e x y Z z ,  

where   ,x y  is distribution of scalar potential in Оху plane,  Z z  is distribution along 

propagation direction Oz. Then (30) splits in two equations with two mentioned distribution 

functions. In most practical cases electric field component along direction of propagation is 

much smaller and could be neglected. This is so called quasi-TEM mode. Thus 3D 

electromagnetic problem reduces to 2D plane problem: 

        2 0 , (31) 

where 


    
2

2 2

2 z
c

. Applying appropriate boundary conditions the problem is solved 

numerically using two dimensional finite element method (2D FEM). Then one may 

calculate electromagnetic field distribution as: 
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120Z  is free space characteristic impedance. In most practical cases 
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c

, thus Ez  0 and wave is close to TEM. 

Having solution of (31) we introduce effective permittivity eff  relating total power in the 

system under consideration to power in the system with uniform filling: 


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where Si is i-th domain area with permittivity i , S is line's cross section total area, 1 is 

distribution of scalar potential in regular line with 1 = 1. Quasi-static approximation gives 

results, which coincide well with rigorous solution by 3D FEM and finite difference in time 

domain (FDTD) method (Figure 11). However, at small displacements of conductor above 

substrate rigorous solutions faced convergence difficulties, especially FDTD method.  
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Figure 11. Comparison of effective permittivity calculation in microstrip line using 3D FEM, FDTD and 

quasi-static approximation (1 = 12, w = 0.5 mm, h = 1.5 mm) 

In conventional microstrip line most of electromagnetic field is confined in substrate 

between the strip and ground plane. When conductor is lifted above substrate as in Figure 

10 a, b, certain part of electromagnetic filed redistributes from substrate to the air filled 

domains close to the strip. Because of lower permittivity energy stored in air filled 

domains is lower comparing to that one in substrate. This leads to decrease of the 

system’s effective permittivity, as it is shown in Figure 12. Effective permittivity of the 

line defines wavelength in the system or, equivalently, propagation constant. Thus, 

mutual displacement of transmission line parts results in change of propagation constant. 

Described method of effective permittivity control has strong sensitivity. As seen in 

Figure 12 displacement by 10% of substrate’s thickness may change effective permittivity 

more then by half. 

Redistribution of electromagnetic energy to air filled domains also changes loss in the 

system. Because air is almost lossless medium, the portion of energy confined in air filled 

domains experience practically no dielectric loss. Consequently more energy reaches output 

terminal, resulting in lower effective loss, Figure 12. 

Presented quasi-static approximation can be applied for analysis of coplanar line as well. 

Dependencies of effective permittivity and loss on coplanar line with lifted signal strip 

qualitatively similar to those of coplanar line, Figure 13. 

Derived values of effective permittivity and loss then can be used to design device similarly 

to strict TEM-mode devices. Controllability of effective permittivity for more complicated 

microwave devices was presented in [1]. 
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Figure 12. Effective permittivity in near 50 microstrip line with micromechanical control (w/h = 2). 


0

eff
and 

0

tan
eff

are effective permittivity and loss tangent at zero d/h = 0 

 

Figure 13. Effective loss in near 50 coplanar line with micromechanical control (b/a = 0.72). 
0

eff
and 


0

tan
eff

are effective permittivity and loss tangent at d/h = 0 
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Demonstrated high sensitivity of effective permittivity to microwave device parts 

displacement opens an opportunity to employ piezoelectric or electrostrictive actuators to 

control characteristics of the microwave devices by the electromechanical manner. Properties 

of materials for piezoelectric and electrostrictive actuators are discussed in the next section. 

6. Piezoelectric and electrostrictive materials for actuators 

Application of usual piezoelectric ceramics for the microwave device tuning was described 

previously [1, 2]. However, in a strong controlling field piezoelectric ceramics show 

electromechanical hysteresis that produces some inconveniences. Much more prospective are 

relaxor ferroelectrics that have better transforming properties and practically no hysteresis. 

Ferroelectrics with partially disordered structure exhibit diffused phase transition 

properties. Relaxor ferroelectrics near this transition show an extraordinary softening in 

their dielectric and elastic properties over a wide range of temperatures. Correspondingly, 

dielectric permittivity  of the relaxor shows large and broad temperature maximum where 

giant electrostriction is observed (because the strain x is strongly dependent on the dielectric 

permittivity: x ~ 2).  

Relaxors are characterized by the large  ~ (2 – 6)104 and, consequently, by very big induced 

polarization Pi . A comparison of Pi in the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3 = PMN and 

Pi of paraelectric material Ba(Ti0.6,Sr0.4)O3 = BST (that also has rather big  ~ 4000) is shown in 

Figure 14, a. 

 

Figure 14. a – electrically induced polarization Pi in the relaxor of PMN and in the paraelectric BST; b – 

dielectric permittivity of PMN without () and under bias field Eb=10 kV/cm (b); Pi is the induced 

polarization in the relaxor PMN, obtained by pyroelectric measurements 

Induced polarization in PMN many times exceeds one of BST. Moreover, in relaxor, the Pi 

depends on the temperature (like PS of ferroelectrics), as it can be seen in Figure 14, b. An 

example is electrically induced piezoelectric effect that is explained in Figure 15. 
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Figure 15. Electrostriction in the high- materials under the bias field looks like piezoelectric effect 

(xE); Eb,r < Eb,p 

Electric bias field Еb produces some constant internal strain x0 at the parabolic dependency 

strain x on field E. Besides of steady and relatively big bias field Eb, a smaller alternating 

electric field E' is applied to given dielectric material. As a result, pseudo-linear 

"piezoelectric effect" appears that is shown in a new scale: x ' - E'.  

Piezoelectric effect appears instantly after the bias field is applied, and it disappears 

immediately after the bias field is switched off. Electrically induced piezoelectricity is large 

owing to giant electrostriction. Relaxor actuators can be used as precision positioner, 

including microwave tunable devices. Very important for device application the response 

time of relaxors can be estimated by the dielectric spectroscopy method. 

 

Figure 16. Dielectric spectrum of PMN at microwaves, fast dispersion of dielectric permittivity started 

near one gigahertz 

It is obvious that response quickness is determined by the frequency dispersion of relaxor's 

dielectric permittivity: (). That is why dielectric dispersion in the relaxors is studied with a 
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point of view of relaxor material applications in the fast-acting electronic devices. By the 

microwave dielectric spectroscopy method conducted in a broad temperature interval, the 

family of              * , , ,T T i T  curves are obtained, and one example is shown in 

Figure 16. 

Response time of relaxor devices is determined by the mechanisms of dielectric dispersion. 

Electro-mechanical contribution to relaxor  might be dominating factor so in relaxor based 

electronic devices the speed of response is defined by the sound speed in the relaxor, so the 

operating speed is dependent on the size of used relaxor element. 

7. Conclusion 

To achieve electromechanical control by using piezoelectric or electrostrictive actuators the 

dielectric- air discontinuity should create significant perturbation of the electromagnetic 

field. It requires a certain location of the discontinuity relatively to electromagnetic field 

distribution. It was demonstrated that for maximal reconfiguration of electromagnetic field 

by the dielectric parts displacement the border between air slot and dielectric should be 

perpendicular to the electric filed. In this case the displacement of dielectric parts leads to a 

considerable rearrangement of the electromagnetic field, and as a result to device 

characteristics alteration. 

Effective permittivity approach not only simplifies computation but provides information 

about controllability of microwave structures by alteration of air slot thickness d as well. The 

controllability depends on frequency and dielectric thickness h. Maximal range of effective 

permittivity alteration increases while either frequency or thickness h reduces. At the same 

time, the reducing of either frequency or thickness h leads to increase of the controllability 

effectiveness due to decrease of required displacement of device components. Utmost 

controllability of effective permittivity was obtained on the assumption that either 

frequency or thickness of dielectric h tends to zero. Calculated dependences reflect 

asymptotic control over effective permittivity by alteration of air slot thickness d. Analysis of 

the dependences shows that the effective permittivity may be controlled in the range from 

permittivity of dielectric to one. Such high controllability cannot be achieved by other 

methods including ferroelectric permittivity control by electrical bias. 

For given working frequency effectiveness of controllability increases if thickness of 

dielectric layer is decreased. Criterion for maximal thickness of dielectric was estimated. It is 

necessary to note that decrease in dielectric thickness reduces characteristic impedance of 

structure. That is why adding of matching sections should be considered in actual device 

design. 

Presented method of control not only preserves high quality factor of microwave devices in 

the case of application low loss dielectrics but demonstrates reducing of dielectric loss 

during the control as well. 

Effective permittivity approach significantly simplifies simulation of microwave devices. 

However, this approach has limitations related with high order modes excitation. That is 
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why this technique should be carefully verified by the rigorous solution, boundary element 

method for instance. 
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