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1. Introduction 

Cyclosporin A (CsA) is an immunosuppressant drug widely used in organ transplant 

recipients and patients with auto-immune disorders. Long-term treatment with CsA is 

associated with hyperlipidemia and an increased risk of atherosclerosis. The mechanisms by 

which cyclosporin A causes hyperlipidemia are unclear. Cell and animal studies have 

pointed to various mechanisms that may mediate CsA-induced hyperlipidemia. In this 

review we will give an overview of CsA-induced hyperlipidemia, with a focus on the data 

available that might explain the underlying mechanism(s) and describe the available 

treatment regimes used to treat hyperlipidemia induced by immunosuppressant drugs. 

2. Hyperlipidemia in humans after solid organ transplantation 

Hyperlipidemia is observed in about 60% of kidney, liver, cardiac and bone marrow 

transplants after treatment with CsA (for review see [1,2]. There are multiple factors 

potentially contributing to hyperlipidemia in these patients, such as post-transplantation 

obesity, multiple drug therapy and diabetes. The concurrent use of steroids in particular, 

makes it hard to establish a direct contribution of CsA to dyslipidemia in humans, as 

corticosteroids are known to exacerbate hyperlipidemia in transplant recipients [3,4].  

Studies investigating plasma lipids after CsA monotherapy are limited [4,5,6,7,8,9] and only a 

few studies have directly compared the combination of CsA therapy with low dose 

prednisolone with other immune suppressing strategies in combination with low dose steroids 

[10,11]. In general, these studies indicate that CsA treatment can independently lead to 

elevated plasma triglyceride and cholesterol levels in humans and that these effects are 

reversible upon cessation of immunosuppression therapy (Table 1). Animal studies (reviewed 

in [12]), where the effect of CsA can be studied in a more controlled background, indicate that 

CsA directly raises plasma lipid levels in rats, mice, guinea pigs and rabbits, and have proven 

that animals are valuable models to study mechanisms of CsA-induced hyperlipidemia.  
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Treatment Patients Patient 

number  

Duration Lipid effects Reference 

Monotherapy Amyotrophic 

lateral 

sclerosis 

36 2 mnths TC (21%) 

LDL-C (31%) 

apoB (12%) 

TG = 

HDL = 

[5] 

Monotherapy Autologous 

bone marrow 

transplants 

13 32 days TC (26%) 

LDL-C   

HDL-C   

TG = 

VLDL-C = 

[13] 

Monotherapy Renal 

transplants 

 

59 3-6 and 12 

mnths 

TC = 

LDL-C = 

apoB  

TG  

HDL-C  

apoA-I  

[8] 

Monotherapy Renal 

transplants 

58 >1 yr TC  

LDL-C  

apoB  

TG  

VLDL-C = 

HDL-C  

HDL2-C = 

HDL3-C  

[14] 

Monotherapy  

and CsA/pred 

Bone marrow 

transplants 

180 100 days TC  

LDL-C  

apoB  

TG  

VLDL-trig  

VLDL-C = 

HDL  

HDL2  

HDL3 = 

apoA-I  

[4] 

Monotherapy Psoriasis 15 3 mnths TC  (22%) 

LDL-C  (35%) 

TG = 

VLDL-C = 

HDL-C = 

[9] 
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Treatment Patients Patient 

number  

Duration Lipid effects Reference 

ALG/aza/cort v 

CsA/ALG/aza/cort 

Renal 

transplants 

702 52 wks TC (20%)

LDL-C  

TG  

HDL-C = 

[7] 

Aza/pred v CsA v 

CsA/pred 

Renal 

transplants 

9 3 mnths TC 
LDL-C  (45%) 

TG = 

VLDL-C = 

HDL-C =

[6] 

Aza/pred v 

CsA/pred 

Renal 

transplants 

20 7.7 yrs TC 
LDL-C  

apoB  

TG  

VLDL-C  

HDL-C 

[10] 

ALG, Minnesota antilymphocyte globulin; aza, azathioprine; cort, corticosteroids; pred, prednisolone 

TC, total cholesterol; TG, total triglyceride; LDL, low density lipoprotein; VLDL, very low density lipoprotein; HDL, 

high density lipoprotein; apo, apolipoprotein; 

Table 1. Effect of CsA on plasma lipid parameters in humans 

2.1. Plasma VLDL  

Triglyceride-containing VLDL particles are produced in the liver via lipidation of 

apolipoprotein B (apoB) by microsomal triglyceride transfer protein (MTP), generating 

triglyceride-poor (VLDL2) as well as triglyceride-rich VLDL (VLDL1) particles, both of 

which can be secreted [15]. In plasma, VLDL is converted to intermediate-density 

lipoprotein (IDL) by lipoprotein lipase (LPL). IDL can be further hydrolyzed by lipases to 

low density lipoprotein (LDL). CsA increases plasma VLDL levels in transplant recipients 

and a concomitant increase in plasma apoB levels is observed [4,10,11]. It is unclear whether 

both plasma VLDL1 and VLDL2 levels are elevated. In contrast to LDL levels, plasma 

triglyceride and VLDL levels appear to increase only after long-term treatment with CsA 

(Table 1 and [8]) 

Hypertriglyceridemia in transplant patients is associated with increased plasma 

apolipoprotein CIII  (apoCIII) levels [16,17,18] and decreased lipase activity (see below). As 

apoCIII inhibits LPL and hepatic lipase (HL) as well as uptake of triglyceride lipoprotein in 

liver, the increase of apoCIII may be an important contributor to hypertriglyceridemia 

found in transplant patients. 

2.2. Plasma LDL  

Plasma LDL levels appear to be consistently elevated by CsA [4,5,6,7,9,10,13,14] even in 

patients where plasma VLDL levels are not altered [5,6,9,13]. A correlation between CsA 
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levels and plasma LDL-C has been described in some studies [19], but was not observed 

in others [5,20]. Regulation of plasma LDL levels is complex, depending on hepatic VLDL 

production, subsequent lipolysis of VLDL, clearance of LDL via the LDL receptor (LDLr) 

in the liver and conversion into bile. CsA may affect LDL metabolism at several levels 

(section 3.2).  

2.3. Plasma HDL  

Total plasma HDL levels are inversely correlated with the risk of cardiovascular disease 

[21]. HDL particles are however heterogeneous in size and composition, and occur as 

HDL2a, HDL2b, HDL3a, HDL3b and HDL3c which are progressively smaller in diameter 

and contain higher protein to lipid ratios. The precise contribution of various HDL 

subclasses to cardiovascular disease is currently unclear [21,22]. Plasma HDL cholesterol 

levels are determined by production of nascent HDL particles in the liver and intestine, by 

plasma transfer reactions of lipids between HDL and lipolysed triglyceride lipoproteins 

such as VLDL or chylomicrons, hepatic uptake of HDL lipids via the scavenger receptor 

class B1 (SRB1) HDL receptor in the liver, and renal clearance of small, lipid-poor apoA-I 

particles. Nascent HDL particles are formed by lipidation of apolipoprotein A-I (apoA-I) via 

the ATP-binding cassette transporter-1 (ABCA1) located in cellular membranes, although 

ABCA1-independent pathways of apoA-I lipidation also exist [23]. The formed lipid-poor 

HDL particles acquire more lipid after interaction with ABCG1 and mature by the 

subsequent esterification of cholesterol by lecithin-acyl transferase (LCAT). Further 

remodeling occurs by phospholipid transfer protein (PLTP) generating HDL2. HDL2 can be 

converted into HDL3 by hydrolysis via lipases and by transfer of cholesteryl esters to 

triglyceride-containing lipoproteins with the reciprocal exchange for triglycerides, which is 

mediated by cholesteryl ester transfer protein (CETP).  

Immunosuppressive therapy has been reported to increase, decrease or leave HDL levels 

unaffected [5,10,11,24]. Parallel changes in plasma apoA-I levels are usually observed. 

Increased HDL levels are observed in most transplant patients, but this is most likely related 

to the concomitant treatment with steroids, which are known to increase plasma HDL [3]. 

CsA may affect particular subclasses of HDL more than others. Independently of steroids, 

plasma HDL levels, especially the HDL3 subpopulation, were found to inversely relate to 

plasma CsA levels [19]. In a study of bone marrow transplant recipients CsA decreased total 

plasma HDL, and in particular HDL2 [4]. In rats, a similar decrease in plasma HDL and 

HDL2 levels was observed after CsA treatment [25]. A recent study performed in pediatric 

renal transplant recipients showed that although total plasma HDL levels were not changed 

with CsA treatment, the relative proportion of HDL2b decreased while the relative 

proportion of HDL3a, HDL3b and HDL3c increased [26]. This is important as decreased 

HLD2b with increased HDL3b is associated with an atherogenic lipoprotein phenotype 

characterized by increased triglycerides and small dense LDL [27]. This result also emphases 

that simple monitoring of total HDL cholesterol may be insufficient to understand the 

consequences of CsA on HDL biology.  
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2.4. Plasma lipoprotein (a) 

Lipoprotein (a) [Lp(a)] is a LDL-like lipoprotein consisting of LDL with one molecule of 

apoB covalently linked to a molecule of apolipoprotein (a). Plasma Lp(a) levels, and 

especially certain genetic Lp(a) variants, are independently associated with an increased risk 

for CVD [28,29]. Elevated Lp(a) plasma levels have been observed in renal transplant studies 

[14,30] this was however, not observed by others [31]. Although some studies suggested 

normalization of elevated Lp(a) levels after successful transplantation due to improved 

kidney function [31,32], CsA treatment has been indicated to independently increase Lp(a) 

levels in renal transplant recipients [8,14,33]. The mechanisms by which CsA affect plasma 

Lp(a) levels are unexplored, but may involve similar mechanisms to that of elevation of 

plasma LDL levels. As the LDLr does not play a major role in the clearance of Lp(a), the 

mechanism however, is unlikely mediated via effects of CsA on the LDLr (see section 3.2.1). 

2.5. Qualitative differences in lipoproteins  

2.5.1. Particle changes  

Elevated plasma triglyceride levels are associated with the formation of triglyceride rich 

LDL particles that are more atherogenic [34]. A high prevalence of smaller denser LDL 

particles is observed in transplant recipients [35] and appears to be associated with CsA 

therapy [26,36]. Inhibition of lipoprotein lipase (LPL) activity is associated with the 

formation of small dense LDL subclasses. As apoCIII inhibits lipase activity, increased 

plasma apoCIII levels observed with CsA-treatment may explain inhibited lipase activity 

and subsequent increase in small dense LDL particles [17]. In addition decreased lipase 

activity could contribute to decreased HDL2 subclasses observed, while effects on CETP by 

CsA may help explain increases in HDL3 subfractions (see section 2.3 and 3.1.2). 

2.5.2. Interaction of CsA with plasma lipoproteins 

In whole blood CsA is primarily transported bound to lipoproteins (33%) and erythrocytes 

(58%) and whole blood CsA levels correlate with lipoprotein levels [37,38]. In vitro and in 

vivo studies show that in serum from healthy patients 50-60% of CsA is bound to HDL, 20-

30% to LDL, 10-25% to VLDL with 10-15% bound to the non-lipoprotein proteins 

[39,40,41,42]. However, the proportion of CsA bound to the LDL and VLDL fractions 

increases in hyperlipidemic serum, without changing the amount bound to free protein 

[40,41], indicating that the distribution of CsA between the lipoprotein classes will change as 

plasma lipoprotein concentrations change. The binding of CsA to lipoprotein particles may 

also depend on lipoprotein composition. For example, Wasan et al. [41] showed that high 

triglyceride content of HDL was associated with a decreased percentage of CsA recovered in 

the HDL fraction and an increased percentage recovered in the VLDL fraction. Interestingly, 

treatment of patients with lipid lowering agents, such as statins have been reported to 

increase the unbound fraction of CsA and clearance of CsA in plasma [43]. 

Concerns have been raised about changes to the bioavailabilty and activity of CsA resulting 

from its binding to lipoproteins, especially as decreased CsA activity and increased toxicity 
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have been observed in patients with hyperlipidemia [42,44]. CsA levels are higher in 

hyperlipidemic patients due to decreased clearance which was reversed after lipid-lowering 

with fibrates (reviewed in [37]). In vitro studies using skin fibroblasts indicate that CsA 

bound to LDL does not affect binding to cells via the LDLr, but uptake of CsA is inhibited 

[45]. These studies were confirmed in HepG2 and Jurkat Tcells which showed decreased 

uptake of CsA in the presence of LDL [40]. In line with these findings, uptake of CsA in 

tissues from rats was reduced when CsA was co-injected with lipoproteins [46].  

3. Mechanisms of CsA-Induced hyperlipidemia – What we learn from 

cell and animal studies 

As the effects of CsA in humans are confounded by many factors such as other medication, 

obesity, insulin resistance and nutritional status, cell and animal studies are useful to 

elucidate the mechanism(s) of CsA-induced hyperlipidemia. Figure 1 depicts the reported 

CsA-effects on VLDL, LDL and HDL metabolism. 

3.1. VLDL 

3.1.1. Effects of CsA on VLDL synthesis and secretion 

CsA decreased apoB translocation over the endoplasmic reticulum (ER) membrane in the 

human liver cell line HepG2 [47]. It was suggested that this was due to a reduction in the 

efficiency of lipid transfer by inhibition of MTP, however whether MTP activity is inhibited 

by CsA was not investigated. These findings are in line with the report from Kaptein et al. 

[48], which showed that CsA inhibits VLDL and apoB secretion from HepG2 cells, by post-

translational mechanisms. In contrast, in mice, CsA increased the rate of hepatic VLDL 

secretion in vivo, while total apoB secretion was unaffected [49]. No effect of CsA on levels of 

VLDL receptors in either adipose tissue or skeletal muscle were found [50] suggesting that 

VLDL uptake may not be affected by CsA. There are no studies that we are aware of 

studying the effect of CsA on in vivo VLDL synthesis in humans.  

3.1.2. VLDL metabolism  

Inhibition of lipolysis by CsA could contribute to increased plasma VLDL and reduced HDL 

concentrations. Various studies have investigated lipase activity in patients, but results may 

be confounded by co-treatment with steroids. HL activity was increased in cardiac 

transplant patients and correlated with CsA dose while lipoprotein lipase (LPL) activity was 

decreased in these patients [51]. Others have shown decreased HL as well as LPL activity in 

kidney transplant recipients [52]. More directly, Tory et al [53] showed suppression of LPL 

activity in plasma from normolipidemic subjects treated with CsA, while in rats, CsA dose- 

and time-dependent decreased plasma LPL activity [24]. In addition, LPL abundance in 

skeletal muscle and adipose tissue was decreased in rats [50]. These latter studies suggested 

CsA can inhibit LPL activity independently of steroids. Although the precise mechanism of 

CsA-inhibited LPL activity is unknown, it helps to explain increased triglyceride levels 

observed after CsA treatment. 
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Some studies show reduced cholesteryl ester transfer protein (CETP) activity in transplant 

recipients [54]. In contrast, CsA directly added to human plasma ex vivo increased CETP 

activity [53]. These apparently anomalous results may relate to differences between the 

direct effects of CsA on CETP itself and indirect effects secondary to changes in the 

concentrations of other lipoproteins, but remain unexplained. Since CETP transfers 

cholesteryl ester from HDL to apoB-containing lipoproteins with reciprocal transfer of 

triglycerides, any effect of CsA on CETP activity could be expected to have major effects on 

plasma lipoprotein profiles.  

3.2. LDL 

3.2.1. LDL synthesis and catabolism  

We have recently reviewed this literature in detail [55]. There appear to be conflicting 

conclusions arising from in vitro and in vivo studies. One of the key discrepancies is the role 

of LDLr expression and LDL clearance by the liver in mediating CsA-hyperlipidemia. In 

general, in vitro studies are consistent with a role for decreased LDL receptor expression or 

activity in liver cells after exposure to CsA [48,56]. In vivo studies however, show mixed 

effects, with no effect or an increase in hepatic LDLr protein or mRNA levels [49,50]. 

Similarly 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoAr), the rate limiting 

enzyme in cholesterol synthesis, mRNA levels were upregulated in HepG2 cells and mouse 

liver after CsA, but hepatic HMG-CoA reductase protein levels in rat liver were unaffected 

by CsA treatment [49,50,57]. In rats, CsA decreased the fractional catabolic rate of LDL [58]. 

One very important consideration is the difference in concentrations of CsA used in in vitro 

studies relative to those achieved in vivo under normal transplant immunosuppression. In 

vitro studies commonly use concentrations of 10 μg/ml whereas plasma levels of CsA in 

humans and in animal studies are typically in the order of 100 ng/ml. This apparent 10-fold 

difference in concentration may underestimate the difference in effective concentrations 

tested in vivo and in vitro studies because of the complicating effects of in vivo 

hyperlipidemia, which under some circumstances can lessen the effective concentration of 

CsA delivered to some tissues [46]. 

3.3. HDL 

CsA effects on plasma HDL and HDL subclasses may be mediated by effects on the 

synthesis and/or formation of HDL as well as by effecting remodeling of HDL through 

changes in lipase and/or CETP activity (see 3.1.2) 

3.3.1. Effect of CsA on HDL synthesis and formation 

In vitro studies have indicated that CsA potently inhibits ABCA1 activity thereby inhibiting 

apoA-I lipidation, the first step in HDL formation [59,60,61]. This was associated with 

decreased ABCA1 turnover and an increase in total and cell-surface levels of ABCA1 [59]. 

Uptake, Internalization and re-secreton of apoA-I were however decreased by CsA, 
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suggesting that ABCA1 trapped at the plasma membrane is dysfunctional [59,60]. In vivo 

studies using wild type C57Bl6 mice corroborated these in vitro findings. CsA lowered 

plasma HDL levels after 6 days of treatment [59]. A lowering in plasma HDL in mice was 

however not observed by others after long-term treatment of mice with CsA combined with 

a high fat diet [62]. As many aspects of lipid metabolism can be affected by CsA, it may be 

difficult to determine a causal effect on HDL levels via ABCA1 inhibition in an in vivo whole 

body system NB.  

Direct effects of CsA on the expression of ABCA1 and apoA-I have also been reported and 

may contribute to the changes in HDL formation. The target of immunosuppression by CsA, 

Nuclear Factor of activated T-cells, cytoplasmic 2 (NFATc2), was found to bind the mouse 

ABCA1 promoter and mediate CsA-inhibition of ABCA1 expression by inflammatory 

stimuli [63]. In addition CsA has been found to inhibit apoA-I gene expression in human 

HepG2 cells and rats [64]. A recent proteomic study in HepG2 cells showed that CsA 

decreased secretion levels of apoA-I suggesting that the transcriptional effects of CsA on 

apoA-I expression may lead to decreased amounts of secreted apoA-I [65]. 

3.3.2. Effects on HDL metabolism 

As mentioned above (section 3.1.2), CsA directly suppresses LPL activity and increases 

CETP activity in human plasma and animals (section 3.1.2). LPL activity is strongly 

associated with plasma HDL2 concentrations [66], and decreased LPL levels in CsA 

treatment may therefore contribute to decreased HDL2 levels [4,25]. On the other hand, 

increased CETP activity will generate triglyceride-rich HDL, which is converted to smaller 

HDL3 particles by HL [66].  

3.4. Effects on bile acid synthesis and secretion  

3.4.1. Effects on bile synthesis  

In liver, cholesterol is converted to bile acids by 7-hydroxylase (CYP7) or 27-hydroxylase 

(CYP27A1) [67]. In healthy humans, CYP7α is considered the predominantly pathway while 

CYP27A1 accounts for 10% of bile acid synthesis and subsequent formation of 

chenodeoxycholate. However inhibition of Cyp7α can increase the contribution of the 

CYP27A1 pathway [68]. In vitro studies show that CsA inhibits both CYP27A1 activity and 

subsequent formation of chenodeoxycholate in human and animal liver extracts and in 

primary hepatocyte cultures [57,69,70,71]. A CsA responsive element has been mapped on 

the CYP27A1 promoter [72], indicating that CsA affects transcription of the CYP27A1 gene 

directly. In most of the in vitro studies, CYP7α activity was not affected by CsA [69,70]. In 

vivo, in rat however, CsA decreased CYP7α protein levels [50], indicating that the 

predominant bile acid synthesis pathway may also be affected by CsA. The inhibitory effect 

of CsA on bile synthesis is suggested to contribute to increased plasma lipid concentrations 

in transplant recipients. Radioisotope studies performed in children after liver 

transplantation demonstrated that CsA treatment significantly inhibits bile salts synthesis 
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rates, especially that of chenodeoxycholate and that bile acid synthesis rate inversely 

correlates with plasma cholesterol and triglyceride levels [73].  

 

Figure 1. Mechanisms of CsA-mediated hyperlipidemia. Figure only displays pathways that are 

reported to be affected by CsA. 1) Inhibition of VLDL formation via inhibition of MTP, 2) Increased and 

decreased secretion of VLDL particles have been reported, 3) Decreased lipolysis of VLDL due to 

increased apoCIII and subsequent inhibition of LPL, 4) hypertriglyceridemia by increased CETP 

activity, 5) Increased LDL due to decreased LDLr expression as well as activity, 6) Increased liver FC 

content leading to decreased LDLr levels, 7) Increased and decreased levels of HMG-CoAr affecting 

cholesterol synthesis, 8/9) Inhibition of bile acid conversion via CYP27A1 or CYP7α leading to increased 

liver FC levels, however in most studies Cyp7 is not affected by CsA. NB: decreased CYP27A1 activity 

can increase HMG-CoAr levels via negative feedback, 10) Decreased flow of bile salts, cholesterol and 

phospholipids into bile, 11) Decreased expression and secretion of apoA-I, 12) Inhibition of ABCA1 

expression, 13) inhibition of apoA-I lipidation via inhibition of ABCA1 activity 14) Stimulation of HL 

and CETP leads to increased formation of HDL2 to HDL3, however decreased HL activity has also been 

reported. VLDL, very low density lipoprotein; IDL, intermediate density lipoprotein; LDL, low density 

lipoprotein; HDL, high density lipoprotein; AI, apolipoprotein A-I, B, apolipoprotein B; CIII, 

apolipoprotein CIII; MTP, microsomal triglyceride transfer protein; LPL, lipoprotein lipase; HL, hepatic 

lipase; CETP, cholesteryl ester transfer protein; ABCA1, ATP-binding cassette transporter-1; SRB1, 

scavenger receptor class B1; LDLr, LDLreceptor; VLDLr, VLDLreceptor; PL, phospholipid; FC, free 

cholesterol; HMG-CoAr, 3-hydroxy-3-methyl-glutaryl-CoA reductase; CYP7, 7-hydroxylase; 

CYP27A1, 27-hydroxylase; MRD, multidrug resistance protein; BSEP, bile salt export protein. 
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The effects of CsA on CYP27A1 may relate to effects of CsA on cholesterol metabolism. 27-

hydroxycholesterol is a potent negative feedback regulator of HMG-CoA reductase [74] and 

decreased CYP27A1 activity may therefore explain increased HMG-CoA reductase mRNA 

and cholesterol levels [57]. Although important in macrophages, it should be noted however 

that it is not clear whether such a feedback loop exists in liver cells [75]. Increased cholesterol 

synthesis could subsequently lead to downregulation of LDLr levels as observed in some CsA 

studies, also contributing to increased plasma cholesterol levels (see section 3.2.1).  

Besides effects on bile acid synthesis CsA may affect bile flow. CsA treatment is associated 

with increased plasma bile acid concentrations and cholestasis in humans as well as in 

animal models [9,52,76]. Studies in rat indicate that bile flow and the secretion of bile salts, 

proteins and lipids into the bile are dose-dependently inhibited by CsA [52,76,77]. 

Interestingly, the changes in serum levels of bile acids are consistent with CsA-mediated 

inhibition of hepatocellular uptake of individual bile acids [78,79]. The inhibitory effect was 

greater for phosholipid secretion than that for cholesterol [80] and in some studies no 

inhibition of cholesterol excretion was observed [81], suggesting differential effects on 

transport mechanisms. Transport pumps involved in bile synthesis and secretion belong to 

the family of the ATP-binding cassette transporters which include, multidrug resistance 

proteins (MDR) and P-glycoprotein, and most of which are effectively inhibited by CsA 

[79,82]. Interestingly, comparison of the bile salt export pump (BSEP) activity from different 

species, showed that CsA inhibits bile salt transport with species and bile salt specific variation 

[83]. Rat BSEP was for example more effectively inhibited than mouse BSEP. Biliary cholesterol 

secretion is mediated via ABCG5 and ABCG8 [84]. Although both members of the ATP-

binding cassette family, it has not been investigated whether CsA inhibits ABCG5/8 activity. 

As phospholipids are transported via MDR3, it is likely that differences in efficacy of CsA 

between inhibition of MRD3 and ABCG5/8 exist. It is clear that CsA can affect bile flow and 

secretion in cultured cells and animal models. It should be noted however, that in humans no 

inhibitory effect of CsA on secretion of bile acids and lipids or on bile composition after liver 

transplantation was observed [85]. Others have shown that although cholate synthesis was 

reduced by CsA, compensatory increased intestinal absorption counteracted this decrease [86]. 

It remains therefore unclear to what extent inhibition of bile flow and secretion by CsA are 

contributing to hypercholesteremia in vivo.  

4. Therapies to address hyperlipidemia 

Hyperlipidemia is associated with significant morbidity and mortality rates in transplant 

recipients [87]. Many strategies have been investigated to target dyslipidemia in transplant 

patients. A number of excellent comprehensive reviews have been published on the clinical 

management of hyperlipidemia and its risks (eg [88,89]). We will therefore restrict our 

comments to a very brief summary of this area. 

4.1. Statins 

Statins inhibit HMG-CoA reductase, the rate limiting enzyme in the cholesterol synthesis 

pathway and are world-wide the drug of choice to lower plasma LDL-C levels. Various 
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statins have been tested in transplant patients and all show significant lowering of plasma 

cholesterol, LDL-C and apoB levels with some indicating improved survival rates (for 

review see [88,89,90]). A randomized trial, investigating the safety and efficacy of statins in 

renal transplant patients, the Assessment of LEscol in Renal Transplantation (ALERT) study, 

showed that fluvastatin effectively lowered LDL-C by 32% and reduced cardiac death and 

non-fatal myocardial infarction incidence significantly [91]. Importantly, statins may 

provide beneficial effects other then their lipid-lowering properties [92]. Wissing et al [93] 

reported improved flow mediated brachial artery vasodilatation by atorvastatin in kidney 

transplant patients and significant reductions in acute rejections have been observed in 

cardiac transplant patients [94]. 

Rhabdomyolysis, one of the few serious side effects of statins, is more common with high 

dose statin treatment. The risk is elevated in patients with renal disease and in patients 

taking drugs affecting statin metabolism, especaily in those taking CsA [88,89]. All statins 

have the potential to interact with CsA, as CsA substantially increases plasma levels of all 

statins. Although this is most notable for those metabolized via the Cyp3A4 pathway, statins 

not metabolized via the Cyp3A4 pathway [95] such as pravastatin and fluvastatin are also 

affected [95], suggesting that the interaction of CsA and statins may involve other 

mechanisms such as inhibition of drug transporters. Simvastatin poses the highest risk of 

myopathy, and particular care must be taken with higher doses of this agent, with 

recommendations that doses of 10mg/d are not exceeded in transplant patients [89]. Because 

statin therapy has been associated with mortality benefit after transplantation, correction of 

hyperlipidemia using lower doses of statins is mandatory after transplantation. Therefore 

careful clinical monitoring of patients as well as measurement of creatine kinase levels to 

detect muscle injury is advised, and the use of statins that are not metabolized via CYP3A4, 

such as fluvastatin or pravastatin may be preferential [95].  

4.2. Fibrates 

Fibrates lower plasma triglyceride levels via activation of the Peroxisome Proliferator 

Activated Receptor alpha (PPARα) and may be useful in transplant patients with elevated 

plasma triglycerides especially in combination with statin treatment to lower plasma 

cholesterol levels. Gemfibrozil was found to significantly lower plasma triglyceride levels in 

heart transplant patients and increase long term survival [96,97]. Fenofibrate is less well 

studied in transplant patients and may be associated with increased nephrotoxicity [88,98]. 

Care must be taken administering fibrates with CsA, particularly in combination with 

statins as drug-drug interactions exist via CYP3A4 as well as the hepatic uptake transporter 

the organic anion transporting polypeptide 1B1 (OAT1B1).  

4.3. Ezetimibe  

Inhibition of intestinal cholesterol absorption to lower high plasma cholesterol levels may be 

used when statins or fibrates are ineffective or are not tolerated. Ezetimibe proved to be an 

effective drug lowering plasma LDL-C levels significantly by blocking cholesterol 
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absorption in the small intestine [99]. To that point though, various studies showed effective 

LDL-C lowering in liver, cardiac and renal transplant recipients [99]. Although, drug-drug 

interaction between CsA and ezetimibe were suggested (See [88]), CsA levels in studied 

transplant patients were not affected by combined ezetimibe use (reviewed in [99]). Co-

administration of ezetimibe with (low-dose) statins has been found to effectively reduce 

high plasma cholesterol levels in transplant recipients and may be useful in patients that 

resistant to high-dose statin or where target plasma lipid levels can not be achieved by statin 

therapy alone [100,101]. 

5. Conclusions 

CsA-induced hyperlipidemia is well established and remains a significant clinical issue. CsA 

potentially affects many aspects of lipid and lipoprotein metabolism and the precise 

underlying mechanism(s) causing dyslipidemia are still unclear. Further mechanistic studies 

may lead to the generation immunosuppressants that do not cause hyperlipidemia or may 

help to develop strategies to effectively target CsA-induced hyperlipidemia. 
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