
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 21 

 

 

 
 

© 2012 Karimi, licensee InTech. This is an open access chapter distributed under the terms of the Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Animal Models as Tools for Translational 

Research: Focus on Atherosclerosis, Metabolic 

Syndrome and Type-II Diabetes Mellitus 

Isaac Karimi 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/47769 

1. Introduction 

Close to one century ago, Joslin, an American diabetologist, proposed the link between 

diabetes and obesity [1]. He concluded that “diabetes is largely a penalty of obesity, and the 

greater the obesity, the more likely is Nature to enforce it”. In the 1950s, Vague [2] described 

that central obesity predisposes not only to diabetes but also to atherosclerosis. In the 1970s, 

for the first time, Haller [3] used the term "metabolic syndrome" (MetS) for associations of 

obesity, diabetes mellitus (DM), hyperlipoproteinemia, hyperuricemia, and hepatic steatosis 

when describing the additive effects of risk factors on atherosclerosis. Phillips developed the 

concept of metabolic risk factors for myocardial infarction and described a cluster of 

abnormalities including glucose intolerance, hyperinsulinemia, hyperlipidemia, and 

hypertension [4,5]. In 1988, Reaven, an American endocrinologist, propounded that insulin 

resistance (IR) was the cause of glucose intolerance, hyperinsulinaemia, increased very-low-

density lipoprotein cholesterol (VLDL-C), decreased high-density lipoprotein cholesterol 

(HDL-C) and hypertension and named the constellation of abnormalities “syndrome X” [6]. 

Reaven did not include abdominal obesity, which has also been hypothesized as the 

underlying factor, as part of the condition. In the late 1990s and the early 21st century, MetS 

was widely recognized as a leading risk factor for cardiovascular morbidity and mortality 

and variously defined by World Health Organization [7], International Diabetes Federation 

(IDF [8]), the European Group for the Study of Insulin Resistance [9] and the National 

Cholesterol Education Program Adult Treatment Panel III [10] based on the reference 

intervals of its components. Accordingly to these definitions, MetS is thought to represent a 

combination of cardiometabolic risk determinants, including obesity, glucose intolerance 

and IR, dyslipidemia (including hypertriglyceridaemia, increased free fatty acids (FFAs) and 

decreased HDL-C) and hypertension and more recently a growing list of clinical 
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manifestations like polycystic ovarian syndrome (PCOS), atherosclerosis, proinflammatory 

state, oxidative stress and non-alcoholic fatty liver disease (NAFLD) has been associated to 

it. 

The MetS is increasingly recognized as a strong predictor of patient risk for developing 

coronary artery disease. It is associated with an atherogenic dyslipidemia characterized by 

elevated levels of triglycerides (TGs), reduced levels of HDL-C and a preponderance of 

small dense low-density lipoprotein (LDL) particles [11]. An atherogenic dyslipidemia is an 

integral component of MetS, and a major contributor to the cardiovascular risks in patients. 

These alarming situations increase the priority for developing new methods and 

technologies to investigate and to fight the MetS and its related comorbidities. Translational 

physiology offers us specific animal models for investigating these conditions to help 

support biomedical research efforts towards finding the necessary cures. This chapter 

summarizes various types of animal models that used as a tool in lipoprotein clinical 

researches and critically evaluates the physiological fidelity of these animal models to the 

human condition. The animal models are used to investigate biological or pathobiological 

phenomena or employed to find therapeutic and/or toxic effects of a xenobiotic or food 

ingredients. The laboratory animal models are developed and used to study the cause, 

nature, and cure of human lipoprotein disorders. They may conveniently be categorized in 

one of the following two groups:  

1. Experimental animal models of lipoprotein disorders 

2. Spontaneous animal models of lipoprotein disorders 

2. Experimental animal models of lipoprotein disorders 

Experimental (induced) models are healthy animals in which the condition (usually disease) 

to be investigated is experimentally induced, for instance, the induction of DM with 

encephalomyocarditis virus or alloxan. Although homologous animal models that 

completely show symptoms and the course of the lipoprotein metabolic disorders are very 

rare, the most induced models are exploratory, helping to understand mechanisms 

operative in fundamental normal biology or mechanisms associated with an abnormal 

biological function. Generally, induced models of metabolic disorders are prepared by 

genetic manipulation, dietary intervention, surgery, applying xenobiotics (drugs or toxins), 

and a combination of mentioned methods (see review [12]). This chapter will focus mainly 

on diet-induced and spontaneous animal models commonly used to investigate lipoprotein 

metabolic disorders. Readers referred to chapter 22 to study transgenic models of 

lipoprotein disorders. 

Nowadays, obesity, particularly visceral (or central) obesity, is accepted as network 

backbone of the other MetS components and their manifestations. It has been reported that 

the incidence of MetS and type 2 diabetes (T2D) increases with the severity of obesity [13]. 

In this context, increasing body mass index is positively associated with prevalence of both 

impaired glucose tolerance and T2D and also correlated with dyslipidemia component of 

MetS that characterized by (a) increased flux of free fatty acids (FFA), (b) raised TGs values, 
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(c) low HDL-C values, (d) increased small, dense low density lipoprotein particles (e) 

increased TC and LDL-C and (f) raised apolipoprotein (apo) B levels  

The intake of high energy diet and sedentary behavior in developed countries has an accrual 

effect on the incidence of obesity. Although the association between visceral fat and MetS is 

strong, the mechanism is not fully elucidated. The adipose tissue is not an inert tissue and 

constitutively produces adipocytokines that involve in pathogenesis of MetS and IR (see 

review [14]). Diets play a fundamental role in inducing obesity-related diseases in human, 

and most animal models do use diet as a way to precipitate the obesity-related diseases. 

Today, most diet-driven animal disease models are generated using open source, purified 

ingredient diets. The “open source” nature of purified ingredient diets allows researchers to 

compare data from different studies, since the diet formulas are generally freely available to 

the public, while the “close source”, chow diets are differently formulated. Purified 

ingredients, on the other hand, are highly refined and contain just a single nutrient (ie. 

fructose). These ingredients have little variability and therefore provide consistency between 

batches, and so help to minimize data variability. There are numerous differences between 

chows and purified diets, creating countless variables, thus making it difficult to interpret 

the results when these diets are used together in a study. Chow is a nonpurified diet 

composed of a mixture of intact feed. In contrast, purified diets provide macronutrients as 

purified ingredients. For example, carbohydrate in chow diets is derived from complex 

mixtures of corn and wheat flakes, wheat middlings, ground corn, and dried whey. In 

addition to carbohydrate, these ingredients provide variable amounts of protein, fat, 

vitamins, minerals, and various phytochemicals and other (anti)nutrients. Some of these 

compounds, in particular the phytoestrogens, may act as endocrine disruptors that alter 

endocrine milieu and disease progression and so are usually unwanted variables. Finally, 

purified ingredient diet formulas can be easily modified so that researchers can intentionally 

and specifically change one ingredient at a time, allowing them to study the effects of large 

or small changes in the nutritional quantity and quality of the diet. Because of these 

advantages, most metabolic disease animal research uses and requires purified ingredient 

diets. In addition to purified and chow diets, some scientists used what is known as the 

cafeteria diet (CAF) to induce obesity. In this model, animals are allowed free access to 

standard chow and water while concurrently offered highly pleasant, energy dense, 

unhealthy human junk foods including cookies, candy, cheese, and processed meats ad 

libitum. These foods contain a substantial amount of salt, sugar, and fat and are meant to 

simulate the human “Western diet”. However, the nutritive and nonnutritive components of 

these foods are not well defined. In addition, the animal may choose a different selection of 

foods each day. In this section, I discuss how high diets influence the phenotypes of the 

obesity and/or MetS in translated animals. 

2.1. The mouse models 

The advantages of mouse models that made them suitable for translating human conditions 

include a well-known genome, relative ease of genetic manipulation, a short breeding span, 

access to physiological and invasive testing, short reproductive cycle, large litter size, much 
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lower cost and possibility of conducting longitudinal studies using larger numbers of 

animals, rapid development of atherosclerotic plaques, only partial resemblance to humans, 

very high levels of blood lipids, useful for noninvasive imaging and large experience.  

Normal mice have traditionally not been ideal models of cardiovascular disease research 

since they typically have very low levels of TC and LDL-C but high levels of HDL-C. This 

is in contrast to humans in whom the reverse is true because unlike humans and several 

other animals, mice do not possess plasma cholesteryl ester transfer protein (CETP) and, 

therefore, about 70% of the plasma TC is found in HDL particles. Mouse models have 

proved to be useful to study development and progression of atherosclerotic lesion, and 

several reviews have extensively discussed the different available models (see review 

[15]). The ability of mice to maintain their cholesterol profile even in the face of high-

cholesterol diets means that very little actual atherosclerosis develops [16]. As wild-type 

mice are resistant to lesion development, the current mouse models for atherosclerosis are 

based on genetic modifications of lipoprotein metabolism with additional dietary 

changes. In order to ‘force’ the atherosclerosis phenotype on normal mice, it is usually 

necessary to combine high concentrations of dietary cholesterol with 0.25%-0.5% cholic 

acid which promotes fat and cholesterol absorption from the intestine [17]. However, 

cholic acid can also promote liver inflammation, decrease bile acid production, and alter 

circulating TG and HDL-C, it may independently affect the development of 

atherosclerosis [15]. Atherosclerosis is a complex multifactorial disease with different 

etiologies that synergistically promote lesion development. High-fat diets (HFDs) are 

used to model obesity, dyslipidaemia, atherosclerosis, IR and MetS in rodents (see 

reviews [18,19]. High-fat diet (HFD) feeding in mice increased systolic blood pressure and 

induced endothelial dysfunction [20] and some kind of nephropathy [21]. Different types 

of HFDs have been used with fat fractions ranging between 20% and 60% energy as fat as 

either animal-derived fats, such as lard or beef tallow, or plant oils such as olive or 

coconut oil [22]. Long-term feeding of rats (60% of energy) and mice (35% fat wt/wt) with 

HFD increased body weight compared to standard chow-fed controls [23]. Although the 

increase in body weight was significant after as little as 2 weeks, the diet-induced 

phenotype became apparent after more than 4 weeks of HFD feeding [23]. Long-term 

feeding with both animal and plant fat-enriched diets eventually led to moderate 

hyperglycaemia and impaired glucose tolerance in most rat and mouse strains [24]. Lard, 

coconut oil and olive oil (42% of energy content) increased body weight, deposition of 

liver TGs, plasma TGs and FFAs concentrations and plasma insulin concentrations [22]. 

Lard, coconut oil and olive oil caused hepatic steatosis with no signs of inflammation and 

fibrosis [22]. Although HFD induces most of the symptoms of human MetS in rodents, it 

does not resemble the diet causing MetS and associated complications, as the human diet 

is more complex than a HFD. Other major components of modern diets are refined 

carbohydrates and fructose. The epidemiologic data has proved that a significant 

correlation in the prevalence of diabetes with fat, carbohydrate, corn syrup (source of 

fructose), and total energy intakes. The striking features of these studies are the fact that 

intake of corn syrup was positively associated with T2D, while protein and fat were not 

(see review [25]). Most studies have utilized mice as animal models to define the role of 
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carbohydrate enriched diets in formation of different aspects of MetS. The interested 

readers will have to go to the current literature in order to understand more fully the 

fidelity of mice for translation of similar conditions in humans. In this context, high-fat 

high-carbohydrate (HFHC) diet contains 55% fructose and 45% sucrose (wt/vol) in 

drinking water has been fed to nongenetically modified adult male C57Bl/6 mice for 16 

weeks led to obesity and nonalcoholic steatohepatitis (NASH) [26]. HFHC has been used 

to induce hyperglycemia, glucose intolerance, IR, increased fat pad weight and adipocyte 

hypertrophy and commonly HFHC-fed mouse models used to screen therapeutic effects 

of various drugs and diets against MetS and its comorbidities (e.g., [27]). Charlton and 

colleagues recently proposed an obese mouse model of NASH that induced by feeding 

fast food (high SFs, cholesterol, and fructose) diet [28]. C57BL/6J mouse is T2D model by 

simply feeding HFD to nonobese, nondiabetic C57BL/6J mouse strain. It is characterized 

by marked obesity, hyperinsulinaemia, IR and glucose intolerance [29]. Diets contribute to 

T2D in mouse identical to human, and a HFD and sucrose administration appears to 

speed up the development of the disease in mice. In this context, impaired insulin 

secretion and/or impaired insulin action also contribute to the diabetic phenotype for 

these mice [30]. However, the mouse models are observed to develop diabetes in relation 

to profound obesity and do not display the same islet pathology as humans with T2D [31]. 

A large number of investigations also have been carried out within recent years, 

concerning the therapeutic action of various (bio)pharmaceutical and nutraceutical 

compounds on mouse models of lipoprotein disorders (e.g., [32]).  

2.2. The rat models 

Rats, like humans, showed different vulnerability to diet-induced obesity. At first, an animal 

model of diet-induced obesity is one introduced by Levin and coworkers [33] and 

developed into a purified diet model [34]. In this model, Sprague-Dawley (SD) rats fed a 

purified moderately high-fat (MHF) diet exhibit a bimodal pattern in body weight gain 

similar to that observed in humans. Approximately half of the rats gain weight rapidly 

compared with chow-fed rats (obesity prone [OP] or diet-induced obese [DIO]), whereas the 

other half gain BW at a rate similar to or lower than that of the chow-fed animals (obesity 

resistant [OR] or diet-resistant [DR]) [34-36]. Most rodents tend to become obese on HFD 

and very high-fat diet (VHFD), but there can be variable responses in glucose tolerance, IR, 

TGs, and other parameters depending on the strain and gender, and source of dietary fat 

[22,37]. When outbred SD and Wistar rats were placed on HFD (32 or 45 kcal% fat), there 

was a wide distribution in body weight gain and a subset of animals became obese, whereas 

others remained as lean as the animals fed with a low-fat diet (LFD) have shown that the rat 

model of diet-induced obesity develops mild hypertension accompanied by vascular and 

renal changes similar to those observed in obese hypertensive humans [35,38]. The MHF 

diet that they used contains 32% kcal fat, a value similar to the average Western diet, as 

opposed to many other models that have very high levels of fat [38]. All rats fed the MHF 

diet did not become obese and their body weight displayed a bimodal distribution. The 

increased body weight reflects an increase in the adipose mass in the OP rats versus the 

chow-fed rats [38].  
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Elevation of plasma TGs and FFAs was commonly observed in patients with diabetic 

dyslipidemia or obesity [39]. Evidence showed that hyperglycemia and 

hypertriglyceridemia had direct effects on arterial wall and induced endothelial dysfunction 

[40]. The elevation of TGs and fasting plasma glucose was noted in HFD studies [41]. 

However, the levels of TGs and TC in high-fat fed DR rats were no more than chow-fed 

control rats. The HDL-cholesterol level decreases in hypercholesterolemic and MHF-fed rats 

[38]. The TGs content of plasma, LDL, and VLDL has been increased in OP rats fed MHF 

diet after 3 weeks [38]. As opposed to cholesterol content, this difference is even greater after 

10 weeks of the MHF diet therefore authors concluded that factors other than diet like 

reduced growth hormone secretion are also responsible for the high levels of TGs in OP rats 

[38,42]. The underlying mechanism is not known. Insight into the differences in endocrine 

and lipoprotein metabolism may provide further evidences. For example, Yang et al’s study 

showed that DR rats had higher levels of plasma peptide YY, a gut-derived anorexigen, than 

DIO and the control groups. This indicates that a difference in appetite control is responsible 

for the lower caloric intake and weight gain in DR rats [43]. One of the common features of 

obesity in humans is dyslipidemia which occurs in rat model of diet-induced obesity and is 

frequently associated with hypertension [38]. I have decided to ignore molecular 

mechanisms of hypertension in OP rat because of limited space. However, hypertension 

developed in OP, but not OR, rats, is a multifactorial disorder and diet is not the major 

factor that causes the high blood pressure in this model.  

According to Barker hypothesis, adult metabolic diseases are programmed during fetal life 

[44]. To investigate the mechanisms by which altered intrauterine milieu predisposes to later 

development of MetS, different animal models have been developed (see review [45]). 

Interestingly, offspring of rats fed high saturated fats during pregnancy have fetal IR [46], 

abnormal cholesterol metabolism [47] and raised adult blood pressure [48]. Furthermore, the 

outbred Sprague-Dawley DIO and DR rats have been selectively bred over time such that 

their future body weight response to a HFD is known in utero, allowing the researcher to 

look early in life (prior to the onset of obesity) for genetic traits that may later predispose 

them to their DIO or DR phenotypes [37,49]. 

The inbred obese Zucker diabetic fatty (ZDF) rat is high-fidelity model with close 

resemblance to human case in obesity and T2D. The males become obese and diabetic on a 

LFD, but HFD feeding promotes more robust disease. The female ZDF rat is unique in that 

while they are obese, they do not develop diabetes unless fed a diet (in this case, chow-

based) containing 48 kcal% fat [50]. The female ZDF rat is also suitable model mimics pre-

diabetic state in humans because she shows a prolonged period of insulin sensitivity prior to 

the onset of diet-induced diabetes [51]. The ZDF rats show profound dyslipoproteinaemia 

with increased TC and TGs levels and lower chylomicra disposal rates that mimics 

conditions occurred in human case of obesity [52]. Although normal rats are not ideal model 

of cardiovascular disease research since they typically have very low levels of TC and LDL-

C but high levels of HDL-C, they are mild diet-responsive. The ability of rats to sustain their 

cholesterol profile even in the face of high-cholesterol diets means that very little actual 

atherosclerosis develops [16]. However, feeding Wistar rats a high calorie "Western diet" 
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(45% fat) for up to 48 weeks induces obesity and cardiac dysfunction, while a high fat diet 

(60% fat) induces obesity only [53]. The "Western diet" composed of a purified ingredient 

SF-rich HFD, and cholesterol (~0.2% by weight) can elevate TC and LDL-C and in turn cause 

atherosclerosis in certain rodent models and humans [54]. A mixture of high levels of 

dietary cholesterol with 0.25%-0.5% cholic acid has been used to induce atherosclerosis 

phenotype on normal rats and mice for many years ago [55]. More recently, Zaragosa and 

colleagues introduced various animal models of cardiovascular diseases (see review [56]). 

Surprisingly rat does not develop atheroma in the process of atherosclerosis (see review 

[56]). Generally rats are highly resistant to the development of atherosclerosis because they 

lack physiological resemblance on many aspects with humans that are pathophysiologically 

important [57]. For example, HDL is dominating lipoprotein in these animals and rat 

platelets are generally resistant in hyperlipidemic condition (see review [58]). Rats are 

potentially practical model for studying hypercholesterolemia along with hypertension (see 

review [58]). They exhibit augmented thrombotic response and develop coronary 

atherosclerotic lesions under hypertensive and hyperlipidemic conditions (e.g., [59]). 

Triglyceride-rich diets containing various amounts of cholesterol, with or without cholic 

acid have been used to induce hypercholesterolemia in rats. The fat sources vary from lard 

to soybean, canola or sunflower oils. Nevertheless, the question of the caloric value of the 

employed diets has not yet been considered properly since their high fat content, which is 

the strategy used in order to induce hypercholesterolemia, leads to lower ingestion by the 

animals and induces malnutrition. To overcome this shortcoming, Matos and colleagues [60] 

proposed a diet containing 25% soybean oil, 1.0% cholesterol, 13% fiber (cellulose) and 

4,538.4 Kcal/Kg that led to an increase in LDL-C, a decrease in the HDL-C fraction and 

affected less the hepatic function of the rats during eight weeks. Roberts and colleagues 

presented a rat model of diet-induced syndrome X and they explored potential mechanisms 

of hypercholesterolemia in diet-induced syndrome X [61]. To induce syndrome X, female 

Fischer rats were fed a high-fat (primarily from lard plus a small amount of corn oil), 

refined-carbohydrate (sucrose) diet for 20 months [61]. Sampey and colleagues [62] have 

demonstrated that the CAF is a more robust model of MetS than lard-based HFD and that 

the rapid-onset of weight gain, obesity, multiorgan dysfunctions and pathologies observed 

in the CAF model more closely reflect the modern human condition of early onset obesity. 

However, they did not repot possible lipid-lipoprotein disorders that may be occurred in 

their model. Recently, Manting and colleagues [63] have shown that a combination of 

chronic stress and HFD (83.25% basal feed, 10% lard, 1.5% cholesterol, 0.2% sodium 

taurodeoxycholate, 5% sugar and 0.05% propylthiouracil) can induce lipid metabolism 

disorder in Wistar rats and they claimed that their multiple factor model better mimics the 

disease characteristics of human beings.  

2.3. The hamster models 

Hamsters are another animal model can be used to assess some aspects of MetS. Like rats 

and mice, HDL-C is predominant plasma cholesterol-rich lipoprotein in these animal, but in 

contrast, dietary cholesterol (~ 0.1%) can significantly elevate LDL-C and like humans, SF 
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can increase these levels further [64]. The combination of high dietary SF and cholesterol is 

commonly used to promote atherosclerosis in these animals and atherosclerotic lesions 

similar to those found in humans can be found after prolonged feeding periods [65]. 

Actually, cholesterol itself may not always be necessary for this phenotype, since a purified 

diet with no cholesterol but high concentrations of SF can promote more aortic cholesterol 

accumulation compared to a diet with both cocoa butter and 0.15% cholesterol [66]. 

Cholesterol-fed hamsters have been used to screen therapeutic anti-atherosclerotic and 

hypolipidemic properties of (phyto)medicines (e.g., [67,68]). Hamsters have been proposed 

as an animal model to evaluate diet-induced atherosclerosis since the 1980s [69]. Relative to 

other normal rodent models, hamsters have a low rate of endogenous cholesterol synthesis, 

cholesteryl ester transfer protein (CETP) activity and tissue specific editing of 

apolipoprotein (apo) B mRNA and secretion of apo B-100 from the liver and apo B-48 from 

the small intestine. Hamsters, like humans, take up approximately 80% of LDL-C via the 

LDL receptor pathway. The morphology of aortic foam cells and lesions in hamsters fed 

atherogenic diets was reported to be similar to human lesions [70]. Recently, in a systematic 

review Dillard and colleagues concluded that the Golden-Syrian hamster does not appear to 

be a constructive model to determine the mechanism(s) of diet-induced development of 

atherosclerotic lesions (see review [71]) however the authors only concentrated on 

atherogenecity of cholesterol- and fat-rich diets in hamster models of atherosclerosis.  

Leung and colleagues investigated intestinal lipoprotein production and the response to 

insulin sensitization in the high fat-fed Syrian Golden hamster for 5 weeks [72]. They 

concluded that Syrian Golden Hamsters were fed 60% fat is a good model of nutritionally-

induced IR that intestinal overproduction of lipoproteins appear to contribute to the 

hypertriglyceridemia of IR in this animal model and insulin sensitization with rosiglitazone 

(an insulin sensitizer) ameliorates intestinal apoB48 particle overproduction in this model. 

An appropriate dyslipidemic animal model that has diabetes would provide an important 

tool for research on the treatment of diabetic dyslipidemia. Ten days of high fat feeding in 

golden Syrian hamsters resulted in a significant increase in IR and baseline serum lipid 

levels accompanied by a prominent dyslipidemia. Thirteen days of treatment with 

fenofibrate, a peroxisome proliferator-activated receptor alpha (PPAR alpha) selective 

agonist, produced a dose-dependent improvement in serum lipid levels characterized by 

lowered VLDL-C and LDL-C and raised HDL-C in a fashion similar to that seen in man [73]. 

Various diet formula, fat resources and time tables have been found to induce some aspects 

of MetS in the literature. For example, a diet consisted of 80 g of anhydrous butterfat, 100 g 

of corn oil, 20 g of Menhaden fish oil and 1.5 g of cholesterol has been used to encourage 

hypercholesterolemia in male golden Syrian hamsters for 21 days [68]. Male golden 

hamsters were given 15% HFD contained 100 g of lard and 50 g of soybean oil and 100 g of 

sucrose showed diabetic dyslipidemia for eight weeks [74]. F1B hamster is a genetically-

defined hamster, derived from two highly inbred lines, namely by crossbreeding between 

Bio 87.20 female with a Bio 1.5 male. F1B hamster is an exciting animal model for 

hyperlipidemic-related applications. The F1B strain is very responsive to SF and cholesterol 

by increasing the non-HDL fraction to a greater extent than the HDL fraction [75]. Dietary 
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fatty acid chain length, degree of saturation and cis-trans conformation have been shown to 

alter several metabolic pathways involving cholesterol throughout the body, the combined 

effect of which is reflected in plasma lipid and lipoprotein profiles (see review [76]). 

Interestingly, intake of trans-fatty acids in shortenings and margarines has been linked to 

increased risk of cardiovascular disease through effects on lipoprotein metabolism and 

substituting trans-fatty acids for either saturated or polyunsaturated fatty acids results in 

more deleterious lipid-lipoprotein profiles [77]. Hamsters are candidate model to investigate 

cardiometabolic risks of different fat resource and fat-rich diets [78]. Similarity with the 

human LDL receptor gene, makes hamster ideal to study LDL receptor antagonists and also 

useful for drugs which interfere with CETP activities and reverse cholesterol transport 

(RCT) from peripheral tissues to the liver for biliary and fecal excretion [79]. A considerable 

amount of experimental attention is currently directed at understanding the in vivo 

mechanisms of RCT. Although not established in vivo, RCT is thought to be impaired in 

patients with MetS, in which liver steatosis prevalence is relatively high. In this sense, 

Briand and coworkers [80] introduced a hamster model of MetS to study RCT. These 

scientists with the help of HFT diet containing 27% fat, 0.5% cholesterol, and 0.25% 

deoxycholate as well as 10% fructose in drinking water for 4 weeks induced promoted IR, 

dyslipidemia with significantly higher plasma non-HDL-C concentrations and CETP 

activity, and hepatic steatosis. In vivo RCT was assessed by intraperitoneally injecting (3)H-

cholesterol labeled macrophages. Finally their results indicate a significant increase in 

macrophage-derived cholesterol fecal excretion, which may not compensate for the diet-

induced dyslipidemia and liver steatosis [80]. One of the main target organs of MetS is liver, 

in which it manifests itself as NAFLD [81]. Bhathena and colleagues currently developed a 

triumphant BioF1B Golden Syrian hamster model of MetS that successfully manifested 

hyperlipidemia, IR and NAFLD [81]. They induced this model by feeding hamsters a high-

fat, high-cholesterol, inadequate methionine- and choline-containing diet. In addition to F1B 

hamster strain from Biobreeders (Watertown, MA) that commonly used to study diet-

induced metabolic disorders other three outbred strains are Charles River (CR), Sasco and 

Harlan (see review [71]). All these strains are derived from inbred or outbred Golden-Syrian 

hamster.  

Similar to rats, hamsters fed high fructose diets (~60% of energy) may develop IR and 

hypertriglyceridemia in TG after only two weeks compared to diets low in fructose [72,73]. 

Interestingly, hamsters fed high-sucrose diets did not have elevated TG levels and 

developed only mild IR relative to those fed diets high in fructose [72]. Avramoglu and 

colleagues reviewed mechanisms of metabolic dyslipidemia in insulin resistant states (see 

review [82]). They developed an explanatory fructose-fed hamster model of insulin 

resistance to study hepatic lipid metabolism as its lipoprotein metabolism as described 

previously [83,84]. Hamsters exhibit obesity, hypertriglyceridemia, increase plasma FFAs 

concentration and IR if fed fructose-rich diet for a two week period. Fructose feeding 

induced a noteworthy increase in synthesis and secretion of total TGs as well as VLDL-TG 

by primary hamster hepatocytes [73]. The microsomal triglyceride transfer protein plays a 

pivotal role in VLDL assembly and its activity showed a striking 2.1-fold elevation in 
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hepatocytes derived from fructose-fed versus control hamsters [73]. The apoB production 

also has been increased in the fructose-fed hamsters [73]. Fructose-fed hamster also has been 

introduced as an exploratory animal model to excavate role of intestinal lipoprotein 

overproduction in the dyslipidemia of insulin-resistant states [74]. The authors have shown 

that fructose feeding for 3 weeks increases secretion of apoB48-containing lipoproteins in the 

fasting state and during steady state fat feeding. Wang and coworkers [75] investigated the 

composition of plasma lipoproteins in hamsters fed high-carbohydrate diets of varying 

complexity (60% carbohydrate as chow, cornstarch, or fructose) for 2 weeks. They showed 

that hamsters fed the high-fructose diet showed significantly increased VLDL–triglyceride 

(92.3%), free cholesterol (68.6%), and phospholipid (95%), whereas apolipoprotein B levels 

remained unchanged. Fructose feeding induced a 42.5% increase LDL–triglyceride 

concurrent with a 20% reduction in LDL–cholesteryl ester. Compositional changes were 

associated with reduced LDL diameter. In contrast, fructose feeding caused elevations in all 

HDL fractions.  

2.4. The guinea pig models  

A number of seminal reviews on the details of the criteria that make guinea pigs suitable 

animal models for studying lipoprotein metabolism are available (see reviews [85-87]) and a 

summary will be presented here. Guinea pigs in contrast to other rodents have higher levels 

of plasma LDL-C compared to HDL-C. As humans, guinea pigs have higher concentrations 

of free compared to esterified cholesterol found in the liver and they show evidence of 

moderate rates of hepatic cholesterol synthesis and catabolism. Similar to humans, the 

binding domain for the LDL receptor of guinea pigs discriminates normal and familial 

binding defective apo B-100 and apo B mRNA editing in liver is scarce (< 1%) compared to 

18 to 70% in other species [88]. The three important proteins involved in lipoprotein 

remodeling and RCT (CETP, lecithin:cholesterol acyltransferase (LCAT), and lipoprotein 

lipase (LPL) have been reported in guinea pigs.  

Guinea pigs have been used as models to dissect the mechanisms by which various dietary 

fat resources influences plasma lipid-lipoprotein profiles. In contrast to hamsters they do not 

possess a fore-stomach fermentation which modifies dietary macronutrients before reaching 

the small intestine [89]. Guinea pigs are not only superior models for studying the 

mechanisms by which statins [90], cholestyramine [91], apical sodium bile acid transport 

inhibitors [92] and microsomal transfer protein inhibitors [93] lower plasma LDL-C but also 

are selected to investigate the mechanisms by which certain drugs or toxins affect lipid-

lipoprotein metabolism (e.g.,[94]). Guinea pigs respond to dietary fat saturation, dietary 

cholesterol and dietary fiber by alterations in LDL-C (see review [87]). For example, the SF-

rich diet will increase TC and LDL-C levels much more than polyunsaturated fat (PF)-rich 

diet in guinea pigs and cholesterol-rich diets can further increase TC and LDL-C levels [95].  

The suitability of guinea pigs as models of atherosclerosis is augmented by an array of review 

and assessment features (see review [59]). However, guinea pigs do not develop advanced 

atherosclerotic lesions, and are not an entrenched model for atherosclerosis progression [96]. 
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High plasma level of lipoprotein (a) (also called Lp(a)) is associated with coronary heart 

disease and other forms of atherosclerosis in humans (see review [97]), and as primates, 

hedgehogs [98] and guinea pigs possess Lp(a) among normal animal models [99]. Guinea pigs 

are practical model to study the role of oxidized LDL (oxLDL) in progression of atherosclerosis 

[100]. Initial atherosclerosis induced by various formula of HFD in guinea-pigs. Intake of HFD 

(guinea-pig pellet diet + 0.2% w/w cholesterol) can induce the onset of early atherosclerotic 

changes in coronary artery, aorta and major organs at least for one month [101]. High SF diet 

supplemented with high cholesterol (0.25%) will advance an atherosclerotic process for twelve 

weeks in guinea pigs [102]. Yang and colleagues [103] introduced a hyperlipidemic guinea pig 

model in a comparative investigation. They concluded that different response of TG 

metabolism to a HFD (0.1% cholesterol and 10% lard) in guinea pigs and rats suggests that 

Hartley guinea pigs could be a better hypertriglyceridemia animal model than rats for research 

on lipid metabolism disorders and hypolipidemic drugs. It seems that chronic dyslipidemia 

associated with hypertriglyceridemia may reduce auditory function. In this context guinea 

pigs fed a HFD used as an animal model to find the relationship between of sensorineural 

hearing loss and dyslipidemia [104]. 

As rats, guinea pigs are accepted models for studying fetal programming of cardiovascular 

diseases. Interestingly, adipogenesis in the guinea pig is very active during early postnatal 

life and was altered by a maternal HFD; thus, it is an adequate model for intrauterine fat 

deposition [105]. More studies are requested to explore lipid-lipoprotein profiles of guinea 

pigs that received a maternal HFD. Caillier and colleagues [106] currently generated a 

guinea pig model of MetS by 150-day exposure to diabetogenic high fat high sucrose or the 

high fat high fructose diets. To my knowledge, it would be early to consider guinea pig as 

an animal model of MetS since the literatures are scarce. 

2.5. The rabbit models 

A century ago, rabbits were used as translated animal models of atherosclerosis [107]. Since 

then, a number of animal models have been used to explain the relationship between 

disorders of lipid metabolism and atherogenesis (see reviews [108,109]). In this sense, 

dietary lipid manipulation and use of naturally defective animals, such as Watanabe 

heritable hyperlipidemia (WHHL) rabbits, have been the focus of most experimental 

settings (see chapter 22). Rabbits are appropriate animal models for studying lipoprotein 

metabolism and its disorders because they share with humans several aspects of lipoprotein 

metabolism, such as similarities in composition of apolipoprotein B containing lipoproteins, 

hepatic production of apo B 100-containing VLDL, plasma CETP activity, human-like apo B, 

low hepatic lipase activity and high absorption rate of dietary cholesterol. Unlike humans, 

rabbits are hepatic lipase–deficient and do not have an analogue of human apo A-II. Rabbits 

do not form spontaneous atherosclerotic lesions and therefore require very high cholesterol 

levels to induce more advanced disease (see review [110]). Rabbits also have significant 

differences in their lipid metabolism from humans, which can result in their development of 

“cholesterol storage syndrome” while on high-cholesterol diets (0.5–3%), with cholesterol 

deposited in their liver, adrenal cortex, and reticuloendothelial and genitourinary systems 
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[108]. We found that a high-cholesterol diet contained in 0.47% cholesterol would be 

tolerable for adult male rabbits for 4 weeks but our high-cholesterol diet was mildly 

atherogenic [94,111]. The atherosclerotic lesions of rabbits do not completely resemble those 

in humans [108] and the formed lesions are more fatty and macrophage rich than human 

[112]. Atherogenic diets are usually associated with hypercholesterolemia and the 

development of atherosclerotic lesions in the aortic arch and thoracic aorta rather than in the 

abdominal aorta that is almost always affected in humans. New Zealand White rabbits are 

the strain commonly used in atherosclerosis research. Although they have low plasma TC 

concentrations and HDL as dominant lipoprotein [113], βVLDL becomes the major class of 

plasma lipoproteins when exposed to cholesterol-rich diet (see review [59]). In conjunction 

with chylomicron remnants, βVLDL becomes highly atherogenic. Long-term experiments 

using diets high in cholesterol are discouraging in rabbits, because they cannot increase the 

excretion of sterols and resulting hepatotoxicity does not allow the animal to survive (see 

review [114]).  

Various HFD and intervention period have been used to induce MetS in rabbits or its 

components like IR, visceral obesity, hypertension, dyslipidemia (e.g., [115,116]). Rabbits are 

suitable animals to investigate MetS-associated multiorgan dysfunctions. Helfenstein and 

colleagues recently proposed an experimental model of impaired glucose tolerance combined 

with hypercholesterolaemia induced by diets (high-fat/high-sucrose (10/40%) and cholesterol-

enriched diet for 24 weeks) that gained weight, increased blood glucose, TC, LDL-C, TGs, and 

decreased HDL-C in New Zealand male rabbits [117]. Their cheap model reproduced several 

metabolic characteristics of human DM and promoted early signs of retinopathy. Corona and 

colleagues [118] reviewed relationships between hypogonadism and MetS emphasizing their 

possible interaction in the pathogenesis of cardiovascular diseases. However they concluded 

that the clinical significance of the MetS-associated hypogonadism needs further clarifications. 

Vignozzi and colleagues [119] described an animal model of MetS obtained by feeding male 

rabbits for 12 weeks. In their experiment, HFD-animals develop hypogonadism and all the 

MetS features like hyperglycemia, glucose intolerance, dyslipidemia, hypertension, and 

visceral obesity. A recently established rabbit model of HFD-induced MetS showed 

hypogonadism and the presence of prostate gland alterations, including inflammation, 

hypoxia and fibrosis [120]. Rabbits fed a cholesterol-rich diet (1% cholesterol) for 8 weeks and 

12 weeks share several physiopathological aspects of NAFLD [121]. Because this model is not 

insulin resistant and obese, it may be useful for elucidating the mechanism of NAFLD related 

mainly to hyperlipidemia. 

3. Spontaneous animal models of lipoprotein disorders 

The pathophysiology of disorders of lipoprotein metabolism of humans cannot highly 

translated to wild-type rodents since they are very resistant to atherogenesis and have no 

similarity to human lipid and lipoprotein metabolism; further, they do not develop 

cardiovascular diseases identical to humans. Therefore search for more reliable model is still 

continuing. In this regard, pig, is a considered a very good model of human atherosclerosis, 

because it is similar to humans in terms of body size and other physiological features (see 
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review [122]). Pigs spontaneously develop atherosclerosis even on a normal porcine diet and 

dietary modification lead to sever atherosclerosis [123]. As humans, pigs transport most 

cholesterol in LDL-C and dietary modification alters their plasma lipoproteins closely 

resemble those occurring in humans. In contrast to rodents, swine atherosclerosis, like the 

human illness, progresses to advanced stages (see review [122]). For example, mini-pigs fed 

fat-enriched food showed fatty streaks in their abdominal and thoracic aorta and coronary 

arteries during 18 months [124]. Cholesterol contents of diets also affects the extension and 

exacerbation of atherosclerotic changes in pigs (see review [122]). Johansen and colleagues 

[125] suggested an obese Göttingen minipig model of MetS that was highly responsive to a 

high fat high energy diet. Several swine models of T2D and IR have been proposed (see 

review [18]). However, spontaneity in development of MetS and IR, is not common in this 

species [58]. Dogs do not naturally show atherosclerosis and cholesterol- and SF-rich diets 

combined with thyroid suppression is required for atherosclerosis development [126]. 

Beagles and miniature Schnauzer dogs show useful similarities with human in cholesterol 

synthesis, and lipoproteins level [127,128]. Feline DM, in both spontaneous and inducible 

forms, therefore provides a reliable animal model of human T2D and may provide 

additional insights into the clinical, physiological, and pathological features of this disease 

(see review [129]). Considerably more studies must be forthcoming to establish firmly how 

lipoprotein profile participates in pathogenesis of atherosclerosis, DM and possibly MetS in 

pet animal since companion animal obesity would be a serious veterinary medical concern 

in near future [130]. The subject of suitability of other domesticated animal species such as 

pigs and sheep, as well as feral, migrating and hibernating species for studying lipid and 

lipoprotein metabolism has been concisely reviewed (see review [131]). For thorough 

coverage of this aspect of animal models, this work is recommended.  

A number of other interesting wild rodents that are explanatory or exploratory animal 

models of different disorders of lipid and/or carbohydrate metabolism have been 

introduced. Recently, Octodon degus (degu) has been proposed as an animal model of diet-

induced development of atherosclerosis [132]. To induce atherosclerosis, degus were fed for 

16 weeks chow containing 0.25% cholesterol and 6% palm oil. Cholesterol-fed degus 

exhibited 4- to 5-fold increases in TC, principally in the VLDL-C and LDL-C fractions and 

developed cholesteryl ester-rich atherosclerotic lesions throughout the aorta [132]. 

Hedgehogs are homologous animal models for studying roles of Lp(a) in atherosclerosis 

[98]. Sand rat, Tuco-Tuco and spiny mouse are unusual models of diet-induced obesity and 

T2D (see review [12]. In laboratory condition, sand rat (Psammomys obesus) develops obesity 

and diabetes when fed on standard chow (high energy diet) instead of its usual energy-

diluted vegetable diet composed mainly of saltbush Atriplex [133]. Surprisingly, sand rats 

are studied extensively and serve as more statable polygenic model for the study of 

diabesity syndrome [133,134]. Spiny mouse (Acomys calirinus) is another small rodent living 

in semiarid areas of eastern Mediterranean. They gain weight and exhibit marked impaired 

pancreatic beta cell when they are placed in captivity on high energy rodent lab chow [135]. 

Ctenomis talarum (Tuco-tuco) is another feral species which exhibit similar characteristic 

features of sand rat and spiny mice when fed on high energy rodent diet [136]. Brandt's vole 
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(Lasiopodomys brandtii) is another rodent model used in diet-induced obesity [137]. The Nile 

grass rat (NGR), Arvicanthis niloticus, is a herbivorous rodent inhabiting dry savanna, 

woodlands, and grasslands in Africa. Noda and colleagues [138] recently showed that the 

NGR is a precious, spontaneous model for exploring the etiology and pathophysiology of 

MetS as well as its various complications.  

Avian models of human atherosclerosis include pigeon, chicken, Japanese quail, turkey and 

parrots. Although these avian models are not frequently used in studying atherosclerosis, it 

is worthy to note, that spontaneous atherosclerosis in the chicken was first described in 1914 

[139]. Use of pigeon models of atherosclerosis has been extensively reviewed (see review 

[140]). Briefly, the most important key points supporting the use of pigeons as models for 

human atherosclerosis include: 1. Pigeons are hypercholesterolemic compared to humans. 2. 

Pigeons are primarily HDL-C carriers but βVLDL-C and LDL-C become major lipid carriers 

when these animals are fed cholesterol-rich diet. 3. Their lipid metabolism and lesion 

progression are similar to humans. 4. Pigeons also resemble humans in cellular and vascular 

dysfunctions involving in atherogenesis. 5. Pigeons are negative animal models to study 

relevance of apoE, apo B48, chylomicra or LDL receptor in atherosclerosis pathology. 6. 

Pigeons are susceptible to both spontaneous and diet-induced atherosclerosis. Parrots are 

exceptional animal models to assess the impacts of various risk factors include elevated 

cholesterol level, diet composition, social stress and inactivity (similar to sedentary behavior 

in humans) on occurrence and progression of atherosclerosis (see review [59]).  

Phylogenetically, nonhuman primates are more similar to humans than other models in 

terms of lipid-lipoprotein profiles, pathophysiology of atherosclerosis, feeding habits, and 

genotype. It is demonstrated that, along with aging, some rhesus monkeys spontaneously 

develop diabesity (e.g. [141]). In this context, Macaca nigra is very valuable in studies focused 

on the interactions between atherosclerosis and diabetes [142]. Spontaneous diabetes has 

been documented in nonhuman primates include cynomolgus, rhesus, bonnet, Formosan 

rock, pig-tailed, celebes macaques, African green monkeys, and baboons (see reviews 

[18,143]). Diabetic nonhuman primates have detrimental changes in plasma lipid and 

lipoprotein concentrations and lipoprotein composition which may contribute to 

progression of atherosclerosis. As both the prediabetic condition (similar to MetS in 

humans) and overt diabetes become better translated in monkeys, their use in 

pharmacological studies is increasing. Monkeys can be categorized into hyperresponders 

and hyporesponders based on initiation, progression and severity of atherosclerotic lesions. 

Several nonhuman primates, such as squirrel monkeys, baboons, and wooly and spider 

monkeys, may develop spontaneous early stage (fatty streaks) atherosclerosis at different 

anatomical locations (see reviews [59,108]). Rare cases of LDL receptor deficiency in a rhesus 

monkey family associated with increased levels of LDL-C, Lp(a), and advanced 

atherosclerotic lesions in the aorta, and to a lesser extent in coronary arteries, were reported 

[144]. Nonhuman primates are more reliable model to study cardiovascular disease plus 

MetS rather than rodents, since they develop MetS and cardiovascular diseases as they age. 

They develop spontaneous (in some species) and high fat high cholesterol diet-induced 

atherosclerotic lesions [145]. Nonhuman primates are good model of hypertension and its 
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harmful effect on atherosclerosis development. The close similarity of plasma lipoprotein-

lipid level, plaque development and its calcification and mineralization with humans makes 

nonhuman primates practical model to explore the correlation between plasma lipids and 

plaque development (see review [59]). Kaufman and colleagues measured some 

anthropometric indices and metabolic parameters in 250 laboratory-born bonnet macaques 

living in social groups and maintained on commercial monkey chow [146]. Finally they 

concluded socially reared and housed bonnet macaques may provide a useful model for 

studying the pathogenesis, prevention, and treatment of the MetS. Recently, in an excellent 

investigation, Zhang and colleagues established a rhesus monkey model of spontaneous 

MetS using population screening approaches suitable to explore the pathogenesis of MetS in 

relation to cardiovascular disease and DM [147]. To sum, the inconsistency in anatomic 

location of atherosclerotic lesions, high cost of husbandry and veterinary services, limited 

animal availability, difficult handling, together with ethical queries are major obstacles in 

the use of monkeys as common animal models in studying MetS and its comorbidities.  

4. Conclusion 

The incidence of metabolic syndrome is increasing on a pandemic level. One of the major 

underlying cause and/or outcome of metabolic syndrome is dyslipidemia, which contribute 

greatly to the cardiovascular problems associated with the syndrome. The animal models 

have a vital role to play in extending our understanding of metabolic syndrome and its 

related comorbidities. Conventional laboratory animals such as mice, rats, hamsters, guinea 

pigs and rabbits have been examined to gain a better perceptive of the relationship between 

disorders of lipid metabolism and their clinical correlations. High-fat diets frequently used 

to induce different aspects of metabolic syndrome in rodent models. However, 

nonconventional animal models like pig, pigeon, and feral animals (e.g., spiny mice, sand 

rat, hedgehogs) can consider as spontaneous animal models suitable for studying both the 

pathogenesis and potential therapeutic agents in lipoprotein disorders. The attempts to find 

animal models relevant to the study of metabolic syndrome are continuing. 
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