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1. Introduction 

The preparation of monodisperse nanoparticles with uniform size, shape and composition 

has been intensively pursed because of their scientific and technological interests [1-4]. The 

major advantage of monodisperse particles may be attributed to the uniform properties of 

individual particles, which makes the property of whole particles strictly controllable. They 

have been widely used in industries such as pharmacy, catalysts, sensors, film precursors, 

and information storage. The property of nanoparticles is much more sensitive to their size 

than that of micro-particles. For example, the florescence of monodisperse CdSe/ZnS 

core/shell nanoparticles depends strongly on their size [5]. The superparamagnetism also 

depends strongly on the size of nanoparticles [6]. The properties of these particular size 

nanoparticles show great potentials in the field of bio-medicals and electronics.  

In general, to prepare the monodisperse nanoparticles in solution, the size had to be selected 

after somewhat polydisperse nanoparticles were produced. The separation procedures are 

very laborious and expensive because the size of nanoparticles is too small to be sorted. 

Moreover, the production yield of monodisperse nanoparticles decreases markedly due to the 

loss of nanoparticles during the separation procedures. Therefore, many efforts have been 

made to synthesize directly monodisperse nanoparticles without size selection procedures. 

Recently, several methods have been developed successfully to synthesize gram quantity 

monodisperse nanoparticles directly without size selection procedures. One of them is a 

slow heating method developed by Hyeon et al. [6,7], which utilizes the burst nucleation 

followed by sustained growth of particles. Although nanoparticles have some size 

distribution in the nucleation stage, they became gradually monodisperse during growth. In 

this case, the principle for the direct synthesis of monodisperse nanoparticles could be 

approached by sustained growth of nuclei formed by burst nucleation with some initial size 

distribution [8]. 
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The digestive ripening developed by Klabunde et al. [9-12] is another fascinating method for 

the direct synthesis of monodisperse nanoparticles. During digestive ripening, nanoparticles 

initially ranging from 2 to 40 nm were spontaneously transformed into particles with nearly 

uniform sizes of 4~5 nm. Lee et al. [13,14] could explain the digestive ripening process by 

considering the charge effect in the Gibbs-Thomson equation.  

The purpose of this article is to provide the thermodynamic and kinetic basis to ‘slow 

heating’ method and digestive ripening, which are two successful processes to synthesize 

the monodisperse nanoparticles.   

2. Evolution mechanism of monodisperse particles 

To understand intuitively the underlying principle for the evolution of monodispersed 

particles, let’s compare the growth of two spherical particles of different diamters of 1 nm 

and 5 nm as shown in Fig. 1(a). The problem could be simple under the assumption that all 

the particles grow at the same rate regardless of the size, which is valid for interface-

controlled growth. The size ratio of two particles is 5, which is far from the monodisperse 

state. If the two particles grow by 1 nm after some time, their diameters become 2 nm and 6 

nm, respectively, as shown in Fig. 1(b). Now the size ratio of the two particles is 3. If the two 

initial particles grow by 99 nm after an appreciable amount of time, their diameters become 

100 nm and 104 nm, respectively, as shown in Fig. 1(c). Now their size ratio is 1.04, which is 

in the monodisperse state with the size being within 5% difference. The time evolution of 

the two particles in Fig. 1(a)-(c) shows that just the growth induces the monodispersity. It 

should be noted that the initial size difference between the two particles, which is 4 nm, is 

maintained throughout the growth but the size ratio continues to decrease with growth, 

approaching unity. This tendency to approach the monodisperse distribution by growth is 

often called ‘focusing effect’ [15].  

 

Figure 1. Initially, two spherical particles have the diameters of (a) 1 nm and 5 nm with the size ratio of 

5. After growth by 1 nm, the respective particle becomes (b) 2 nm and 6 nm with the size ratio of 3. 

After growth by 99 nm, the respective particle becomes (c) 100 nm and 104 nm with the size ratio of 

1.04, which has the monodispersity with size difference less than 5%.  



 
Thermodynamics and Kinetics in the Synthesis of Monodisperse Nanoparticles 373 

If a colloidal particle grows in supersaturated solution, the solute may diffuse from the bulk 

liquid phase containing a uniform concentration of solute Cb to the particle surface through 

a diffusion layer with some concentration gradient where Cr is the solubility of the particle. 

In this condition the growth rate is described by  

 

  
 
 

 
 
 

m b r

D r
1+ V C - C

r δdr
=

dt D r
1+ 1+

kr δ

  (1) 

where D is the diffusion coefficient of the solute, r is the particle radius, δ is the diffusion 

radius around a particle and k is the rate constant of the interface reaction of a solute at the 

particle interface. 

If D is much larger than kr (D >> kr), the interface reaction process becomes a rate-

determining step and Eq. (1) is reduced to 

 
 m b r

dr
= kV C - C

dt  (2) 

In this case of the interface-controlled growth, the growth rate does not depend on the 

particle size. If D is much smaller than kr (D << kr), however, the diffusion process of a 

solute becomes a rate-determining step and thus Eq. (1) is reduced to 

 

m
b r

DVdr
= (C - C )

dt r  (3) 

In this case of the diffusion-controlled growth, the growth rate is inversely proportional to 

the radius of each particle. This means that large particles grow more slowly than small 

ones, which is in contrast with the interface-controlled growth, where the growth rate was 

the same regardless of the size. Therefore, the diffusion-controlled growth has a stronger 

tendency to approach the monodisperse distribution than the interface-controlled growth. 

The narrowing of the size distribution was first theoretically studied in the diffusion-

controlled process by Reiss [16]. The variation of the radius distribution σ2 during growth 

changes with time as follows.  

 
   

  
  
   

2

m b r

d σ 1
= 2DV C - C 1- r

dt r
 (4) 

In Eq. (4), r and  1 r  are the mean values of r and 1/r, respectively. Since the arithmetic 

mean is larger than the harmonic mean,  1 r  is greater than 1/ r . Therefore, in the 

supersaturated state, where b rC C , Eq. (4) is negative. This means that the variation of the 

radius distribution σ2 decreases with time as the growth continues. 
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3. Interface-controlled growth 

The tendency to approach the monodisperse distribution by growth can be examined by 

computer simulation. Consider the case of interface-controlled growth. As a starting 

condition of simulation, it could be assumed that the number of particles is 1000 with the 

average size of 0.5 nm and particles have a spherical shape. It can also be assumed that the size 

distribution follows the Gaussian function. Since the Gaussian distribution spreads infinitely, 

the size distribution is cut off when its probability is less than 0.01. The width of the Gaussian 

distribution, which is defined as the difference between the maximum and minimum size with 

the probability of 0.01, was 2 nm. The center of the distribution was 0.5 nm. The radius ratio of 

the largest to the average-size particle was used as a criterion for the monodispersity. If this 

ratio is less than 1.05, the size distribution is regarded as being monodisperse. In the 

simulation, the growth rate, which is the same for all particles, was arbitrarily chosen to be 

0.025 nm/s. It can further be assumed that there is no additional nucleation during growth, no 

coagulation between particles and no Ostwald ripening among particles.  

Figs. 2 (a)-(c) show the particle size distribution, respectively, after 0 sec, 100 sec and 800 sec 

of growth. For visual representation of the result, the three-dimensional particles are 

projected on the two-dimensional plane. The location of the particles was randomly chosen 

within the square of the designated area but overlapping between particles was avoided. 

The broad size distribution in the initial state becomes narrower with particle growth, 

finally being monodisperse after 800 sec. The initial size ratio of 2.70 was decreased to 1.05 

after the particle grew from the initial average radius of 0.5 nm to 21.49 nm. It should be 

noted that the broad size distribution in the initial state would be changed to the 

monodisperse state as far as the average size of particles grows from 0.5 nm to 21.49 nm 

regardless of the growth rate. Additional simulation was performed with the initial average 

radii of 1 nm and 2 nm. The final average particle radii reaching the monodisperse state 

were 41.18 nm and 81.02 nm, respectively.  

These results can explain the natural evolution of monodisperse distribution of particles 

with growth. However, the results indicate that the minimum average radius for the 

monodisperse distribution should be about 20 nm when starting from the average radius of 

0.5 nm, which is implicitly assumed to be the critical nucleus size. In the direct synthesis of 

monodisperse nanoparticles such as iron oxide reported by Hyeon et al. [6], however, the 

average radius is often as small as 4 nm. The average particle size to reach the monodisperse 

state shown in Fig. 2 is much larger than that observed experimentally in the direct 

synthesis of monodisperse nanoparticles.  

Therefore, although the interface-controlled growth can explain the monodisperse evolution for 

particles larger than at least a few tens of nanometers, it cannot explain the evolution of 

monodisperse nanoparticles less than 10 nm, which requires that the monodisperse state should 

be reached at a much smaller particle size than that predicted by the interface-controlled 

growth. On the other hand, in the diffusion-controlled growth, the growth rate is inversely 

proportional to the particle radius as described by Eq. (3). Therefore, smaller particles would 

grow faster than larger ones, whose condition is more favorable in reaching the monodisperse 

state at smaller particle size. For this reason, the diffusion-controlled growth might be more 

suitable in explaining the evolution of the monodisperse nanoparticles less than 10 nm.  
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Figure 2. The numerical analysis of the particle growth under the condition of interface-controlled 

growth. (a) The initial size distribution: the average radius of the initial particles was set to 0.5 nm with 

1 nm width between the maximum and average size. (b) The size distribution of particles in the 

intermediate stage after 100 s. (c) The monodisperse state evolved after 800 s with the average particle 

radius of 21.49 nm. 
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Figure 3. The numerical analysis of the particle growth under the condition of diffusion-controlled 

growth. (a) The initial size distribution: the average raidius of particles was set to 0.5 nm with 1 nm width 

between maximum and average size. (b) The size distribution of particles in the intermediate stage after 

100 s. (c) The monodisperse state evolved after 1200 s with the average particle radius of 4.5 nm. 
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4. Diffusion-controlled growth 

The diffusion-controlled growth could also be investigated using the computer 

simulation. The initial particle size distribution was identical to the previous case: the 

average radius of 0.5 nm and the width of 2 nm for Gauss distribution. The time step for 

calculation was 1 sec. The concentration gradient was given a constant value of 0.75 

mol/cm3 without the Gibbs-Thompson effect being considered, which results in removing 

the Ostwald ripening effect. 

Figs. 3(a)-(c) show the two-dimensional display of particles, respectively, after 0 sec, 100 sec 

and 1200 sec by diffusion-controlled growth. The initial ratio of 2.70 was decreased to 1.05 

after the particle grew from the initial average radius of 0.5 nm to 4.50 nm. It should be 

noted that the initial particle size distribution would become monodisperse with the size 

ratio of 1.05 as far as the average radius of the particles increases from 0.5 nm to 4.5 nm 

regardless of the growth rate if the growth is controlled by diffusion.  

Comparison between Figs. 2 and 3 indicates that the monodisperse state is reached much 

faster and in a much smaller particle size by the diffusion-controlled growth than by the 

interface-controlled growth. Therefore, the direct synthesis of monodisperse nanoparticles 

by Hyeon et al. [6] can be explained by the diffusion-controlled growth. The present analysis 

indicates that even if there is a broad size distribution in the nucleation stage, it becomes 

narrower with growth, eventually leading to a monodisperse state. Because of this ‘focusing 

effect’, the evolution of the monodisperse nanoparticles seems to be a rule rather than an 

exception. Then, a question arises as to why people have difficulty in producing the 

monodisperse nanoparticles. Which factor would be critical in the successful synthesis of 

highly monodisperse nanoparticles?  

5. Factors unfavorable for monodisperse distribution  

There are factors which are unfavorable for monodispersity. These are additional 

nucleation, random coagulation and Ostwald ripening. It is well established that 

coagulation among particles can be inhibited by a suitable choice of surfactants. Therefore, 

coagulation is not a critical factor. The effect of Ostwald ripening becomes significant when 

the supersaturation is small. More precisely, if the supersaturation made by the capillarity 

or the Gibbs-Thompson effect of particles is higher than the supersaturation for growth in 

the bulk, Ostward ripening would occur extensively. Then, the size distribution would 

deviate from monodispersity and approach the well-established distribution predicted by 

the Lifshitz, Slyozov and Wagner (LSW) theory. [17, 18] Therefore, to inhibit Ostwald 

ripening, the supersaturation for growth should be maintained much higher than that by the 

Gibbs-Thompson effect. This aspect was studied in detail by Kwon et al. [8].  

The most critical factor unfavorable for monodisperse distribution is the additional 

nucleation during growth. Therefore, growth should be separated from nucleation. The 

thermodynamics and kinetics of nucleation are relatively well established. The rate of 
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nucleation is negligibly low at low supersaturation and becomes very high above certain 

supersaturation, varying like a step function. The supersaturation for the onset of nucleation 

has a special meaning and is called ‘the critical supersaturation for nucleation’, which is 

defined as the supersaturation to produce the nucleation rate of 1/cm3·sec.  

Consequently, to inhibit the additional nucleation during growth, the supersaturation 

should be maintained below the critical supersaturation for nucleation. Normally, the 

critical supersaturation for homogeneous nucleation is high enough but that for 

heterogeneous nucleation is relatively low and can be easily achieved. Therefore, a special 

care must be taken to prepare the reactor for the synthesis of monodisperse nanoparticles 

free from the site for heterogeneous nucleation. 

One attempt to separate growth from nucleation is the seed-mediated growth, where the 

preformed nanoparticles are used as seed nuclei [7, 19]. Another attempt to separate growth 

from nucleation is the initial burst of nucleation, where an appreciable amount of 

supersaturation is consumed during the burst of nucleation and the relatively low 

supersaturation is maintained during growth. The ‘hot-injection’ method [20-22] is an 

example of this attempt.  

Rapid injection of reagents into a hot surfactant solution raises the precursor concentration 

above the nucleation threshold. A burst of nucleation during a short period of time partially 

relieves the supersaturation. If the rate of the precursor consumption by the growing 

colloidal nanoparticles is not exceeded by the rate of precursor addition to solution, no new 

nuclei would form. This process typically produces the nanoparticles with the size 

distribution of 10 < σ < 15% in diameter, which are then narrowed to < 5% through 

additional size-selective processing. 

The ‘heating-up’ method [6, 23-25] is a new attempt to separate growth from nucleation. 

This process is a batch process and very simple. Metal-oleate precursors are prepared from 

metal chloride and sodium oleate. If the metal-oleate precursors are heated in a high-boiling 

point solvent, they are thermally decomposed and produce monodisperse nanocrystals. This 

method proved to be advantageous for large-scale production. Park et al. [6] showed that as 

large as 40g of monodispese magnetite nanocrystals with a yield of >95% could be produced 

in a batch. The size uniformity of the nanoparticles is usually better than that by the ‘hot-

injection’ method. Since this is a batch process, the precursors are not added during growth 

to supplement the supersaturation. 

The supersaturation that has been consumed during growth can be indirectly estimated 

from the final size of the nanoparticles. The highly monodisperse nanoparticles were 

reported to grow as large as 22 nm in the ‘heating up’ process. Considering that the critical 

nucleus size is ~ 0.5 nm, the diameter increases by more than 20 nm, which implies that a 

considerable supersaturation must have been consumed. Since an appreciable amount of 

supersaturation is consumed in the initial nucleation process, the remaining supersaturation 

is usually not so high. Therefore, it is highly unlikely that the nuclei should grow as large as 
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10 nm by remaining supersaturation without precursors being supplied additionally. It 

should be reminded that in the ‘hot-injection’ method the additional precursors should be 

supplied to produce nanoparticles larger than 10 nm.  

Then, a question arises as to why additional nucleation does not occur during such 

extensive growth. It appears that all the supersaturation, which should be consumed to 

produce the final size of nanoparticles, is not built up simultaneously but only a very small 

fraction of supersaturation, which is too small to trigger the nucleation, is maintained 

throughout the growth. This is an ideal situation where growth is separated from 

nucleation. One possibility to realize such an ideal situation is that the decomposition of the 

metal orleate complex into metal does not occur in the solution but occurs only at the 

surface of nanoparticles. In other words, the surface of nanoparticles acts as the catalytic site 

for decomposition of the metal orleate. This type of reaction is called ‘self-catalytic’. 

Therefore, if a system is self catalytic, growth can be separated ideally from nucleation and 

monodisperse nanoparticles can be easily synthesized.  

6. Digestive ripening  

As mentioned earlier, the coarsening kinetics of Ostwald ripening has been well established 

by LSW theory [17, 18]. During Ostwald ripening, large particles with a low chemical 

potential grow at the expense of small particles with a high chemical potential and, as a 

consequence, the average size increases and the total number of particles decreases during 

coarsening. Eventually, only one large particle remains, which corresponds to a final 

equilibrium state.  

However, Klabunde and co-workers reported a series of articles on the synthesis of 

monodisperse gold or silver nanocrystals by a digestive-ripening process of polydisperse 

nanocrystals. [9-12, 26, 27] Gram quantities of monodisperse gold or silver nanoparticles 

could be produced through digestive ripening, where colloidal particles from 2 to 40 nm are 

transformed to nearly monodisperse particles of 4–5 nm diameters.  

Digestive ripening is the reverse process of Ostwald ripening. It is interesting and also 

puzzling in that small particles grow at the expense of large ones. Clearly, digestive ripening 

cannot be understood with the usual Gibbs–Thomson equation solely based on a curvature 

effect. According to the theory of diffusion-controlled coarsening [28], the growth rate of a 

particle with radius, r, is given by 

   
f g o

D V Cdr
= μ(r)* -μ(r)

dt rRT
 (5) 

where R is the gas constant, T the absolute temperature, and Df and Co are the diffusivity 

and solubility of atoms in the solution, respectively. Eq. (5) is valid when the diffusion field 

does not overlap. µ(r)* is the chemical potential of a particle of critical size, which neither 

grows nor shrinks at the given instant. 
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Since the phenomenon of digestive ripening runs counter to the decrease of interfacial free 

energy, a different type of free energy must be involved. The driving force for digestive 

ripening must compete against the reduction of the interface free energy. There are two such 

free energies. One is strain energy and the other is electrostatic energy. Since solid particles 

dispersed in liquid do not have any appreciable strain energy, the electrostatic energy is a 

possible candidate. In fact, Klabunde et al, who have developed the digestive ripening 

process, reported that their nanoparticles were negatively charged [9, 10]. If nanoparticles 

are electrically charged, they have an electrostatic energy inversely proportional to the 

radius of the particles. Since electrostatic energy increases with decreasing particle size, 

charged particles cannot shrink away completely. Therefore, the presence of charge can 

drastically change the Ostwald ripening behavior. The chemical potential change arising 

from the presence of charge can be treated by modifying the Gibbs-Thomson equation in 

consideration of the electrostatic energy.  

To analyze the effect of charge on the coarsening behavior of nanoparticles, it is assumed 

that each particle is singly charged, electrically-conducting, and spherical with isotropic 

interface free energy, dispersed in a matrix phase with a dielectric constant of 1. According 

to this assumption, ions are regarded as the primary embryos of charged nanoparticles. It is 

further assumed that the charged nanoparticles do not coagulate with each other and that 

the atomic transfer between particles is diffusion-controlled. The Gibbs free energy of a 

spherical conducting particle with radius r and charge e (corresponding to the unit charge of 

an electron) is expressed as 

 ,
2

2 eΔG = 4πr σ+ k
2r

 (6) 

where  is the interface free energy of the particle and k is defined by 1/(4), where  is the 

vacuum permittivity [29]. ke2 is 2.306810-28 Nm2. It should be noted that with decreasing r, 

the interface free energy term decreases but the electrostatic energy term increases. 

From Eq. (6), the modified Gibbs-Thomson equation is derived as 

 ,
 
  
 

2
r

r o m 4
o

C 2σ qΔμ= μ - μ = RTln = V - k
C r 8πr

 (7) 

where Co is the solute concentration in the matrix without capillary effect. If the difference 

between Cr and Co is small, the equation can be approximated as  

 .
  

         

2
r o mr

4
o o

C - C VC 2σ q
ln = - k

C C RT r 8πr
 (8) 

The coarsening behavior can be analyzed quantitatively by solving Eqs. (5) and (8) 

simultaneously under the constraint of mass conservation for a total number of particles Np, 

and is expressed as  
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 
pN

2 n
n

n

dr
4πr = 0.

dt
 (9) 

Substituting Eq. (5) into Eq. (9) yields  

   
pN

*
n f m 0 r,n 0

n

r D V C - C - C - C = 0.  (10) 

From Eqs. (5), (9) and (10), the following equation can be derived: 

 .
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p

2 N 2 2
f m 0n n

N 4 4
nn n nn n

n
n

D V Cdr r 2σ q 2σ q
= - k - - k

dt RTr r r8πr 8πr
r

  (11) 

If the growth rate of each particle is determined by Eq. (11), the new radius after dt is given 

by 

 
 
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 

n
n n

dr
r (t + dt)= r (t)+ dt.

dt
  (12) 

Once the initial size distribution of particles is given, the time-dependent size distribution 

can be obtained by solving equations (11) and (12) simultaneously by iteration. 

To demonstrate that this approach reproduces simple digestive ripening, one large charged 

nanoparticle of 15 nm radius and 600 ions of 0.2 nm radius were chosen as an initial state. A 

diffusivity, Df, of 10-9 m-1sec-1 and a temperature of 393 K were chosen for calculation.[11] 

Besides, the interface energy of  = 1 mJm-2, C0 = 0.01 molm-3, and Vm =1.0210-5 m3 mol-1, 

which is the molar volume of gold, were chosen. Here, the interface free energy of 1mJm-2 is 

chosen, simply because it produces monodisperse nanoparticles of the 1.5 ~ 2 nm size after 

digestive ripening. Experimentally, the surfactant, dodecanethiol, which is expected to 

diminish the interface free energy between gold and solution, appears to play a critical role 

in inducing digestive ripening. [30, 31] As the interface free energy decreases and the electric 

charge density increases, the size of finally-evolved monodisperse nanoparticles increases. 

Fig. 4 shows the size evolution of charged nanoparticles with time. a1 and a2 in Fig. 4(a) 

represent the radius of charged embryos at 200 s and 600 s, respectively. Likewise, b1 and b2 

in Fig. 4(a) represent the radius of the 15 nm particle at 200 sec and 600 sec, respectively. The 

size of the small charged embryos increases, whereas the size of the large charged particles 

decreases. Figs 4(b)-(d) show a display of the size distribution of nanoparticles at 200 s, 600 s 

and 900 s, respectively. Finally, the radius of every nanoparticle becomes 1.78 nm at 900 s, as 

shown in Fig. 4(d), which corresponds to ‘F’ in Fig. 4(a), producing perfect monodisperse 
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nanoparticles. This calculation reproduces the experimentally observed digestive ripening 

behavior. 

 

 

 
 

 
 

 

Figure 4. Coarsening behavior of one big particle of 30 nm and 300 embryos of 0.4 nm. (a) a1 and a2 

indicate the size of embryos at 200 s and 500 s, respectively. Likewise b1 and b2 indicate the size of the 

large nanoparticle at 200 s and 500 s, respectively. Finally, the size of every nanoparticle becomes the 

same on F at 900s.  The size distribution of nanoparticles at (b) 200 s, (c) 500 s and (d) 900 s, respectively. 

In (b), the size of small nanoparticles is 4 nm and that of a large nanoparticle is 19.9 nm. In (c), the size 

of small nanoparticles is 4.3 nm and that of a large nanoparticle is 14.9 nm. In (d), the size of every 

nanoparticle becomes 4.5 nm. Reprinted with permission from [13]. Copyright 2007 Elsevier. 
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7. Digestive ripening in a binary system 

Smetana et al. [26] reported digestive ripening in a binary system, where separately 

prepared monodisperse Au and Ag nanoparticles with a radius of ~3.3 nm, mixed in a 

colloid solution, were transformed into monodisperse Au/Ag alloy nanoparticles with a 

radius of ~2.8 nm. The final monodisperse nanoparticles did not have a core–shell structure 

but had uniform composition distribution. The size of the final monodisperse nanoparticles 

was reduced in comparison to that of the initial unalloyed monodisperse nanoparticles, 

which implied that additional nucleation had occurred during digestive ripening.  

To analyze the coarsening behavior of a binary system of Au and Ag nanoparticles, the 

chemical potential of a binary system needs to be derived. According to the phase diagram 

of an Au/Ag binary system [31], Au and Ag, which have the same face-centered cubic (FCC) 

structure and a small difference in atomic size, have a complete solid solution. Therefore, it 

is assumed that Au and Ag nanoparticles behave like an ideal binary solid solution, and 

then, the Gibbs-free energy is expressed in the whole composition range as follows [32]: 

 Au Au Ag Ag Au Au Ag AgG = X G + X G + RT(X lnX + X lnX )
  (13) 

From Eq. (13), the chemical potentials of Au and Ag for the alloy are given, respectively, by 

 
Au Au Au

Ag Ag Ag

μ = G + RTlnX

μ = G + RTlnX
  (14) 

where GAu and GAg are the molar free energies of pure Au and Ag, respectively; and XAu and 

XAg are the mole fractions of Au and Ag, respectively. From Eqs. (7) and (14), the chemical 

potentials of spherically charged nanoparticles of Au and Ag with radius r can be derived as 

 

 
 
  
 
 
  

2 2
SS

Au Au Au SS 4

2 2
SS

Ag Ag Ag SS 4

2σ kz qμ (r)= G + RTlnX +V -
r 8πr

2σ kz qμ (r)= G + RTlnX +V -
r 8πr

  (15) 

where σSS and VSS are the interface free energy and the molar volume of the Au/Ag solid 

solution, respectively. To investigate the time evolution of the coarsening behavior of the 

mixed Au and Ag nanoparticles, the growth rate of particles should be calculated.  

Substituting Eq. (5) for dr/dt in Eq. (9) and rearranging the result yield  

 
 
 
  
 

p pN N

n n n
n=1 n=1

μ(r)* = r μ(r ) / r   (16) 

Expressing µ(r)* in terms of dri/dt and using Eq. (15) for µ(r) in Eq. (16), the growth rate of 

the ith particle by diffusion of Au and Ag atoms is obtained as  
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                





 



p p

p

-1
2 N N2 2 2 2

f SS oi SS SS
Au n n Au4 4

n=1 n=1i SS i SS ni n

2 N2 2
f SS oi SS

Ag n4
n=1i SS i i

D V Cdr 2σ 2σRT kz q RT kz q
= - lnX - + + r r lnX + - ,   

dt r RT V r V r8πr 8πr

i = 1,2,...   for Au

D V Cdr 2σRT kz q
= - lnX - + + r

dt r RT V r 8πr

              


p

-1
N 2 2

SS
n Ag 4

n=1 SS n n

2σRT kz q
r lnX + - ,  

V r 8πr

 i = 1,2,...   for Ag

 (17) 

With Eq. (17), the radius of the ith particle can be calculated at a time, t +Δt, by  

 
i

i i

dr
r (t + Δt)= r (t)+ Δt,   i = 1,2,...

dt
  (18) 

The analytic expression for the composition change of nanoparticles cannot be derived. 

Therefore, the composition change of nanoparticles should be computed from the mass 

change of each element, which is determined from the size change by Eq. (18) for each 

iteration. 

To check whether these schemes reproduce the experimental result of alloy digestive 

ripening, a simple system of 500 Au charged nanoparticles of RAu = 3.3 nm, 500 Ag charged 

nanoparticles of RAg = 3.3 nm and 500 charged nuclei of Rnuclei = 0.5 nm was considered. This 

system is chosen to represent the experimental condition of as-prepared Au and Ag 

nanoparticles mixed for digestive ripening [14]. The 500 nuclei were added because the 

experimental fact that the number of final nanoparticles increases after digestive ripening 

indicates that additional nucleation occurs. The capital letter Ri indicates an initial radius 

with the suffix i implying the ith group of particles with identical radius. The initial mole 

fraction of Au nanoparticles, XAu, is set at 0.99 instead of 1 to avoid the infinity in 

calculation. In the same manner, XAu of Ag nanoparticles and the size of nuclei are set at 0.01 

and 0.5, respectively. The parameters used are Df = 0.5 × 10–14 m2/s, VSS = 1.02 × 10–5 m3/mol, 

Co = 0.01 mol/m3, kq2 = 2.3068 × 10–28 J·m, T = 393 K, σSS = 0.3 J/m2, and z = 30. It should be 

noted that if the particles are assumed to be singly charged with z = 1, the interface energy 

σSS should have a much smaller value than 0.3 J/m2 to reproduce the experimentally-

observed digestive ripening.  

For the simplification, the diffusivities of Au or Ag atoms in the nanoparticles are assumed 

to be high enough to be homogenized immediately because the final structure of Au/Ag 

alloy nanoparticles was reported not to have a core-shell structure but to have a 

homogeneous solid solution. 

In Fig. 5, the coarsening behavior of nanoparticles with time is schematically displayed. The 

time evolution of the microstructure is shown in Figs. 5(a), (b), (c) and (d) at t1 = 0, t2 = 1, t3 = 

2 and t4 = 16 h, respectively. Fig. 5(a) shows the initial size distribution and the composition 
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of nanoparticles, which is represented by the gray scale from black for Au to white for Ag as 

shown by the gray scale bar in Fig. 5. Therefore, black, white and gray nanoparticles 

represent Au-rich, Ag-rich and Au/Ag alloy nanoparticles, respectively. After 1 h, the radii 

of both Au and Ag nanoparticles decrease to 3.07 nm and the mole fractions, XAu, of Au and 

 

Figure 5. Display of the nanoparticles evolved through coarsening at four different times in the system 

of 500 Au nanoparticles, 500 Ag nanoparticles and 500 nuclei. Composition is represented by the gray 

scale from Au as black to Ag as white. (a) At t1 = 0 h, RAu = 3.3 nm with XAu = 0.99, RAg = 3.3 nm with XAu 

= 0.01 and Rnuclei = 0.5 nm with XAu = 0.5. (b) At t2 = 1 h, rAu = 3.07 nm with XAu = 0.64, rAg = 3.07 nm with 

XAu = 0.36 and rnuclei = 2.4 nm with XAu = 0.5. (c) At t3 = 2 h, rAu = 3 nm with XAu = 0.54, rAg = 3 nm with XAu 

= 0.46 and rnuclei = 2.6 nm with XAu = 0.5. (d) At t4 = 16 h, all the particles become monodisperse at 2.88 nm 

with the same composition of XAu = 0.5. Reprinted with permission from [14]. Copyright 2009 Elsevier. 
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Ag nanoparticles become 0.64 and 0.36, respectively, as shown in Fig. 5(b). The radii of the 

nuclei increase to 2.4 nm with their mole fraction, XAu, maintained as 0.5. After 2 h, the size 

distribution becomes much narrower approaching a monodisperse state and the 

composition becomes more homogenized as shown in Fig. 5(c). The radii of initial Au and 

Ag nanoparticles decrease to 3 nm, and the radii of the nuclei increase to 2.6 nm. The mole 

fractions of Au and Ag nanoparticles become 0.54 and 0.46, respectively. After 16 h, all the 

nanoparticles eventually have the same radius of 2.88 nm and the same composition of XAu = 

0.5, as shown in Fig. 5(d). By considering both the electrostatic energy and ideal solid 

solution, the coarsening behavior of the digestive ripening process, where the separated Au 

and Ag nanoparticles were transformed into monodisperse Au/Ag alloy nanoparticles, was 

successfully reproduced. 

8. Conclusions 

The evolution mechanism of monodisperse nanoparticles is approached thermodynamically 

and kinetically. Both interface-controlled and diffusion-controlled growth of particles can 

induce monodisperse distribution of particles if coagulation, additional nucleation and 

Ostwald ripening are inhibited. The diffusion-controlled growth reaches the monodisperse 

state at much smaller size than the interface-controlled growth. The evolution mechanism of 

monodisperse nanoparticles by digestive ripening is approached using the modified Gibbs-

Thompson equation considering electrostatic energy. The digestive ripening behavior of 

both pure metal and alloy which is contrary to conventional Ostwald ripening, is well 

explained assuming that nanoparticles are electrically charged.  
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