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1. Introduction 

Physical and chemical properties of natural fluids are used to understand geological 
processes in crustal and mantel rock. The fluid phase plays an important role in processes in 
diagenesis, metamorphism, deformation, magmatism, and ore formation. The environment 
of these processes reaches depths of maximally 5 km in oceanic crusts, and 65 km in 
continental crusts, e.g. [1, 2], which corresponds to pressures and temperatures up to 2 GPa 
and 1000 ˚C, respectively. Although in deep environments the low porosity in solid rock 
does not allow the presence of large amounts of fluid phases, fluids may be entrapped in 
crystals as fluid inclusions, i.e. nm to µm sized cavities, e.g. [3], and fluid components may 
be present within the crystal lattice, e.g. [4]. The properties of the fluid phase can be 
approximated with equations of state (Eq. 1), which are mathematical formula that describe 
the relation between intensive properties of the fluid phase, such as pressure (p), 
temperature (T), composition (x), and molar volume (Vm). 

  , ,mp T V x  (1) 

This pressure equation can be transformed according to thermodynamic principles [5], to 
calculate a variety of extensive properties, such as entropy, internal energy, enthalpy, 
Helmholtz energy, Gibbs energy, et al., as well as liquid-vapour equilibria and 
homogenization conditions of fluid inclusions, i.e. dew point curve, bubble point curve, and 
critical points, e.g. [6]. The partial derivative of Eq. 1 with respect to temperature is used to 
calculate total entropy change (dS in Eq. 2) and total internal energy change (dU in Eq. 3), 
according to the Maxwell's relations [5]. 
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where nT is the total amount of substance in the system. 

 

The enthalpy (H) can be directly 
obtained from the internal energy and the product of pressure and volume according to Eq. 
4. 

 H U p V    (4) 

The Helmholtz energy (A) can be calculated by combining the internal energy and entropy 
(Eq. 5), or by a direct integration of pressure (Eq. 1) in terms of total volume (Eq. 6). 

 A U TS   (5) 

 dA pdV   (6) 

The Gibbs energy (G) is calculated in a similar procedure according to its definition in Eq. 7. 

 G U p V T S      (7) 

The chemical potential (µi) of a specific fluid component (i) in a gas mixture or pure gas (Eq. 
8) is obtained from the partial derivative of the Helmholtz energy (Eq. 5) with respect to the 
amount of substance of this component (ni). 

 
, , j
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   

 
 (8) 

The fugacity (f) can be directly obtained from chemical potentials (Eq. 9) and from the 
definition of the fugacity coefficient (i) with independent variables V and T (Eq. 10). 
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where µi0 and fi0 are the chemical potential and fugacity, respectively, of component i at 
standard conditions (0.1 MPa). 
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where i and z (compressibility factor) are defined according to Eq. 11 and 12, respectively. 
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T

pV
z

n RT
  (12) 

2. Two-constant cubic equation of state 

The general formulation that summarizes two-constant cubic equations of state according to 
van der Waals [7], Redlich and Kwong [8], Soave [9], and Peng and Robinson [10] is 
illustrated in Eq. 13 and 14, see also [11]. In the following paragraphs, these equations are 
abbreviated with Weos, RKeos, Seos, and PReos. 
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where p is pressure (in MPa), T is temperature (in Kelvin), R is the gas constant (8.3144621 
J·mol-1K-1), V is volume (in cm3), Vm is molar volume (in cm3·mol-1), nT is the total amount of 
substance (in mol). The parameters 1, 2, 3, and 4 are defined according to the specific 
equations of state (Table 1), and are assigned specific values of the two constants a and b, as 
originally designed by Waals [7]. The a parameter reflects attractive forces between 
molecules, whereas the b parameter reflects the volume of molecules. 
 

 W RK S PR 

1 b b b b 

2 a a·T -0.5 a a 

3 - b b b 

4 - - - b 

Table 1. Definitions of 1, 2, 3, and 4 according to van der Waals (W), Redlich and Kwong (RK), Soave 
(S) and Peng and Robinson (PR). 

This type of equation of state can be transformed in the form of a cubic equation to define 
volume (Eq. 15) and compressibility factor (Eq. 16). 

 3 2
0 1 2 3 0a V a V a V a     (15) 

 3 2
0 1 2 3 0b z b z b z b     (16) 

where a0, a1, a2, and a3 are defined in Eq. 17, 18, 19, and 20, respectively; b0, b1, b2, and b3 are 
defined in Eq. 21, 22, 23, and 24, respectively. 

 
0a p  (17) 

  1 3 4 1T Ta n p n RT        (18) 
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    2 2 2 2
2 4 1 3 1 4 3 4 2T T Ta n p n RT n                 (19) 

 
3 2 3 2 3

3 1 4 4 1 2T T Ta n p n RT n           (20) 
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 (24) 

The advantage of a cubic equation is the possibility to have multiple solutions (maximally 
three) for volume at specific temperature and pressure conditions, which may reflect 
coexisting liquid and vapour phases. Liquid-vapour equilibria can only be calculated from 
the same equation of state if multiple solution of volume can be calculated at the same 
temperature and pressure. The calculation of thermodynamic properties with this type of 
equation of state is based on splitting Eq. 14 in two parts (Eq. 25), i.e. an ideal pressure (from 
the ideal gas law) and a departure (or residual) pressure, see also [6]. 

 ideal residualp p p   (25) 

where 

 T
ideal

n RT
p

V
  (26) 

The residual pressure (presidual) can be defined as the difference (p, Eq. 27) between ideal 
pressure and reel pressure as expressed in Eq. 14 . 
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 (27) 

The partial derivative of pressure with respect to temperature (Eq. 28) is the main equation 
to estimate the thermodynamic properties of fluids (see Eqs. 2 and 3). 

 idealpp p

T T T
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where 
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The parameters 1, 3, and 4 are usually independent of temperature, compare with the b 
parameter (Table 1). This reduces Eq. 29 to Eq. 30. 
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 (30) 

Other important equations to calculate thermodynamic properties of fluids are partial 
derivatives of pressure with respect to volume (Eq. 31 and 32). 
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 (32) 

Eqs. 31 and 32 already include the assumption that the parameters 1, 2, 3, and 4 are 
independent of volume. Finally, the partial derivative of pressure in respect to the amount 
of substance of a specific component in the fluid mixture (ni) is also used to characterize 
thermodynamic properties of fluid mixtures (Eq. 33). 
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3. Thermodynamic parameters 

The entropy (S) is obtained from the integration defined in Eq. 2 at constant temperature 
(Eqs. 34 and 35). 
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The limits of integration are defined as a reference ideal gas at S0 and V0, and a real gas at S1 
and V1. This integration can be split into two parts, according to the ideal pressure and 
residual pressure definition (Eqs. 25, 26, and 27). The integral has different solutions 
dependent on the values of 3 and 4: Eq. 36 for 3 = 0 and 4 = 0, and Eqs. 37 and 38 for 3 > 0. 
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 (37) 

where 

 2 2
4 3 44 ( )Tq n       (38) 

The RKeos and Seos define q as Tn b , whereas in the PReos q is equal to 8Tn b , according to 
the values for 3 and 4 listed in Table 1. Eqs. 36 and 37 can be simplified by assuming that 
the lower limit of the integration corresponds to a large number of V0. As a consequence, 
part of the natural logarithms in Eqs. 36 and 37 can be replaced by the unit value 1 or 0 (Eqs. 
39, 40, and 41). 
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The entropy change that is caused by a volume change of ideal gases corresponds to the 
second term on the right-hand side of Eqs. 36 and 37. This term can be used to express the 
behaviour of an ideal mixture of perfected gases. Each individual gas in a mixture expands 
from their partial volume (vi) to the total volume at a pressure of 0.1 MPa, which results in a 
new expression for this term (Eq. 42) 

 1 1

0 .

ln lnT i
i iideal mix

V V
n R n R

V v

    
             
  (42) 

where ni is the amount of substance of component i in the fluid mixture. In addition, the 
partial volume of an ideal gas is related to the standard pressure p0 (0.1 MPa) according to 
the ideal gas law (Eq. 43, compare with Eq. 26). 
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i
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n RT
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p
  (43) 

Finally, the entropy of fluid phases containing gas mixtures at any temperature and total 
volume according to the two-constant cubic equation of state is given by Eq. 44 for 3 = 0 and 
4 = 0, and Eq. 45 for 3 > 0. 
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The subscripts "1" for the upper limit of integration is eliminated to present a pronounced 
equation. The standard state entropy (S0) of a mixture of ideal gases is defined according to 
the arithmetic average principle (Eq. 46). 

 0
0 i i

i

S n s   (46) 

where si0 is the molar entropy of a pure component i in an ideal gas mixture at temperature T. 

The internal energy (U, see Eq. 3) is obtained from the pressure equation (Eq. 14) and its 
partial derivative with respect to temperature (Eqs. 28 and 30): 
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Similar to the integral in the entropy definition (see Eqs. 44 and 45), Eq. 48 has different 
solutions dependent on the values of 3 and 4: Eq. 49 for 3 = 0 and 4 = 0, and Eq. 50 for 3 > 0. 
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The definition of q is given in Eq. 38. The standard state internal energy (U0) of a mixture of 
ideal gases is defined according to the arithmetic average principle (Eq. 51). 
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i
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where ui0 is the molar internal energy of a pure component i in an ideal gas mixture at 
temperature T. 

Enthalpy (Eq. 52 for 3 = 0 and 4 = 0, and Eq. 53 for 3 > 0), Helmholtz energy (Eq. 55 for 3 = 
0 and 4 = 0, and Eq. 56 for 3 > 0), and Gibbs energy (Eq. 58 for 3 = 0 and 4 = 0, and Eq. 59 
for 3 > 0) can be obtained from the definitions of pressure, entropy and internal energy 
according to standard thermodynamic relations, as illustrated in Eq. 4, 5, and 7. Standard 
state enthalpy (H0), standard state Helmholtz energy (A0), and standard state Gibbs energy 
(G0) of an ideal gas mixture at 0.1 MPa and temperature T are defined in Eqs. 54, 57, and 60, 
respectively. 
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 0 0 0 TG U TS n RT    (60) 

The Helmholtz energy equation (Eqs. 55, 56, and 57) is used for the definition of chemical 
potential (i) of a component in either vapour or liquid phase gas mixtures (compare with 
Eq. 8), Eq. 61 for 3 = 0 and 4 = 0, and Eq. 62 for 3 > 0, calculated with two-constant cubic 
equations of state. 
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where 
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 (63) 

The definitions of the partial derivative of q in respect to amount of substance (Eq. 63) 
according to 3 = b and 4 = 0 [8, 9] is illustrated in Eq. 64, and 3 = b and 4 = b [10] in Eq. 65. 
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The fugacity coefficient (i) is defined according to Eqs. 9 and 10 from the difference 
between the chemical potential of a real gas mixture and an ideal gas mixture at standard 
conditions (0.1 MPa), see Eq. 66 for 3 = 0 and 4 = 0, and Eq. 67 for 3 > 0. Fugacity coefficient 
defined in Eq. 66 is applied to Weos and Eq. 67 is applied to RKeos, Seos, and PReos. 
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 (67) 

4. Spinodal 

The stability limit of a fluid mixture can be calculated with two-constant cubic 
equations of state, e.g. see [6]. This limit is defined by the spinodal line, i.e. the locus of 
points on the surface of the Helmholtz energy or Gibbs energy functions that are 
inflection points, e.g. see [12] and references therein. The stability limit occurs at 
conditions where phase separation into a liquid and vapour phase should take place, 
which is defined by the binodal. Metastability is directly related to spinodal conditions, 
for example, nucleation of a vapour bubble in a cooling liquid phase within small 
constant volume cavities, such as fluid inclusions in minerals (< 100 µm diameter) 
occurs at conditions well below homogenization conditions of these phases in a heating 
experiment. The maximum temperature difference of nucleation and homogenization is 
defined by the spinodal. In multi-component fluid systems, the partial derivatives of 
the Helmholtz energy with respect to volume and amount of substance of each 
component can be arranged in a matrix that has a determinant (Dspin) equal to zero (Eq. 
68) at spinodal conditions. 
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This matrix is square and contains a specific number of columns that is defined by the 
number of differentiation variables, i.e. volume and number of components in the fluid 
mixture minus 1. The individual components of this matrix are defined according to Eqs. 69, 
70, 71, 72, 73, and 74. The exact definition of these components according to two-constant 
cubic equations of state can be obtained from the web site http://fluids.unileoben.ac.at (see 
also [6]). 
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The determinant in Eq. 68 is calculated with the Laplacian expansion that contains "minors" 
and "cofactors", e.g. see [13]. The mathematical computation time increases exponential with 
increasing number of components. Therefore, the LU decomposition [14] can be applied in 
computer programming to reduce this time. 

The spinodal curve, binodal curve and critical point of a binary CO2-CH4 mixture with 
x(CO2) = 0.9 are illustrated in Figure 1, which are calculated with the PReos [10]. The 
spinodal has a small loop near the critical point, and may reach negative pressures at lower 
temperatures. The binodal remains within the positive pressure part at all temperatures. The 
binodal is obtained from equality of fugacity (Eq. 66 and 67) of each component in both 
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liquid and vapour phase, and marks the boundary between a homogeneous fluid mixture 
and fluid immiscibility [6, 15]. 

 

Figure 1. (a) Temperature-pressure diagram of a binary CO2-CH4 fluid mixture, with x(CO2) = 0.9. The 
shaded area illustrates T-p condition of immiscibility of a CO2-rich liquid phase and a CH4-rich vapour 
phase (the binodal). The red dashed line is the spinodal. All lines are calculated with the equation of 
state according to PReos [10]. The calculated critical point is indicated with cPR. cDK is the interpolated 
critical point from experimental data [16]. (b) enlargement of (a) indicated with the square in thin lines. 

5. Pseudo critical point 

The pseudo critical point is defined according to the first and second partial derivatives of 
pressure with respect to volume (Eqs. 31 and 32). This point is defined in a p-V diagram 
where the inflection point and extremum coincide at a specific temperature, i.e. Eqs. 31 and 
32 are equal to 0. The pseudo critical point is equal to the critical point for pure gas fluids, 
however, the critical point in mixtures cannot be obtained from Eqs. 31 and 32. The pseudo 
critical point estimation is used to define the two-constants (a and b) for pure gas fluids in 
cubic equations of state according to the following procedure. The molar volume of the 
pseudo critical point that is derived from Eqs 31 and 32 is presented in the form of a cubic 
equation (Eq. 75). 

     23 2 2 2 2
1 4 1 3 4 1 4 3 4 4 3 40 3 3 3m m mV V V                               

 (75) 

The solution of this cubic equation can be obtained from its reduced form, see page 9 in [15]: 

 3 0x f x g     (76) 

where 

  2
4 1 1 3 43f              (77) 
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    23 2 2 2
1 1 4 3 4 3 4 4 12 2 3g                        

 (78) 

 1mV x    (79) 

The values of f and g in terms of the b parameters for the individual two-constant cubic 
equations of state are given in Table 2. The molar volume at pseudo critical conditions is 
directly related to the b parameter in each equation of state: Weos Eq. 80; RKeos Eq. 81; Seos 
also Eq. 81; and PReos Eq. 82. 

 3pc
mWeos : V b   (80) 

 
3

3.847322
2 1

pc
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b
RKeos : V b  


 (81) 

 1 3.951373pc
mPReos : V Q b b        (82) 

where Q is defined according to Eq. 83, the superscript "pc" is the abbreviation for "pseudo 

critical". 

    
1 1

3 3
4 8 4 8Q      (83) 

 

Equation of state f g b in Eqs. 80-82 b in Eqs. 94-96 difference 

van der Waals [7] -3b2 -2b3 31.3727 42.8453 37 % 
Redlich and Kwong [8] -6b2 -6b3 24.4633 29.6971 21 % 
Soave [9] -6b2 -6b3 24.4633 29.6971 21 % 
Peng and Robinson [10] -6b2 -8b3 23.8191 26.6656 12 % 

Table 2. Definitions of f and g according to Eq. 77 and 78, respectively. The values of b are calculated for 
the critical conditions of pure CO2: Vm,C = 94.118 cm3·mol-1, TC = 304.128 K and pC = 7.3773 MPa [18]. The 
last column gives the percentage of difference between the values of b (Eqs. 80-82 and 94-96). 

The temperature at pseudo critical conditions is obtained from the combination of Eqs. 80-82 
and the first partial derivative of pressure with respect to volume (Eq. 31). 
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where Q is defined according to Eq. 83. The order of equations (84, 85, 86) is according to the 
order of equations of state in Eq. 80, 81,and 82. The parameter 2 is used in Eqs. 84, 85 and, 
86 instead of the constant a (see Table 1). Eq. 87 illustrates the transformation of Eq. 85 for 
the RKeos [8] by substitution of 2 according to its value given in Table 1. 

  
2

4 3
33 3

2 1pc a
T

bR

 
    

 
 (87) 

Any temperature dependency of the a constant has an effect on the definition of the pseudo 
critical temperature. The pressure at pseudo critical condition (Eqs. 88-90) is obtained from a 
combination of the pressure equation (Eq.14), pseudo critical temperature (Eqs. 84-87) and 
pseudo critical molar volume (Eqs. 80-82). 
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where Q is defined according to Eq. 83. The order of equations (88, 89, and 90) is according 
to the order of equations of state in Eqs. 80, 81, and 82. These equations define the relation 
between the a and b constant in two-constant cubic equations of state and critical conditions, 
i.e. temperature, pressure, and molar volume of pure gas fluids. Therefore, knowledge of 
these conditions from experimental data can be used to determine the values of a (or 2) and 
b, which can be defined as a function of only temperature and pressure (Eqs. 91-93, and 94-
96, respectively). 
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where TC and pC are the critical temperature and critical pressure, and Q is defined 
according to Eq. 83. The order of equations (91-93, and 94-96) is according to the order of 
equations of state in Eqs. 80-82. Comparison of the value of b calculated with experimental 
critical volume (Eqs. 80, 81 and 82) and critical temperature and pressure (Eqs. 94, 95, and 
96) is illustrated in Table 2. The difference indicates the ability of a specific equation of state 
to reproduce fluid properties of pure gases. A large difference indicates that the geometry or 
morphology of the selected equation of state in the p-V-T-x parameter space is not exactly 
reproducing fluid properties of pure gases. The empirical modifications of the van-der-
Waals equation of state according to Peng and Robinson [10] result in the most accurate 
equation in Table 2 (11% for pure CO2). 

6. Critical point and curve 

The critical point is the highest temperature and pressure in a pure gas system where 
boiling may occur, i.e. where a distinction can be made between a liquid and vapour phase 
at constant temperature and pressure. At temperatures and pressures higher than the critical 
point the pure fluid is in a homogeneous supercritical state. The critical point of pure gases 
and multi-component fluid mixtures can be calculated exactly with the Helmholtz energy 
equation (Eqs. 55-57) that is obtained from two-constant cubic equations of state, e.g. see [17, 
18], and it marks that part of the surface described with a Helmholtz energy function where 
two inflection points of the spinodal coincide. Therefore, the conditions of the spinodal are 
also applied to the critical point. In addition, the critical curve is defined by the determinant 
(Dcrit) of the matrix illustrated in Eq. 97, see also [6]. 
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The number of rows in Eq.97 is defined by the differentiation variables volume and number 
of components minus 2. The last row is reserved for the partial derivatives of the 
determinant Dspin from Eq. 68: 

 spin

V

D
D

V




  (98) 



 
Thermodynamics – Fundamentals and Its Application in Science 

 

178 

 
1

1

spin
n

D
D

n




  (99) 

 
2

2

spin
n

D
D

n




  (100) 

The derivatives of the spinodal determinant (Eqs. 98-100) are calculated from the sum of the 
element-by-element products of the matrix of "cofactors" (or adjoint matrix) of the spinodal 
(Eq. 101) and the matrix of the third derivatives of the Helmholtz energy function (Eq. 102). 
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Figure 2. Calculated critical points of binary CO2-CH4 fluid mixtures in terms of temperature (red line) 
and pressure (green line), obtained from the PReos [10]. Solid circles are experimental data [16, 19]. The 
open squares are the critical point of pure CO2 [20]. 

where Cxy are the individual elements in the matrix of "cofactors", as obtained from the 
Laplacian expansion. The subscript K refers to the variable that is used in the third 
differentiation (volume, amount of substance of the components 1 and 2. To reduce 
computation time in software that uses this calculation method, the LU decomposition has 
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been used to calculate the determinant in Eq. 97. The determinants in Eqs. 68 and 97 are both 
used to calculate exactly the critical point of any fluid mixture and pure gases, based on 
two-constant cubic equations of state that define the Helmholtz energy function. 

An example of a calculated critical curve, i.e. critical points for a variety of compositions in a 
binary fluid system, is illustrated in Figure 2. The prediction of critical temperatures of fluid 
mixtures corresponds to experimental data [16, 19], whereas calculated critical pressures are 
slightly overestimated at higher fraction of CH4. This example illustrates that the PReos [10] 
is a favourable modification that can be used to calculate sub-critical conditions of CO2-CH4 
fluid mixtures. 

7. Mixing rules and definitions of 1 and 2 

All modifications of the van-der-Waals two-constant cubic equation of state [7] have an 
empirical character. The main modifications are defined by Redlich and Kwong, Soave and 
Peng and Robinson (see Table 1), and all modification can by summarized by specific 
adaptations of the values of 1, 2, 3, and 4 to fit experimental data. The original definition 
[7] of 1 (b) and 2 (a) for pure gases is obtained from the pseudo critical conditions (Eqs. 91-
93, and 94-96). This principle is adapted in most modifications of the van-der-Waals 
equation of state, e.g. RKeos [8]. Soave [9] and Peng and Robinson [10] adjusted the 
definition of 2 with a temperature dependent correction parameter  (Eqs. 103-105). 

 2 Ca    (103) 
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where ac is defined by the pseudo critical conditions (Eqs. 91-93), and  is the acentric factor. 
The summation in Eq. 105 does not exceed i = 2 for Soave [9] and Peng and Robinson [10]. 
The definition of the acentric factor is arbitrary and chosen for convenience [5] and is a 
purely empirical modification. These two equations of state have different definitions of 
pseudo critical conditions (see Eqs. 91-93 and 94-96), therefore, the values of mi must be 
different for each equation (Table 3). 
 

 Soave [9] Peng and Robinson [10] 

m0 0.480 0.37464 
m1 1.574 1.54266 
m2 -0.176 -0.26992 

Table 3. Values of the constant mi in Eq. 105. 
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The two-constant cubic equation of state can be applied to determine the properties of fluid 
mixtures by using "mixing rules" for the parameters 1 and 2 which are defined for 
individual pure gases according to pseudo critical conditions. These mixing rules are based 
on simplified molecular behaviour of each component (i and j) in mixtures [21, 22] that 
describe the interaction between two molecules: 

 1 1( )mix
i

i j

x i    (106) 

 2 2( , )mix
i j

i j

x x i j    (107) 

where 

 2 2 2( , ) ( ) ( )i j i j     (108) 

These mixing rules have been subject to a variety of modifications, in order to predict fluid 
properties of newly available experimental data of mixtures. Soave [9] and Peng and 
Robinson [10] modified Eq. 108 by adding an extra correction factor (Eq. 109). 

  2 2 2( , ) 1 ( ) ( )iji j i j        (109) 

where ij has a constant value dependent on the nature of component i and j. 

8. Experimental data 

As mentioned before, modifications of two-constant cubic equation of state was mainly 
performed to obtain a better fit with experimental data for a multitude of possible gas 
mixtures and pure gases. Two types of experimental data of fluid properties were used: 1. 
homogeneous fluid mixtures at supercritical conditions; and 2. immiscible two-fluid systems 
at subcritical conditions (mainly in petroleum fluid research). The experimental data consist 
mainly of pressure, temperature, density (or molar volume) and compositional data, but can 
also include less parameters. Figure 3 gives an example of the misfit between the first type 
of experimental data for binary CO2-CH4 mixtures [19] and calculated fluid properties with 
RKeos [8] at a constant temperature (15 ˚C). The RKeos uses the pseudo critical defined 
parameters 1 and 2 (Eqs. 92 and 95) and mixing rules according to Eqs. 106-108 and is only 
approximately reproducing the fluid properties of CO2-CH4 mixtures at subcritical 
conditions 

Experimental data of homogeneous supercritical gas mixtures in the ternary CO2-CH4-N2 
system [23] are compared with the two-constant cubic equations of state in Table 4. The Weos 
[7] clearly overestimates (up to 14.1 %) experimentally determined molar volumes at 100 MPa 
and 200 ˚C. The Seos [9] is the most accurate model in Table 4, but still reach deviations of up 
to 2.3 % for CO2-rich gas mixtures. The PReos [10] gives highly underestimated molar 
volumes at these conditions. 
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Figure 3. Modelled immiscibility of binary CO2-CH4 gas mixtures (shaded areas) in a pressure - amount 
CH4 fraction diagram (a) and amount CH4 fraction - molar volume diagram (b) at 15 ˚C. The solid and 
open circles are experimental data [16]. The red squares are the properties of pure CO2 [20]. The yellow 
triangle (Cexp) is the interpolated critical point for experimental data, and the green triangle (CRK) is the 
calculated critical point [8]. tie1 and tie 2 in (b) are calculated tie-lines between two phases at constant 
pressures 6.891 and 6.036 MPa, respectively. 

composition Vm(exp)

cm3·mol-1 
W RK S PR 

CO2 CH4 N2

0.8 0.1 0.1 56.64 64.61 (14.1%) 54.90 (-3.1%) 57.94 (2.3%) 53.59 (-5.4%) 
0.8 0.2 0.2 58.92 65.81 (11.7%) 56.61 (-3.9%) 59.61 (1.2%) 56.93 (-6.1%) 
0.4 0.3 0.3 61.08 67.08 (9.6%) 58.27 (-4.6%) 61.12 (0.1%) 56.93 (-6.8%) 
0.2 0.4 0.4 62.90 68.28 (8.6%) 59.83 (-4.9%) 62.42 (-0.8%) 58.28 (-7.3%) 

Table 4. Comparison of supercritical experimental molar volumes [23] at 100 MPa and 200 ˚C with two-
constant cubic equations of state (abbreviations see Table 1). The percentage of deviation from 
experimentally obtained molar volumes is indicated in brackets. 

Figure 3 and Table 4 illustrate that these modified two-constant cubic equations of state still 
need to be modified again to obtain a better model to reproduce fluid properties at sub- and 
supercritical conditions. 

9. Modifications of modified equations of state 

The number of publications that have modified the previously mentioned two-constant 
cubic equations of state are numerous, see also [11], and they developed highly complex, but 
purely empirical equations to define the parameters 1 and 2. A few examples are 
illustrated in the following paragraphs. 

9.1. Chueh and Prausnitz [24] 

The constant values in the definition of 1 and 2 (Eqs. 92 and 95) are modified for individual 
gases by Chueh and Prausnitz [24]. This equation is an arbitrary modification of the RKeos 
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[8]. Consequently, the calculation of the value of 1 and 2 is not any more defined by 
pseudo critical conditions, which give exact mathematical definition of these constants. 
Although the prediction of fluid properties of a variety of gas mixtures was improved by 
these modifications, the morphology of the Helmholtz energy equation in the p-V-T-x 

parameter space is not any more related to observed fluid properties. The theory of pseudo 
critical conditions is violated according to these modifications. 

The mixing rules in Eqs. 106-108 were further refined by arbitrary definitions of critical 
temperature, pressure, volume and compressibility for fluid mixtures. 

 

2 2

2( , )
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R T
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p
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   (110) 

 

2 2.5

2
Ciji j

ij
Cij

R T
a

p

 
   (111) 

where i and j are the newly defined constant values of component i and j, and TCij and pCij 

are defined according to complex mixing rules [see 24]. The values of TCij and pCij are not 
related to true critical temperatures and pressures of specific binary gas mixtures. 

The prediction of the properties of homogeneous fluids at supercritical conditions (Table 5) is 
only slightly improved compared to RKeos [10], but it is not exceeding the accuracy of the Seos 
[11]. At sub-critical condition (Figure 4), the Chueh-Prausnitz equation is less accurate than the 
Redlich-Kwong equation (compare Figure 3) in the binary CO2-CH4 fluid mixture at 15 ˚C. 
 

composition Vm(exp) 

cm3·mol-1 
CP H B1 B2 

CO2 CH4 N2 

0.8 0.1 0.1 56.64 56.42 (-0.4%) 55.96 (-0.6%) 56.84 (0.4%) 56.53 (-0.2%) 
0.8 0.2 0.2 58.92 57.85 (-1.8%) 57.68 (-2.1%) 59.43 (0.9%) 58.81 (-0.2%) 
0.4 0.3 0.3 61.08 59.21 (-3.1%) 59.17 (-3.1%) 61.67 (1.0%) 60.79 (-0.5%) 
0.2 0.4 0.4 62.90 60.44 (-3.9%) 60.38 (-4.0%) 63.45 (0.9%) 62.40 (-0.8%) 

Table 5. The same experimental molar volumes as in Table 4 compared with two-constant equations 
of state according to Chueh and Prausnitz [24] (CP), Holloway [25, 26] (H), Bakker [27] [B1], and 
Bakker [28] (B2). The percentage of deviation from experimentally obtained molar volumes is 
indicated in brackets. 

9.2. Holloway [25, 26] and Bakker [27] 

The equation of Holloway [25, 26] is another modification of the RKeos [8]. The modification 
is mainly based on the improvement of predictions of homogenous fluid properties of H2O 
and CO2 mixtures, using calculated experimental data [29]. The value for 1 and 3 (both b) 
of H2O is arbitrarily selected at 14.6 cm3·mol-1, whereas other pure gases are defined 
according to pseudo critical conditions. The definition of 2 (i.e. a) for H2O as a function of 
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temperature was subjected to a variety of best-fit procedures [25, 26]. The fitting was 
improved from four experimental data points [25] to six [26] (Figure 5), but was restricted to 
temperatures above 350 ˚C. Bakker [27] improved the best-fit equation by including the 
entire data set [29], down to 50 ˚C (Eq. 112). 

 

 
Figure 4. See Figure 3 for details. The RKeos is indicated by dashed lines in (a) and (b). The shaded 
areas are immiscibility conditions calculated with the Chueh-Prausnitz equation. tie1 and tie 2 in (b) are 
calculated tie-lines between two phases at constant pressures 6.944 and 5.984 MPa, respectively. 

 

 

Figure 5. Temperature dependence of the a constant for pure H2O in the modified cubic equation of 
state [25, 26]. The open circles are calculated experimental data [29]. fit [25] is the range of fitting in the 
definition of Holloway [25], and fit [26] of Holloway [26]. RK illustrates the constant value calculated 
from pseudo critical condition [8]. 
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where T is temperature in Kelvin, and the dimension of a is cm6·MPa·K0.5·mol-2. The 
properties of homogeneous pure CO2, CH4 and N2 fluids [27] were also used to obtain a 
temperature dependent a constant (Eqs. 113, 114, and 115, respectively). 
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The aij value of fluid mixtures with a H2O and CO2 component (as in Eqs. 106-108 and 110-
111) is not defined by the value of pure H2O and CO2 (Eqs. 112 and 113), but from a 
temperature independent constant value (Eqs. 116 and 117, respectively). In addition, a 
correction factor is used only for binary H2O-CO2 mixtures, see [25, 29]. 

   6 6 0.5 2
0 2 3.5464 10a H O MPa cm K mol      (116) 

   6 6 0.5 2
0 2 4.661 10a CO MPa cm K mol      (117) 

Table 5 illustrates that the equation of Holloway [25] is not improving the accuracy of 
predicted properties of supercritical CO2-CH4-N2 fluids, compared to Chueh-Prausnitz [24] 
or Seos [9], and it is only a small improvement compared to the RKeos [8]. The accuracy of 
this equation is highly improved by using the definitions of a constants according to Bakker 
[27] (see Eqs. 112-115), and result in a maximum deviation of only 1% from experimental 
data in Table 5. 

Experimental data, including molar volumes of binary H2O-CO2 fluid mixtures at 
supercritical conditions [30, 31, 32] are used to estimate fugacities of H2O and CO2 according 
to Eq. 118 (compare Eq. 10). 

 ,
0

ln
p

ideal
i m i mRT V V dp      (118) 

where Vm,i - Vmideal is the difference between the partial molar volume of component i and the 
molar volume of an ideal gas (see also Eq. 43). The difference between Eqs. 118 and 10 is the 
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mathematical formulation and the use of different independent variables, which are 
temperature and pressure in Eq. 118. The integration to calculate the fugacity coefficient can 
be graphically obtained by measuring the surface of a diagram of the difference between the 
ideal molar volume and the partial molar volume (i.e. Vm,i - Vmideal) as a function of pressure 
(Figure 6). The surface obtained from experimental data can be directly compared to 
calculated curves from equations of state, according to Eq. 10 (Table 6). 

The dashed line in Figure 6 is calculated with another type of equation of state: a 
modification of the Lee-Kesler equation of state [33] that is not treated in this manuscript 
because it is not a two-constant cubic equation of state. Fugacity estimations of H2O are 
similar according to both equations, and reveal only a minor improvement for the two-
constant cubic equation of state [27]. The experimental data to determine fugacity of CO2 in 
this fluid mixture is inconsistent at relative low pressures (< 100 MPa). The calculated 
fugacity [27] is approximately compatible with the experimental data from [31, 32].  

 
 
 

 

 
Figure 6. Fugacity estimation in a pressure - dv diagram at 873 K and a composition of x(CO2) = 0.3 in 
the binary H2O-CO2 system, where dv is the molar volume difference of an ideal gas and the partial 
molar volume of either H2O or CO2 in binary mixtures. Experimental data are illustrated with circles, 
triangles and squares (solid for CO2 and open for H2O. The red lines are calculated with Bakker [27], 
and the shaded area is a measure for the fugacity coefficient of H2O (Eq. 118). 
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Pressure (MPa) Exp. fugacity (MPa) B1 fugacity (MPa) 

10 6.692 6.659 (-0.5%) 

50 27.962 27.3061 (-2.3%) 

100 45.341 44.6971 (-1.4%) 

200 77.278 75.0515 (-2.9%) 

300 114.221 111.072 (-2.8%) 

400 160.105 157.145 (-1.8%) 

500 219.252 216.817 (-1.1%) 

600 295.350 294.216 (-04%) 

Table 6. Fugacities of H2O in H2O-CO2 fluid mixtures, x(CO2) = 0.3, at 873.15 K and variable pressures. 
B1 fugacity is calculated with Bakker [27]. The deviation (in %) is illustrated in brackets. 

9.3. Bowers and Helgeson [34] and Bakker [28] 

Most natural occurring fluid phases in rock contain variable amounts of NaCl, which have 
an important influence on the fluid properties. Bowers and Helgeson [34] modified the 
RKeos [8] to be able to reproduce the properties of homogeneous supercritical fluids in the 
H2O-CO2-NaCl system, but only up to 35 mass% NaCl. The model is originally restricted 
between 350 and 600 ˚C and pressures above 50 MPa, according to the experimental data 
[35] that was used to design this equation. This model was modified by Bakker [28] 
including CH4, N2, and additionally any gas with a (2) and b (1) constants defined by the 
pseudo critical conditions (Eqs. 91-93 and 94-96). Experimental data in this multi-component 
fluid system with NaCl can be accurately reproduced up to 1000 MPa and 1300 K. Table 5 
illustrates that this modification results in the best estimated molar volumes in the ternary 
CO2-CH4-N2 fluid system at 100 MPa and 673 K. Similar to all modifications of the RKeos [8], 
this model cannot be used in and near the immiscibility conditions and critical points (i.e. 
sub-critical conditions). 

10. Application to fluid inclusion research 

Knowledge of the properties of fluid phases is of major importance in geological sciences. 
The interaction between rock and a fluid phase plays a role in many geological processes, 
such as development of magma [36], metamorphic reactions [37] and ore formation 
processes [38]. The fluid that is involved in these processes can be entrapped within single 
crystal of many minerals (e.g. quartz), which may be preserved over millions of years. The 
information obtained from fluid inclusions includes 1. fluid composition; 2. fluid density; 3. 
temperature and pressure condition of entrapment; and 4. a temporal evolution of the rock 
can be reconstructed from presence of various generation of fluid inclusions. An equation of 
state of fluid phases is the major tool to obtain this information. Microthermometry [39] is an 
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analytical technique that directly uses equations of state to obtain fluid composition and 
density of fluid inclusions. For example, cooling and heating experiment may reveal fluid 
phase changes at specific temperatures, such as dissolution and homogenization, which can 
be transformed in composition and density by using the proper equations of state. 

The calculation method of fluid properties is extensive and is susceptible to errors, which is 
obvious from the mathematics presented in the previous paragraphs. The computer package 
FLUIDS [6, 40, 41] was developed to facilitate calculations of fluid properties in fluid 
inclusions, and fluids in general. This package includes the group "Loners" that handles a 
large variety of equations of state according to individual publications. This group allows 
researchers to perform mathematical experiments with equations of state and to test the 
accuracy by comparison with experimental data. 

The equations of state handled in this study can be downloaded from the web site 
http://fluids.unileoben.ac.at and include 1. "LonerW" [7]; 2. "LonerRK" [8]; 3. "LonerS" [9]; 4. 
"LonerPR" [10]; 5. "LonerCP" [24]; 6. "LonerH" [25, 26, 27]; and 7. "LonerB" [28, 34]. Each 
program has to possibility to calculate a variety of fluid properties, including pressure, 
temperature, molar volume, fugacity, activity, liquid-vapour equilibria, homogenization 
conditions, spinodal, critical point, entropy, internal energy, enthalpy, Helmholtz energy, 
Gibbs energy, chemical potentials of pure gases and fluid mixtures. In addition, isochores 
can be calculated and exported in a text file. The diagrams and tables presented in this study 
are all calculated with these programs. 
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