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Collision Free Path Planning  

for Multi-DoF Manipulators  
 
 

Samir Lahouar, Said Zeghloul and Lotfi Romdhane  
 

1. Introduction   

Path planning is a very important issue in robotics. It has been widely studied 
for the last decades. This subject has gathered three interesting fields that were 
quite different in the past. These fields are robotics, artificial intelligence and 
control. The general problem of path planning consists of searching a collision 
free trajectory that drives a robot from an initial location (position and orienta-
tion of the end effector) to a goal location. This problem is very wide and it has 
many variants such as planning for mobile robots, planning for multiple ro-
bots, planning for closed kinematic chains and planning under differential 
constraints. It includes also time varying problems and molecular modeling, 
see (LaValle, 2006) for a complete review. In this study we focus on the case of 
multi-Degrees of Freedom (DoF) serial manipulators. 
The first works on serial manipulators path planning began in the seventies 
with Udupa (Udupa, 1977), then with Lozano-Pérez and Wesley (Lozano-
Pérez & Wesley, 1979) who proposed solving the problem using the robot's 
configuration space (CSpace). Since then, most of path planning important 
works have been carried out in the CSpace. There are two kinds of path plan-
ning methods: Global methods and Local methods. Global methods (Paden et 
al., 1989; Lengyel et al., 1990; Kondo, 1991) generally act in two stages. The first 
stage, which is usually done off-line, consists of making a representation of the 
free configuration space (CSFree). There are many ways proposed for that: the 
octree, the Voronoï diagram, the grid discretization and probabilistic road-
maps. For each chosen representation, an adapted method is used in order to 
construct the CSFree, see (Tournassoud, 1992; LaValle, 2006). The representa-
tion built in the first stage is used in the second one to find the path. This is not 
very complicated since the CSFree is known in advance. Global methods give 
a good result when the number of degrees of freedom (DoF) is low, but diffi-
culties appear when the number of DoF increases. Moreover, these methods 
are not suitable for dynamic environments, since the CSFree must be recom-
puted as the environment changes. Local methods are suitable for robots with 
a high number of DoF and thus they are used in real-time applications. The 

Source: Industrial-Robotics-Theory-Modelling-Control, ISBN 3-86611-285-8, pp. 964, ARS/plV, Germany, December 2006, Edited by: Sam Cubero
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potential field method proposed by Khatib (Khatib, 1986) is the most popular 
local method. It assumes that the robot evolves in a potential field attracting 
the robot to the desired position and pushing its parts away from obstacles. 
Because of its local behavior these methods do not know the whole robot's en-
vironment, and can easily fall in local minima where the robot is stuck into a 
position and cannot evolve towards its goal. Constructing a potential field 
with a single minimum located in the goal position, is very hard and seems to 
be impossible, especially if there are many obstacles in the environment. 

Faverjon and Tournassoud proposed the constraint method (Faverjon & 
Touranssoud, 1987), which is a local method acting like the potential field 
method in order to attract the end effector to its goal and dealing with the ob-
stacles as constraints. Although it yields remarkable results with high DoF ro-
bots, this method suffers from the local minima problem. 

Probabilistic methods were introduced by Kavraki et al. (Kavraki et al., 1996) 
in order to reduce the configuration free space complexity. These methods 
generate nodes in the CSFree and connect them by feasible paths in order to 
create a graph. Initial and goal positions are added to the graph, and a path is 
found between them. This method is not adapted for dynamic environments 
since a change in the environment causes the reconstruction of the whole 
graph. Several variants of these methods were proposed: Visibility based PRM 
(Siméon et al., 2000), Medial axis PRM (Wilmarth et al., 1999) and Lazy PRM 
(Bohlin & Kavraki, 2000). 

Mediavilla et al. (Mediavilla et al., 2002) proposed a path planning method for 
many robots cooperating together in a dynamic environment. This method 
acts in two stages. The first stage chooses off-line, a motion strategy among 
many strategies generated randomly, where a strategy is a way of moving a 
robot. The second stage is the on-line path planning process, which makes 
each robot evolve towards its goal using the strategy chosen off-line to avoid 
obstacles that might block its way. 
Helguera et al. (Helguera & Zeghloul, 2000) used a local method to plan paths 
for manipulator robots and solved the local minima problem by making a 
search in a graph describing the local environment using an A* algorithm until 
the local minima is avoided. 

Yang (Yang 2003) used a neural network method based on biology principles. 
The dynamic environment is represented by a neural activity landscape of a 
topologically organized neural network, where each neuron is characterized 
by a shunting equation. This method is practical in the case of a 2-DoF robot 
evolving in a dynamic environment. It yields the shortest path. However, the 
number of neurons increases exponentially with the number of DoF of the ro-
bot, which makes this method not feasible for realistic robots. 
Here, we propose two methods to solve the path planning problem. The first 
method (Lahouar et al., 2005a ; Lahouar et al., 2005b) can be qualified as a 
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global method. It is suitable for serial robot manipulators in cluttered static 
environments. It is based on lazy grid sampling. Grid cells are built while 
searching for the path to the goal configuration.  The proposed planner acts in 
two modes. A depth mode while the robot is far from obstacles makes it 
evolve towards its goal. Then a width search mode becomes active when the 
robot gets close to an obstacle. This mode ensures the shortest path to go 
around an obstacle. This method reduces the gap between pre-computed grid 
methods and lazy grid methods. No heuristic function is needed to guide the 
search process. An example dealing with a robot in a cluttered environment is 
presented to show the efficiency of the method. 
The second method (Lahouar et al., 2006) is a real-time local one, which is used 
to solve the path planning problem for many manipulator robots evolving in a 
dynamic environment. This approach is based on the constraints method cou-
pled with a procedure to avoid local minima by bypassing obstacles using a 
boundary following strategy. The local planner is replaced by the boundary 
following method whenever the robot gets stuck in a local minimum. This 
method was limited to 2-DoF mobile robots and in this work we show how it 
can be applicable to a robot with n degrees of freedom in a dynamic environ-
ment. The path planning task is performed in the configuration space and we 
used a hyperplane in the n dimensional space to find the way out of the dead-
lock situation when it occurs. This method is, therefore, able to find a path, 
when it exists and it avoids deadlocking inherent to the use of the local 
method. Moreover, this method is fast, which makes it suitable for on-line path 
planning in dynamic environments. 

2. Sampling and construction of the CSpace 

Many planning algorithms need samples of CSpace in order to compute a tra-
jectory. There are many ways of sampling; the easiest way is to use a grid with 
a given resolution. The number of the grid cells grows exponentially according 
to the number of DoF of the robot. In the same way, the time and the memory 
space required to compute and store the grid increase. Random sampling was 
introduced in order to reduce the number of samples needed to represent the 
CSpace. It consists of choosing random configurations and constructing a 
graph representing feasible paths between them. This method needs a long 
time of computation. 
We give an example of sampling using a grid with a low resolution and we de-
fine constraints used to detect if there is a free path between two neighboring 
cells. On one hand, these constraints make the path between two neighboring 
cells in the CSfree safe even if the step is quite large, and on the other hand 
they speed up the collision checking process as the constraints computed in a 
cell are useful to check all the neighboring cells. There is no need to check for 
collision in all cells of the grid before starting to search for a path. The con-
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straints calculated in a cell allow us to judge whether a path exists to a 
neighboring cell or not. 
 
 

 
 
 
 
 
2 neighbor cells in 1D 

 
8 neighbor cells in 2D 26 neighbor cells in 3D 

Figure 1. Each cell has 3N-1 neighbors 

 
Therefore, the constraints-calculating process is equivalent to 3N-1 times the 
collision checking process, as a cell has 3N -1 neighbors (Fig. 1). The number N 
represents the number of DoF of the robot. 
 

3. Non-collision constraints 

Here, we define non-collision constraints necessary to accelerate the global 
method (see paragraph 4) and useful for the local planner of the second 
method (see paragraph 5). Non-collision constraints as proposed by Faverjon 
and Tournassoud are written as follows: 
 

i

si

s dd
dd

dd
d ≤

−

−
−≥    if    ξ&   (1) 

 

With d  is the minimal distance between the robot and the object and d&  is the 
variation of d  with respect to time. id  is the influence distance from where the 

objects are considered in the optimization process, sd  is the security distance 

and ξ  is a positive value used to adjust the convergence rate. 
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Figure 2. Two objects evolving together 
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Figure 3. Evolution of the distance according to the convergence rate 

 
If we consider two mobile objects in the same environment as shown in Fig. 2, 

d&  can be written as follows: 
 

( ) ( ) nn .V.V
011022 //

T
RRx

T
RRxd ∈∈ −=&   (2) 

 
Where ( )0/V RRx ii∈

 is the velocity vector evaluated at the point ix  of object i hav-

ing the minimal distance with the second object and n  is the unit vector on the 
line of the minimal distance. 
The non-collision constraints, taking into account the velocities of objects, are 
written as: 
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( ) ( )
si
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RRx

T
RRx

dd

dd

−

−
≤− ∈∈ ξnn .V.V

022011 //   (3) 

 
A robot evolving towards an obstacle, if it respects constraints given by equa-
tion (1), it will evolve exponentially to the security distance without going 
closer than this distance (see Fig. 3). 
Fig. 4 shows a PUMA robot placed next to a static obstacle. The constraint cor-
responding to that obstacle is written as:   
 

( )
si

sT
RRx

dd

dd

−

−
≤∈ ξn.V

011 /   (4) 

 
By introducing ( )qx1

J , the Jacobian matrix of the robot in configuration q  de-

fined in point 1x , we get: 

 
  

 

Figure 4.The distance between a robot and an obstacle 

 

( )
si

s
x

T

dd

dd
qq

−

−
≤∆ ξ  

1
Jn   (5) 

 
Condition (5) will be written in the following manner: 
 

[ ][ ] bqqaa
T

NN ≤∆∆ LL 11   (6) 
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with [ ] Jn
T

Naa =L1 , [ ]TNqqq ∆∆=∆ L1  and 
is

i

dd

dd
b

−

−
= ξ  

 

Figure 5. shows two PUMA robots evolving together. We consider that each 
robot is controlled separately. 
In that manner, each robot is considered as a moving obstacle by the other one.  
 
 

 
 

Figure 5. Two PUMA robots working in the same environment 

 
The motion of the two robots must satisfy the following conditions: 
 

( )
is

iT
RRx

dd

dd

−

−
≤∈ '.V

011 / ξn  and ( )
is

iT
RRx

dd

dd

−

−
≤− ∈ '.V

022 / ξn   (7) 

 

Where ξξ
2

1'= . While adding the two conditions of equation (7), we notice that 

the non-collision constraint defined by (3) is satisfied. So with a suitable choice 
of the parameters ξ , id  and sd , it is possible to use only condition (5) to avoid 

collisions with all objects in the environment. 
In the next paragraph, we propose an approach that does not construct the 
whole grid, representing the CSpace. Only cells necessary to find the path to 
the goal position are checked for collision. 
 
 



356       Industrial Robotics: Theory, Modelling and Control 

4. Path planning in static cluttered environments 

The planner we propose uses two modes.  The first one makes the robot evolve 
towards its goal position if there is no obstacle obstructing its way and the sec-
ond mode is active near the obstacles and enables the robot to find the best 
way to avoid them.  This latter mode is the most important as it needs to gen-
erate all the cells near the obstacle until it is avoided. For this reason, we do 
not have to store all the cells but just the ones near the obstacles which are suf-
ficient to describe the CSfree. 

4.1 Definitions 

In order to explain the algorithm of this method, we need to define some 
terms. 
 

A Cell  
The algorithm we propose is based on a “Cell” class in terms of object oriented 
programming. A cell ci is made of: 
 
A pointer to the parent cell (ci.parent):  
the path from the initial configuration to the goal is made of cells.  Each one of 
these cells has a pointer to the parent cell, that generated it previously.  Start-
ing from a cell, the next one in the path is the one that is closest to the goal and 
respecting the non-collision constraints.  When the goal cell is reached the al-
gorithm stops and the path is identified by all the selected cells. 
 
A configuration defining a posture of the robot:  
each cell corresponds to a point in the CSpace. If a cell configuration is written 

as [ ]T11
11 Nqqq L=  where N is the number of DoF of the robot, and let q∆  be 

the step of the grid, the neighboring cells are then defined as the configura-
tions belonging to the following set: 
 

( ) [ ] ( ) { } ( ){ }0,,0/1,0,1,,; 1

T1
1

1
11 KKL

N

NNN ssqsqqsqqqVic −∈∆+∆+==  (8) 

 
A distance to the goal( ci.distance_to_goal):  
it represents the distance in configuration space between the goal configura-
tion and the cell configuration. This distance allows the planner’s first mode to 
choose the closest cell to the goal configuration. While the robot is far from ob-
stacles, the shortest path to the goal configuration is a straight line in CSpace. 
 
A boolean “collision” variable (ci.collision):  
it takes false if the cell verifies the constraints and true if it does not.  
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A boolean “computed” variable( ci.computed):  
used by the planner in order to know whether the cell has already been used 
to search for the path or not.   
A boolean “near an obstacle” variable (ci.near_an_obstacle):  
used by the second mode of the planner allowing it to stay stuck to the obsta-
cle while performing its width search in order to find the best direction to go 
around the obstacle. 
 
Queue 
Another important item in our approach is the Queue, Q, which is defined as 
an ordered set of cells. The first cell in the Queue is named head and denoted 
h(Q). While the last cell is the tail of the Queue and denoted t(Q). If the Queue 
is empty we write ( ) ( ) 0tQh /== Q . 

 
In order to handle the Queue Q, we use some operators that we define here. 

( )1cQ,h+  adds the cell 1c  to the head of Q.  

( )1cQ,t+  adds 1c  to the tail of Q. 

( )Qh−  removes the head cell from Q. 

( )Qt−  removes the tail cell from Q. 

 
Stop Condition 
We define the stop condition as the condition for which we judge that the goal 
position has been found. We write this condition as follows:  
 

qqqgoal ∆<−   (9) 

 
where goalq  is the goal configuration, q  is the configuration of the cell verifying 

the stop condition and q∆  is the step of the grid. 

If the algorithm can no longer evolve and the stop condition is not satisfied, it 
means that there is no possible solution for the given density of the grid. 

4.2 Algorithm 

The algorithm outlined in Fig. 6, starts by constructing the initial cell in step 1. 
It sets the parent pointer to NULL and evaluates the distance to the goal. The 
algorithm uses a variable c representing the cell searched by the algorithm. 
ℵ  is the set of explored cells and 1ℵ is the set of unexplored cells in the vicinity 

of cell c. 
Step 6 computes non-collision constraints using distances between obstacles 
and robot parts evaluated in the posture defined by cell c.  Steps 8 to 13 con-
struct unexplored cells in the vicinity of cell c. For each cell the parent pointer 



358       Industrial Robotics: Theory, Modelling and Control 

is set to c, the distance to goal is evaluated and the non-collision constraints are 
checked. A cell is considered a collision if it does not verify constraints given 
by equation (3). 
Step 15 determines the nearest cell to the goal in the vicinity of c, using the dis-
tance to goal already evaluated. If that cell is not an obstacle, it is placed in the 
head of the queue Q at step 17. This makes the planner perform a depth search 
since there is no obstacle bothering the robot.  
However, if the cell computed by step 15 is a collision, all non-collision cells in 
the vicinity of c that are close to collision cells are placed in the tail of the 
queue Q by step 22. This makes the planner perform a depth search until the 
obstacle is bypassed. 
 

1. Construct initial cell 1c   

2. Set 1cc =  

3. Let { }1c=ℵ  

4. While 0c /=/  and c does not satisfy the stop condition do 

5. c.computed=true 
6. Compute non-collision constraints for the configuration represented by the cell c 

7. ( ) ℵ=ℵ \1 cVic  

8. For each cell 12c ℵ∈  do 

9. Set c2.parent = c 
10. Evaluate c2.distance_to_goal 
11. Verify the non-collision constraints and determine c2.collision 
12. Set c2.computed to false 
13. End for 

14. 1ℵ∪ℵ=ℵ  

15. Choose c3  in 1ℵ  with the minimal distance to goal 

16. If c3.collision=false then 

17. ( )3cQ,h+   

18. Else (c3.collision=true) 

19. For each ( )cVicc ∈2  such as c2.collision=true do 

20. For each ( ) ℵ∩∈ 23 cVicc  set c3.near_an_obstacle=true 

21. End for 

22. For each ( ) Q\2 cVicc =  such as c2.Near_an_obstacle = true and c2.collision=false and  

c2.computed=false do ( )2cQ,t+  

23. For each Q2 ∈c  such as ( ) ℵ⊂2cVic   remove c2 from the Queue Q and set  

c2.computed=true 
24. End if 

25. ( )Qh=c  

26. ( )Qh−  

27.  End while 

Figure 6. Pseudo-code of the method 
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Figure 7. A 2 DoF robot 
 

Steps 19 to 21 evaluate the “near an obstacle” property. This property is set to 
false when the cell is constructed. Then for each cell in the vicinity of a colli-
sion cell, itself in the vicinity of the cell c, this property is set to true.  
Step 23 removes from the queue Q all cells for which their vicinity has been al-
ready explored and sets their computed property to true, so they do not return 
to the queue when the algorithm evolves. The search procedure is stopped 
when a cell verifying the stop condition is found and the path is done by join-
ing this cell to the initial cell by going back through the parent cells using the 
pointer of each cell. The procedure can also be stopped if the Queue Q is 
empty, in that case there is no possible path for the chosen resolution of the 
grid. 
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Figure 8. Path planning consists of moving the robot from the start position to the 
goal position while avoiding obstacles 
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Obstacle O1 O2 O3 

x  16 4 10 
y  12 10 4 

Table 1. Position of obstacles 

4.3 A planar example 

In order to illustrate the proposed algorithm we consider a 2D example, of a 
2R robot (Fig. 7) evolving among point obstacles. The simulations are made us-
ing three point obstacles defined by table 1. 

The start configuration is [ ]T3020 °°−=sq  and the goal configuration is 

[ ]T4550 °−°=gq . Fig. 8 shows the robot in its starting and goal positions, re-

spectively, and the three point obstacles. We set the lengths of the arms of the 
robot 1021 == ll . 

Fig. 9 shows the CSpace of the robot, the dark regions correspond to CSpace 
obstacles.  
 

1q

2q

Goal configuration 

Start configuration 

 

Figure 9. The configuration space 
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231 232 233 234

223 224 225 235 238

217 218 219 236 239 242

205 208 209 237 240 243 246

206 193 196 197 241 244 247 250

207 194 181 184 185 245 248 251 254

210 195 182 169 172 173 249 252 255 258

198 183 170 157 160 161 253 256 259 263

186 171 158 151 152 153 257 260 264 268

174 159 139 142 143 261 262 265 269 273

162 140 130 133 134 266 267 270 274 278

141 131 121 122 123 271 272 275 279 283

144 132 112 115 116 276 277 280 284 288

135 113 103 104 105 281 282 285 289 293

114 97 98 99 286 287 290 294 298

117 88 91 92 291 292 295 299 303

89 81 82 83 296 297 300 304 308

2 5 7 90 70 71 72 301 302 305 309 313

3 1 8 12 93 64 65 66 306 307 310 314

4 6 9 13 17 58 59 60 311 312 315

10 11 14 18 22 51 52 53 316 317 318

15 16 19 23 27 40 41 319 320 321

20 21 24 28 32 42 322 323 324

25 26 29 33 37 325 326 327

30 31 34 38 328 329 330

35 36 39 48 331 332 333 371 372

43 44 45 49 334 335 336 366 367

54 46 47 50 337 338 339 346 361

55 56 57 340 341 342 347 362

61 62 63 343 344 345 348 355

67 68 69 78 349 350 351 356

73 74 75 79 352 353 354 357

84 76 77 80 358 359 360

85 86 87 373 363 364 365

94 95 96 109 374 368 369 370

100 101 102 110 375 376 377

106 107 108 111 127

118 119 120 128

124 125 126 129 148

136 137 138 149

145 146 147 150 166

154 155 156 167 178

163 164 165 168 179 190

175 176 177 180 191 202

187 188 189 192 203 214

199 200 201 204 215

230 211 212 213 216

229 220 221 222

226 227 228

Obstacle cells 

Start cell 

Goal cell 

Investigated cells 

Generated path 

1q

2q

 

Figure 10. Cell generation order 
 
 

The construction order of cells is shown in Fig. 10. The algorithm evolves to-
wards its goal using the depth-search mode while there is no obstacle bother-
ing it. When an obstacle is detected the algorithm uses the width-search mode. 
The algorithm overlaps the obstacle in order to find the best direction to by-
pass it. When the obstacle is avoided the depth search mode is resumed. The 
algorithm gives the best way to go around the C obstacle (which is the portion 
of CSpace corresponding to a collision with one obstacle).  
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Figure 11. Simulation results for the planar robot 
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Figure 12. Simulation results for the PUMA robot 
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The result of the simulation is shown in Fig. 11. Moreover, out of 5329 cells, 
which corresponds to 73 points on each axis, only 375 cells were computed. 
This represents less than 10% of the whole workspace. 

4.4 Simulation and results 

The simulation has been performed on a robotic-oriented-Software named 
SMAR (Zeghloul et al., 1997). This software is made of two modules: a model-
ing module and a simulation one. The modeling module is used to generate a 
model of the robot in its environment. The simulation module is used to simu-
late the motion of the robot in its environment. It contains a minimal distance 
feature we used to implement our algorithm. 
Fig. 12 shows the simulation results of a 5 DoF ERICC robot carrying a large 
object and standing in an environment containing ladder-shaped obstacles. 
The planner determines the path in 20 steps. The robot is carrying a beam 
whose length is greater than the width of the ladder-shaped obstacle.  Regular 
local path planners would be stuck in the initial position.  The proposed 
method explores all possible configurations capable of going around the ob-
stacle and chooses the one that yields the minimum distance to the goal.  The 
sequence of frames shown in Fig. 12, shows the solution found by the pro-
posed planner. In this case the total number of cells is 12252303 while the 
number of computed cells is only 220980, which represents less than 2% of the 
whole workspace. 

5. Real-time path planning in dynamic environments 

The method described above is useful in the case of cluttered static environ-
ments. It can be used offline to generate repetitive tasks. In many cases robots 
evolve in dynamic environments, which are unknown in advance. That is why 
we propose to solve the path planning problem for many manipulator robots 
evolving in a dynamic environment using a real-time local method. This ap-
proach is based on the constraints method coupled with a procedure to avoid 
local minima by bypassing obstacles using a boundary following strategy. 

5.1 Local Method 

In this method, we use a local planner based on an optimization under con-
straints process (Faverjon & Touranssoud, 1987). It is an iterative process that 
minimizes, at each step, the difference between the current configuration of the 
robot and the goal configuration. When there are no obstacles in the way of the 
robot, we consider that it evolves towards its goal following a straight line in 
the CSpace. The displacement of the robot is written as follows: 
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maxmax   if   qqqq
qq

qq
q goal

goal

goal

goal ∆>−∆
−

−
=∆   (10) 

 

max  if                qqqqqq goalgoalgoal ∆≤−−=∆   (11) 

 
where goalq  is the goal configuration of the robot, q  is the current configura-

tion of the robot and maxq∆  is the maximum variation of each articulation of the 

robot. If there are obstacles in the environment, we add constraints (defined in 
paragraph 3) to the motion of the robot in order to avoid collisions. Path plan-
ning becomes a minimization under constraints problem formulated as: 
 

sconstraintcollision -non  Under  Minimize goalqq ∆−∆   (12) 

 
where q∆  is the change of the robot joints at each step. We can formulate then 

the planning problem as follows: 
 

is

iT
goal

dd

dd
qqq

−

−
≤∆∆−∆ ξ  sconstraintlinear   Under  Minimize Jn  (13) 

 
The local planner can be represented by an optimization problem of a nonlin-
ear function of several parameters, subject to a system of linear constraint 
equations. In order to solve this problem, we use Rosen's gradient projection 
method described in (Rao, 1984). When the solution of the optimization prob-
lem q∆  corresponds to the null vector, the robot cannot continue to move us-

ing the local method. This situation corresponds to a deadlock. In this case, the 
boundary following method is applied for the robot to escape the deadlock 
situation.  
In the next section, we define the direction and the subspace used by the 
boundary following method. 

5.2 Boundary following method 

Before explaining the method in the general case of an n-DoF robot, we present 
it for the 2D case. The proposed approach to escape from the deadlock situa-
tion is based on an obstacle boundary following strategy. 
 
The 2D case  
This method was first used in path planning of mobile robots (Skewis & Lu-
melsky, 1992; Ramirez & Zeghloul, 2000).  
When the local planner gets trapped in a local minimum (see Fig. 13), it be-
comes unable to drive the robot farther. At this point the boundary following 
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method takes over and the robot is driven along the boundary of the obstacle 
until it gets around it. The robot in this case has the choice between two direc-
tions on the line tangent to the obstacle boundary or on the line orthogonal to 
the vector to the goal (Fig. 13). It can go right or left of the obstacle. Since the 
environment is dynamic and unknown in advance, we have no idea whether 
going left or going right is better. The choice of the direction is made ran-
domly. Once the obstacle is avoided the robot resumes the local method and 
goes ahead towards the goal configuration. 
 
 

 

Goal position 

Dead lock position

Direction 1 

Direction 2 C Obstacle 

Solution 2 

Solution 1 

 

Figure 13. Two possible directions to bypass the obstacle in the case of a 2DoF robot 
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C Obstacle 

Dead lock position

Chosen direction 

 

Figure 14. The case where there is no feasible path to the goal 
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If the boundary following method drives back the robot to the original dead-
lock position, one can conclude that there exists no feasible path to reach the 
goal (Fig. 14) and the process is stopped.  
Fig. 15 shows the two feasible paths leading the robot to the goal position. 
Each path corresponds to one choice of the direction of the motion to follow 
the boundary of the obstacle. Therefore, and since the environment can be dy-
namic, the choice of the direction (left or right) is made once and it stays the 
same until the goal is reached. This unique choice guarantees a feasible path in 
all situations whenever a deadlock position is found by the local planner (even 
if in certain cases the choice seems to be non optimal as it is the case for the 
path 2 using the left direction in Fig. 15). 
 
 

Goal position 

C Obstacle 

Dead lock position

Left direction 

Right direction 
Path 1 

Path 2 

 

Figure 15. If a solution exists any chosen direction will give a valid path 
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Figure 16. Definition of the TCplane 
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The n-dimensional case 
In the case of a 3-DoF robot, the choice of a direction avoiding the obstacle be-
comes more critical. Indeed, the directions perpendicular to the vector point-
ing towards the goal configuration are on a hyperplane of the CSpace, which is 
in this case, a plane tangent to the obstacle and normal to the vector pointing 
to the goal position (Fig. 16).  

This plane will be called TCplane (Tangent C plane).  The path planner can 
choose any direction among those included in this plane. 
As in the case of 2-DoF case, we have no idea about the direction to choose in 
order to avoid the obstacle. In this case, an earlier method, proposed by Red et 
al. (Red et al., 1987), consists of using the 3D space made of the robots primary 
DoF. Then, by using a graphical user interface (GUI), the user moves the 
screen cursor to intermediate interference free points on the screen. A path is 
then generated between the starting and the final configurations going 
through the intermediate configurations.  
 

 

 

Goal configuration 

C Obstacle Dead lock position 

Chosen direction 

Bypassing Plane (P) 

qgoal 

qlim qlim 

qlock 

 

Figure 17. Definition of the Bypassing Plane 

 
This method is applicable only to the primary 3-DoF case when the 3D graphi-
cal model can be visualized. Also, the user can choose paths using only the 
primary DoF, which eliminates other possibilities using the full DoF of the ro-
bot. Moreover, this method cannot be applied in real-time applications. 
One possible strategy is to make a random choice of the direction to be fol-
lowed by the robot in the TCplane. This strategy can lead to zigzagged paths 
and therefore should be avoided. In our case, whenever the robot is in a dead-
lock position, we make it evolve towards its upper joint limits or lower joint 
limits, defined by the vector limq . This strategy allowed us to find a consistent 
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way to get out of the deadlock position. This chosen direction is defined by the 
intersection of the TCplane and the bypassing plane (P) containing the three 
points: limq , lockq  and goalq  (Fig. 17). 

In the general case of robots with many DoF, the TCplane becomes a hyper-
plane which is normal to the vector pointing from lockq  to goalq  and containing 

lockq . The direction chosen to go around the obstacle is defined by the intersec-

tion of the TCplane and the plane (P) defined by the three points : limq , lockq  

and goalq . New constraints, reducing the motion of the robot to the plane (P), 

are defined with respect to non-collision constraints. 
The boundary following method will follow these constraints until the obstacle 
is avoided. This plane (P) will be characterized by two vectors 1U  and 2U , 

where 1U  is the vector common to all possible subspaces pointing out to the 

goal configuration. Vector 1U  is given by: 

 
 

qq

qq

goal

goal

−

−
=1U   (14) 

 

2U  is the vector that defines the direction used by the robot in order to avoid 

the obstacle. This vector is defined by the intersection of plane (P) and the 
TCplane. It is not the only possible direction, any random direction can define 
a bypassing plane that can be used in the boundary following method. The 
systematic use of limq  in the definition of 2U  avoids the problem of zigzagged 

paths. As the robot evolves in a dynamic environment, it has no prior knowl-
edge of obstacles and of their motion and it can not compute the best direction 
to bypass obstacles. In order to define 2U we use the vector V given by: 
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qq

−

−
=

lim

limV   (15) 

 
where inflim qq =  if the chosen strategy makes the robot move towards the lower 

limits of its joints, and suplim qq =  if the chosen strategy makes the robot move 

towards the upper limits of its joints. 2U  is the unit vector orthogonal to 1U  

and located in the plane ( )V,U1 . Vector 2U  is given by: 
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While avoiding the obstacle, the robot will move in the defined subspace (P), 
and q∆  could be written as 

 

2211 UU uuq ∆+∆=∆   (17) 

 
Where, 1u∆  is the motion along the 1U  direction and 2u∆  is the motion along 

the 2U  direction. 

Whenever an object is detected by the robot, which means that the distance be-
tween the robot and the obstacle is less then the influence distance, a constraint 
is created according to equation (6).  Constraints are numbered such that the ith 
constaint is written as: 
 

[ ] [ ] i

T

NiNi bqqaa ≤∆∆ LL 11     (18) 

 
If we replace q∆  by its value in the subspace, we get 

 
[ ] ( ) iiNi buuaa ≤+ 22111 UΔUΔ  L   (19) 

 
Let 
 

[ ] 111 U iNii aaau L=   (20) 

 
[ ] 212 U iNii aaau L=   (21) 

 
The projected constraints on the bypassing plane are written as 
 

ii bu ≤∆TA   (22) 

 
with 
 

[ ]Tiii auau 21A =   (23) 

 

[ ]Tuuu 21 ∆∆=∆   (24) 
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Figure. 18. Boundary following result 
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Figure 19. Constraint switching 
 
In order to escape from deadlocks, we follow the projected constraints corre-
sponding to the obstacles blocking the robot. To do so, we use the Boundary 
following method described in the next section. 
 
The boundary following Algorithm 
This method uses the distance function defined as: 
 

( ) goalqqq −=V   (25) 

 
which is the distance from the current position of the robot to the goal posi-
tion. The value of the distance function is strictly decreasing when the robot is 
evolving towards its goal using the local planner. When a deadlock is detected, 
we define 

goallocklock qqd −=  as the distance function in the deadlock configura-
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tion. While the robot is going around the obstacles using the boundary follow-
ing method, the distance function, V(q), is continuously computed and com-
pared to lockd . When the value of the distance function is lower than lockd , the 

robot has found a point over the C obstacle boundary that is closer to the goal 
than the deadlock point. At this moment, the robot quits the boundary follow-
ing method and continues to move towards the goal using the local planner. 
The vector of the followed constraint is named lockA . It corresponds to the vec-

tor of the projected constraint blocking the robot. The boundary following 
method can be stated as follows: 
 
 

1. Initiate the parameters lockA  and lockd  

2. Evaluate the distance function. If it is less than lockd  then quit the bound-

ary following method and resume the local planner 
3. Find  and update the followed constraint lockA  

4. Find the vertex enabling the robot to go around the obstacle 
5. Move the robot and go to step 2 
6. Fig. 18 shows the followed vertex u∆ . It is the point on the constraint 

lockA  in the direction of S and it satisfies all the projected constraints. 

 
[ ]12S locklock auau−=   (26) 

 
where  
 

[ ]Tlocklocklock auau 21A =   (27) 

 
At each step the algorithm tracks the evolution of the followed constraint 
among the set of the projected constraints. The tracked constraint is the one 
maximizing the dot product with lockA . In certain cases the resultant vertex u∆  

is null when there is another projected constraint blocking the robot (Fig. 19). 
This is the case of point B in Fig. 20. In this case, the robot switches the fol-
lowed constraint. It uses the blocking constraint to escape from the deadlock. 
Fig. 20 shows the case of a point robot moving from point S to point goalq . The 

robot moves from point S to point 1lockq  using the local planner. 
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Figure 20. An illustrating example 

 

The point 1lockq  corresponds to a deadlock position where the robot can no 

longer move towards the obstacle while respecting the security distance, sd , 

from the obstacle. This point corresponds also to a local minimum of the dis-
tance function, ( ) 1lockdq =V . At this point, the robot starts to follow the bound-

ary of the blocking obstacle and the distance function ( )qV  is continuously 

compared to 1lockd . In point B there is another obstacle preventing the robot 

from following the first one. In that case, the boundary following module 
changes the path of the robot to follow the new obstacle. In point C the dis-
tance to the goal has decreased and becomes equal to 1lockd , which means that 

the robot bypassed the obstacle and the local planner is resumed. When reach-
ing point 2lockq ,  a second deadlock position occurs. Therefore, the boundary 

following module is activated again until point D is reached, which corre-
sponds to a distance from the goal equal to 2lockd . At this point the local 

method is resumed to drive the robot to its goal position. 
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Figure 21. Results using two 5-DoF robots  
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5.3 Simulation and results 

In order to evaluate the efficiency of the method, we present several examples. 
All the simulations have been performed on SMAR (Zeghloul et al., 1997). This 
method was added to the simulation module. All the following examples were 
simulated on a Pentium IV. Path planning was performed in real time and did 
not slow down the motion of the robot compared to the case without obstacles. 
The first example is made of two 5-DoF robots, where each one is taking an ob-
ject from an initial position to a final one (Fig. 21). The two robots come closer 
to each other and they have to avoid collision.  
Frames 4, 5 and 6 show the two robots following the boundary of each other 
by keeping a security distance. This task would not be possible if we used only 
the local planner, because it would be stuck as soon as two faces of the two ob-
jects become parallel, which happens in Frame 3.  
Fig. 22 shows the results using three PUMA robots. Each one of the three ro-
bots considers the two other robots as moving obstacles. Each robot moves to-
wards its goal, once a deadlock position is detected, the robot launches the 
boundary following method. Until Frame 3 the local planner is active for the 
three robots. As soon as the robots get close to each other the boundary follow-
ing module becomes active (Frame 4). 
When each robot finds a clear way to the goal the local planner takes over 
(Frame 13) to drive each robot to its final position.  
In these simulations, robots anticipate the blocking positions. If the value of 
the joint velocity given by the local method is less than 30% of the maximum 
joint velocity, the robot starts the boundary following method. Elsewhere, the 
boundary following method is stopped and local method is resumed when the 
distance function is less then 0.8 lockd . These values are found by performing 

some preliminary simulations. Anticipating the deadlock position makes the 
resultant trajectories smoother, as the robot does not wait to be stopped by the 
deadlock position in order to begin the boundary following method. 
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Figure 22. Results using three PUMA robots 
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6. Conclusion 

In this paper, we presented two methods of free path planning. The first one is 
based on lazy grid methods. It searches for a path without using a heuristic 
function. This method reduces the gap between classic grid methods where all 
the grid cells must be computed before searching for a path, and lazy grid 
methods where the grid is computed while searching for the path. The pro-
posed planner is very general and is guaranteed to find a path, if one exists, at 
a given resolution. However, this algorithm depends on the resolution of the 
grid. The higher this resolution is, the closer the robot can squeeze between 
obstacles. This method reduces the number of computed cells and gives the 
best direction to go around a C obstacle. It can be combined with quasi-
random methods and it replaces the A* searching module, where quasi-
random sampling of the CSpace appears to offer performance improvements 
in path planning, see for instance (Branicky et al., 2001).  
The second part of this work was concerned with a novel method for path 
planning suitable for dynamic environments and multi-DoF robots. This 
method is a combination of the classical local method and the boundary fol-
lowing method needed to get the robot out from deadlock positions in which 
the local method gets trapped. The local path planner is based on non-collision 
constraints, which consists of an optimization process under linear non-
collision constraints. When a deadlock, corresponding to a local minimum for 
the local method, is detected, a boundary following method is launched. A 
similar method can be found for the 2D cases, and we show in this work how 
it can be applied to the case of multi-DoF robots. When the robot is stuck in a 
deadlock position, we define the direction of motion of the robot, in the con-
figuration space, as the intersection of a hyperplane, called TCplane, a plane 
defined by the vector to its goal and a vector to its joint limits. This direction of 
motion allows the robot to avoid the obstacle by following its boundary until it 
finds a path to the goal, which does not interfere with the obstacle. Starting 
from this point the classical local planner takes over to drive the robot to its 
goal position. This method is fast and easy to implement, it is also suitable for 
several cooperating robots evolving in dynamic environments. 
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