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1. Introduction 

N-linked glycosylation is of paramount importance for the biopharmaceutical sector given 

that approximately 40% of all approved therapeutic proteins and eight of the top ten selling 

biologics of 2010 contain N-linked oligosaccharides [1, 2]. With specific cell productivities in 

biotechnological processes estimated to reach their theoretical maximum in the near future, 

and despite anticipated further increases in culture density, the scope for improvement of 

biotherapeutics is limited in terms of production volume [3]. As a result there is an increased 

focus on biotherapeutic efficacy in the development and production stages. Modification of 

the glycoform is a target for drug design as it can enhance efficacy, mode of action and half-

life significantly [4]. Simultaneously, N-linked glycosylation plays a key role in the safety of 

biotherapeutics. Certain N-linked oligosaccharides bound to therapeutic proteins have been 

found to trigger undesired effects in patients [5-7] thus deeming them a safety concern 

during process development [8].These elements make N-linked glycosylation a key target 

for quality control both from the therapeutic efficacy and safety standpoints. A well-defined 

product may have consistent protein backbones but still a glycoform distribution of more 

than a hundred detectable isoforms [9]. Narrowing and targeting the glycan profile is 

expected to improve efficacy and safety significantly. An example of the variety of reported 

glycoforms found on the crystallisable fragment (Fc) of monoclonal antibodies (mAbs) is 

presented in panel D of Figure 1. It is worth noting that single monosaccharides (e.g. core 

Fucose) on the complex glycans present on the crystallisable fragment (Fc) of monoclonal 

antibodies (mAbs) may alter the therapeutic efficacy of these products.  
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Figure 1. Classification of N-linked oligosaccharides. Panels A, B and C present a high-mannose, a 

hybrid and a complex tetra-antennary oligosaccharide, respectively. Highlighted by a box is the 

Man3GlcNAc2 core structure present in all N-linked glycans [10]. Panel D shows the most common 

glycans observed on the Fc of mAbs [11-13]. 

1.1. Effect of glycomic profile on therapeutic efficacy  

1.1.1. Interferon-β  

In 2001, when the human genome was fully sequenced, it was found that it contains fewer 

genes than expected. However, this might be compensated by the diversity found at the 

level of protein architecture, structure, transcription patterns, and posttranslational 

modifications of which glycosylation is the most complex [14]. Glycan moieties have a very 

diverse number of roles in biological systems, making them relevant for biotherapeutics. 

Starting with the co-translational attachment of glycan structures, it was suggested by 

Petrescu et al. that glycan structures act as nucleation sites for remote aromatic parts in an 

amino acid sequence in order to begin the folding process [15]. Although glycans play an 

important role in local as well as global folding of proteins it has to be pointed out that they 

are often not essential to maintain structure [16-18], as is the case for Interferon-β (IFN-β), 

for example. This naturally occurring glycoprotein is produced in the human body in 

response to viral infections or other biological threats [19]. Human IFN-β contains a 

conserved Asn-80 glycan attachment site and as a biotherapeutic, is marketed for the 

treatment of multiple sclerosis. 
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There are currently four IFN-β products marketed under the names of AVONEX®, Rebif®, 

Betaseron® and Extavia®. Crucially, the licensed drugs AVONEX and Rebif® are produced 

in Chinese hamster ovary (CHO)  cells and are therefore fully glycosylated products while 

Betaseron® and Extavia® are produced in Escherichia coli resulting in an aglycosylated 

pharmaceutical [20]. AVONEX® and Betaseron® were compared side by side and it was 

found that the glycosylated form had a 10-fold increased anti-viral assay activity as 

compared to the E. coli product [21]. After deglycosylation the AVONEX® product 

precipitated due to formation of disulfide bonds between single molecules [22]. Further 

investigation showed that even when enzymatically deglycosylated, AVONEX® still 

showed increased heat stability (7°C higher Tm) and anti-viral assay activity (3-fold larger) 

when compared to Betaseron®, which leads to the conclusion that the glycan structure plays 

an important role in the folding of the protein.  

1.1.2. Monoclonal antibodies 

Monoclonal antibodies are currently the highest selling biotechnology products and by 2016 

are predicted to make up five of the top ten selling pharmaceutical products worldwide [23]. 

Currently, there are over 30 FDA approved mAbs which are prescribed for the treatment of 

cancer and auto-immune disorders [24]. With a total of 205 reported antibodies under trial 

[25], the total number of approved antibody therapeutics is expected to increase 

significantly in the foreseeable future. The concept of a “magic bullet” that would go 

directly to the intended target epitope, yet remain harmless in healthy tissue was introduced 

in the late 19th century by Paul Ehrlich [26]. Key elements for realising Ehrlich’s vision were 

the development of hybridoma cells by Köhler and Milstein to produce antibodies of 

predefined specificity [27] and the use of phage display libraries for antibody humanization by 

Greg Winter and Richard Lerner [28, 29]. Antibodies are generally described as symmetric 

structures which, in humans, are composed by a pair of heavy chains and an additional pair of 

light-chains covalently bound together by disulphide bridges. There are five heavy chain 

isotypes (IgA, IgG, IgE, IgG and IgM) and two light chain isotypes. The spatial arrangement of 

the four peptide chains results in the Y-shaped structure depicted in 2. 

Both the heavy and light chains contain hypervariable segments also referred to as 

complementary determining regions (CDR). While the CDR is the antigen binding site, 

located in the antigen binding (Fab) region and responsible for antigen binding, the constant 

Fc region is responsible for effector functions such as activating the complement cascade or 

binding to Fc receptors. 80% of all antibodies found in the blood plasma are of the IgG 

isotype (with a molecular weight of approximately 150kDa) and until today only IgG-type 

mAb products have been licensed as biopharmaceuticals [1]. As a consequence only the IgG 

isotype of antibodies and their biological mechanisms will be discussed. Two fundamental 

modes of biological action of IgG class antibodies are discussed below: 

Complement-dependent cellular cytotoxicity (CDC): In this mechanism the antibody binds with 

high specificity through its CDR to a target cell, and through binding to the Fc region, 

recruits the C1q component of the complement cascade. The end result of the cascade is the 
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formation of the membrane attack complex, which disrupts the target cell’s membrane and 

eventually leads it to lysis. 

 

Figure 2. Diagram of immunoglobulin γ (IgG). The structural domains, disulphide bonds and peptide 

chain orientation are all shown. The antigen-binding (Fab) and the crystallisable (Fc) fragments are also 

shown along with the consensus Asn-297 glycosylation site on the Cγ2 domains of the heavy chains [1]. 

 

Figure 3. Main effector functions of IgG antibodies. 

Antibody-dependent cell-mediated cytotoxicity (ADCC): In this mechanism the antibody Fab 

binds to a target cell, and through the Fc, binds to Fcγ receptors on the surface of natural 

killer cells (FcγRIII) and neutrophils (FcγII-A). Through this antibody-mediated interaction, 

the effector cells release cytokines and cytotoxic granules, which attack the target cell and 

take it towards apoptosis. 
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The biological in vivo mechanisms that are triggered by antibodies are highly dependent on 

the glycan moiety on the Cγ2 domains. It has been shown that the Asn297 glycans directly 

impact the three-dimensional structure of the Fc [30], thus greatly influencing the affinity 

FcγRs have for the IgG Fc [31, 32]. The close proximity of both Cγ2 domains in the Fc 

generates considerable steric hindrance, which limits the oligosaccharide structures found 

there to the complex bi-antennary structures shown in panel D of Figure 1. Depending on 

the host cell line, the potential carbohydrate residues will have specific features such as bi-

secting GlcNAc residues or core fucosylation. Studies into the effect of bisecting structures 

present in antibody glycan moieties have shown that bisecting GlcNAc sugar residues lead 

to increased ADCC [33]. However, the presence (or absence) of other monosaccharides has 

been shown to have a more profound effect on in vivo modes of action. Previous reports 

show that absence of core fucose can increase ADCC up to 50-fold [34, 35]. This finding has 

been translated into the development of third generation mAbs, which are currently 

undergoing many promising clinical trials [36]. On the other hand, galactose terminating 

structures in the Fc fragment of antibodies, (the most abundant terminating saccharides on 

the Fc glycans of human polyclonal antibodies [37])  increase the affinity of the IgG Fc for 

the C1q protein substantially. Their removal results in decreased complement activation 

[31]. Sialic acid terminating glycan moieties can also strongly modulate the efficacy of mAbs. 

Interestingly, only a small proportion of human IgG is naturally sialylated [38], which can 

be directly related to the spatial constraints in the Cγ2 domain of IgG antibodies [39]. Sialic 

acid can be found in either a α2,3- or α2,6-linkage to the galactose moieties of IgGs [40], and 

although not very abundant, these residues are crucial for immune response modulation 

(anti-inflammatory activity) in vivo, where the α2,6-linkage is preferred over the α2,3 [41]. In 

fact, anti-inflammatory activity has been abrogated after removal of IgGs containing α2,6-

linked sialic acid on their Fc glycan moiety. Similarly, a 10-fold enrichment in sialic acid 

containing IgGs induced anti-inflammatory response at 10-fold reduced doses. In contrast, 

IgG with α2,3-linked sialic acid terminating glycan structures failed to induce anti-

inflammatory response even at 4-fold higher doses, thus demonstrating the specificity of in 

vivo bioactivity not only to structural but also conformational differences in glycan moieties. 

In addition to modulating the in vivo mechanisms, glycan moieties can also have an effect on 

pharmacokinetics of biotherapeutic antibodies. It has also been reported that high mannose 

structures (oligosaccharides with five mannose residues or more) will increase plasma 

clearance and thus, decrease in vivo half-life with a significant negative impact on drug 

efficacy [42]. 

1.1.3. Fab region glycans 

It is well established that the glycan moieties in the Fc region of therapeutic antibodies have 

considerable effects on in vivo mechanism and pharmacokinetics. However, the Fab region 

can also be used to enhance characteristics of therapeutic antibodies. It has been estimated 

that between 20-30% of antibodies also carry a glycan structure in the Fab region, where a 

potential glycosylation site can be found on both the heavy as well as the light chain [43, 44]. 

Although the role of variable region carbohydrates is not clear, it is suggested that glycan 
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moieties may influence antigen affinity, specificity, antibody solubility and stability hence, 

limiting aggregation [45, 46]. A further biological role of Fab region glycans is believed to be 

in vivo half-life modulation. This has been tested by injecting mice with humanized IgG with 

a variety of glycan moieties at the Asn56 position of the heavy chain variable region [47]. 

The results indicated that while sialic acid and galactose terminating glycan moieties had 

very limited effect on clearance, exposed GlcNAc residues showed slightly faster clearance 

rates. It was proposed that the latter are recognized by Man/GlcNAc receptors and binding 

interactions may be sufficiently strong to allow for greater clearance. It was later determined 

that half-life was dependent on the tissue where the antibodies accumulated based on their 

Fab region glycans, thus providing further scope for improvement in targeting of mAb 

biotherapeutics. On the other hand, Fab glycosylation has also been reported to produce 

negative effects in patients. A study has shown that α-1,3 galactose residues on the Fab 

glycans of the commercial antibody Cetuximab generated anti-α-1,3 galactose IgE-induced 

anaphylaxis in patients treated with this drug [5]. This effect highlights the relevance of Fab 

glycans for mAb safety. It has to be noted at this point that the glycoform on the Fab region 

can have a much more complex structure than the equivalent Fc glycoform including 

increased sialylation and occurrence of tri-antennary structures [43]. Since the glycan 

tripeptide sequences will vary within a population of antibodies and its location within the 

sequence can change it may not come as a surprise that different glycoforms will arise at 

different positions due to changing accessibility [48]. It was shown that shifting the 

tripeptide sequence in the variable region of a mAb may change the glycan moiety from a 

high Man structure to a complex structure. This would suggest that while the glycan 

precursor is added co-translationally to the protein backbone, the local conformation around 

the glycan may not allow for further enzymatic processing of the attached high Man 

structure in the Golgi apparatus. Furthermore changing the position of glycan structure 

within the polypeptide chain can impact antigen affinity significantly by either contributing 

to it or by blocking it altogether. Thus, glycan engineering of antibody variable regions 

represents a strategy towards improving antigen affinity, antibody targeting as well as 

extending half-life.  

1.1.4. Erythropoietin 

A further glycoprotein of biopharmaceutical importance is Erythropoietin (EPO), a hormone 

that binds to the receptors of red blood cell precursors in the bone marrow leading to their 

survival, proliferation and differentiation, thus increasing the red blood cell count [49-51]. 

EPO is used in the treatment of anaemia associated with a number of disease states such as 

chronic renal failure, cancer and HIV infection [52-55]. EPO has a total of four glycan 

attachment sites, three N-linked sites at amino acid positions 24, 38 and 83,and one O-linked 

site at amino acid position 126 [56, 57]. The four glycan moieties have been estimated to 

contribute approximately 40% to the total molecular mass of EPO and probably cover much 

of the surface of the molecule [58]. The hypothesis of full surface exposure is further 

supported by an analysis of the glycan moieties, which revealed predominantly fucosylated 
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and tetraantennary complex glycans at the N-linked glycosylation sites [59] and, as such, 

suggest surface exposure during enzymatic processing. The glycan structures have been 

shown to play an important role in biological activity. For example, it is known that higher 

glycan antennarity leads to an increase in EPO’s in vivo activity [60]. Interestingly, it has 

been demonstrated that all three N-linked glycan structures are necessary for biological 

activity in vivo while the O-linked glycan structure does not appear to be required for in vivo 

activity [61]. For recombinant human EPO, it has been shown that the N-linked glycan 

moieties are required for product secretion by the cell as well as ensuring solubility [61, 62]. 

1.2. Desired characteristics dependent on application 

Erythropoietin is also a very good example to demonstrate how desired safety and efficacy 

characteristics can be enhanced through glycan engineering of existing biotherapeutics. The 

plasma clearance of EPO is regulated by sialic acid containing carbohydrates [58, 63], where 

an increase in sialic acid moieties is known to increase glycoprotein half-life and would also 

explain why higher antennarity is linked to increased plasma half-life. An investigation into 

EPO glycan structures and biological activity showed that desialylated structures showed 

increased in vitro activity but a much reduced in vivo activity, which is a consequence of 

increased EPO clearance by asialoglycoprotein receptors in the liver [64, 65]. In order to 

increase protein half-life, increase drug efficacy and thus, decrease dosing rates in patients, a 

glyco-engineered darbepoetin was created [58]. Darbepoetin features two additional N-

linked glycosylation sites that were introduced by changing five amino acid residues 

through site-directed mutagenesis. The resulting biopharmaceutical commercially marketed 

as Aranesp® showed three-fold lower plasma clearance rate and results in increased in vivo 

potency over epoetin with three N-linked glycan sites only [66]. 

2. Current methodology and future application of quality by design 

initiative 

Drug development begins with the discovery of molecules that have shown the biochemical 

potential to treat illnesses. Based on manufacturability and potential profitability, drug 

candidates are then selected for optimization and, eventually, for preclinical and clinical 

trials. To ensure that sufficient material is available for the different phases, manufacturing 

is concurrently scaled up during this stage in process development. Also throughout these 

stages, all the data regarding drug safety, efficacy and manufacture is reviewed for approval 

by the corresponding regulatory agencies. Approval requires that the drug product is 

produced consistently and that it is safe and efficacious for its indication. Despite decades of 

advances in drug product manufacturing, pharmaceutical process development and 

approval is still extremely lengthy, highly expensive and uncertain [67]. 

In order to reduce their losses, manufacturers have traditionally relied on the so-called 

quality by testing (QbT) approach for drug development and approval [68]. In QbT, product 

quality attributes (the ranges for drug substance properties that yield acceptable safety and 
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efficacy) are linked with a specific manufacturing process and its corresponding set of 

inputs (raw materials and process parameters) during clinical phases of development. The 

process inputs that empirically show to yield acceptable product quality are defined and are 

often maintained unchanged after phase II clinical trials so that manufacturers avoid costs 

associated with additional testing for regulatory compliance [69]. During manufacturing, the 

process inputs are controlled to remain at their pre-defined set points, and at the end of each 

batch, the product is tested for compliance with the desired quality [68-71]. This black box 

approach does not require mechanistic knowledge that relates process inputs with product 

quality, and because of this, the QbT approach uncouples product end quality from the 

manufacturing process. The main drawbacks of QbT are [10, 69, 72]: 

 Development and approval of pharmaceutical processes under QbT has proven to be 

extremely time-consuming (between 7 and 10 years [73, 74]) and very expensive 

(US$1.2 to 1.8 billion per approved drug when the risk of failure is included [67, 75]). 

This could be attributed, in part, to limited understanding of the relationship between 

product quality characteristics, therapeutic mechanisms and the effect process inputs 

have on quality. 

 Process control is not established by mechanistic links between inputs and desired 

product quality. Due to this, the process is susceptible to generate off-spec product, and 

when this occurs, identifying the source(s) of failure is difficult. 

 The range of process conditions approved under QbT is narrow and changes to process 

conditions outside this range require additional approval, which eventually translates 

into further delays and expense. This discourages pharmaceutical companies from 

modifying or optimizing current processes and implementing innovative ones. 

 Overall, processes developed and approved under QbT generate a limited amount of 

knowledge because mechanistic relations between inputs and outputs are not apparent. 

This greatly restricts transferability of the knowledge gained from one process/product 

to the next. Moreover, the lack of generated mechanistic information increases the 

likelihood suboptimal process performance. 

Therapeutic proteins currently undergo the same QbT development and approval process as 

their small molecule counterparts and suffer the same caveats. In the QbT context, 

bioprocess inputs are empirically defined so that the quality properties (e.g. aggregation, 

folding, methylation and glycosylation) of the protein lie within ranges that yield acceptable 

safety and therapeutic efficacy. As occurs with small molecules, QbT disjoins therapeutic 

protein quality from the bioprocess. This has led to inadequate understanding of the 

relationship between process inputs and product quality and has greatly limited the 

potential for bioprocess optimization. 

The inefficiencies associated with the QbT approach along with more stringent regulatory 

requirements have led to manufacturers investing more in drug discovery than process 

understanding and optimization, which in turn, has translated into a decrease in the cost-

effectiveness, number and quality of innovative drugs and pharmaceutical manufacturing 

processes [67, 69]. In order to overcome these limitations, regulators and industry specialists 



 
Application of Quality by Design Paradigm to the Manufacture of Protein Therapeutics 361 

have proposed the implementation of Quality by Design (QbD) concepts to the manufacture 

of all new drugs, including therapeutic proteins, in the development pipeline [68, 72, 76]. 

2.1. Quality by design initiative in pharmaceuticals and how it is expected to 

affect biopharmaceuticals in the future 

Pharmaceutical QbD is a conceptual framework for the development and approval of 

pharmaceutical manufacturing processes that aims to build quality (particularly with 

respect to safety and therapeutic efficacy) into the product at every stage of process 

development [10, 71, 72]. Application of QbD principles to pharmaceutical process 

development is outlined in the Process Analytical Technology (PAT) guideline “PAT - A 

Framework for Innovative Pharmaceutical Manufacturing and Quality Assurance” [77] by 

the US Federal Drug Administration (USFDA) and in the guidance documents “ICH Q8 

Pharmaceutical Development” [71], “ICH Q9 Quality Risk Management” [78] and “ICH Q10 

Pharmaceutical Quality Systems” [12] from the International Conference on Harmonization 

(ICH), which is an association constituted by the USFDA, the European Medicines Agency 

(EMA), the Pharmaceuticals and Medical Devices Agency of Japan (PMDA) and several 

experts from the pharmaceutical industry. 

Implementation of QbD to pharmaceutical manufacturing processes is an information-

driven process where all available knowledge on the drug product including, but not 

limited to, its therapeutic mechanisms, its process of manufacture and potential sources of 

variability is used to define a range of manufacturing conditions that will ultimately ensure 

product safety and efficacy when administered to patients. More specifically, the ICH 

guidelines [12, 71, 78] define the following requirements for the implementation of QbD to 

pharmaceutical processes: 

2.1.1. Definition of the quality target product profile (QTPP) 

The QTPP is defined as the set of quality characteristics that would ideally be achieved to 

ensure that the drug product is safe and efficacious. Considerations to define the QTPP 

include the route of administration, dosage form, delivery systems, dosage strength, 

sterility, purity and stability [71]. 

2.1.2. Identification of the critical quality attributes (CQAs) of the drug product 

A CQA is defined in ICH Q8 as “a physical, chemical, biological, or microbiological property 

or characteristic that should be within an appropriate limit, range, or distribution to ensure the 

desired product quality” [71]. As the definition implies, identification of CQAs requires 

thorough physicochemical and biological characterization of the drug product and in-depth 

knowledge on which of its properties have a higher influence on its safety and efficacy. 

2.1.3. Identification of process inputs that affect product CQAs 

Once CQAs are identified, it is necessary to determine not only which process inputs (raw 

materials and process conditions) impact CQAs, but also how these inputs interact to affect 
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the drug product’s CQAs. We must note that much of the required knowledge may not be 

available for certain processes (particularly novel ones) and should be established through 

the combination of prior knowledge, mechanistic modelling, experimentation and finally, a 

risk assessment so that the influence of material attributes and process conditions on CQAs 

is ranked according to likelihood and extent of impact. It is worth mentioning that, under 

QbD, there is special emphasis on design of experiments (DoE) so that the interaction 

between individual process inputs and their impact on product CQAs is represented. 

Crucially, all elements involved in this section directly couple manufacturing process 

conditions with the CQAs of the drug product in a robust, systematic and information-

driven manner. 

2.1.4. Selection of the appropriate manufacturing process 

With the ranking obtained through the risk assessment mentioned above, a multi-

dimensional design space of allowable process input values (and combination thereof) is 

defined. ICH Q8 defines the design space as “an established multidimensional combination 

and interaction of material attributes and/or process parameters demonstrated to provide 

assurance of quality” [71]. Using the design space as a guide, the manufacturing process 

which is most capable of maintaining process conditions within the ranges that ensure 

product quality is defined. The selected manufacturing process must be robust such that it 

minimizes the risk of process conditions falling outside the design space, thus increasing the 

likelihood of the CQAs being within the range that ensures safety and efficacy. 

2.1.5. Definition of a control strategy 

With the appropriate manufacturing process in place, a strategy to mitigate the risk of 

materials and process conditions falling outside acceptable ranges must be established. By 

applying this risk management strategy, raw material specifications are monitored and 

controlled such that no impact is observed on the drug product’s CQAs. In addition, the 

process parameters that influence the CQAs are controlled (ideally through online 

measurements and tight control systems) at every stage of the manufacturing process so that 

the desired product quality is met. 

Conceptually underlying all the elements that constitute QbD implementation is process 

analytical technology (PAT). PAT is defined by the USFDA and the ICH as “a system for 

designing, analyzing and controlling manufacturing through timely measurements of CQAs 

and performance attributes of raw and in-process materials and processes with the goal of 

ensuring final product quality” [77]. The elements of PAT concerning process design and 

control have been presented in the description of QbD above. However, more discussion 

must be provided on the “timely measurement of CQAs and performance attributes” [77] 

throughout the implementation of QbD to manufacturing process development. It is clear 

that, from very early stages of QbD-driven process development, methods for accurately 

identifying and measuring the physical, chemical and biological properties of drug products 

are essential for defining QTPPs and CQAs. Further along in the implementation of QbD, it 
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is also necessary to accurately measure the material attributes and process parameters that 

affect product CQAs. Finally, and as the definition of PAT states, once the manufacturing 

process is selected, appropriate analytical technologies are necessary to monitor it is 

necessary to measure process parameters in a timely fashion (ideally online) so that the 

generated data can be used for process control. From this, it is clear that analytical methods 

constitute a core element throughout process development under the QbD scope [79]. 

Adoption of the QbD in pharmaceutical process development aims to address all of the 

limitations described above. The three major regulatory bodies (USFDA, EMA and PMDA) 

are encouraging implementation of the QbD approach for the development of all new drugs 

in the pipeline [68, 70, 72, 80]. QbD is expected to reduce process approval time and costs, 

reduce regulatory intervention and encourage optimization and innovation by building 

processes around the mechanistic relationships between inputs and product quality. 

Because these relationships should be based on sound science and engineering principles, 

process outputs are more predictable and require less regulation which, in turn, would 

considerably reduce approval time and development costs. In addition, the more ample 

design space created through QbD would allow inputs to vary more without the need for 

additional approval. Predictability would also translate into much tighter control systems 

that would dramatically reduce the likelihood of generating product with unacceptable 

quality. Finally, the wealth of knowledge generated by the QbD approach along with the 

broader design space and more flexible regulatory approval characteristics would 

encourage process optimization and could potentially contribute to the development of 

novel processes as well as the discovery and design of next generation drugs. 

Since the guidelines for QbD were first drafted, the framework has been implemented in the 

field of small-molecule therapeutics (SMTs) with relative ease. In contrast, the 

implementation of QbD to protein therapeutics (PTs) has met more resistance. This is likely 

due to the fact that the physical and chemical processes underlying the manufacture of 

SMTs is better understood and the mechanisms relating process inputs with SMT quality are 

easier to define. Conversely, the mechanisms by which living organisms produce PTs are 

less well understood, and the structural complexity of PTs makes their isolation, separation, 

purification and overall quality control much more challenging. Despite this, the regulatory 

agencies and several authors believe that sufficient knowledge is available or can be gained 

through current experimental and modelling methodologies to elucidate mechanistic 

relations between bioprocesses and PT quality, thus allowing for implementation of QbD 

principles to the development of therapeutic protein manufacturing processes in the near 

future [68, 72]. 

Implementation of the QbD paradigm in biopharma should increase knowledge on the 

therapeutic mechanisms of biotherapeutics considerably. This could lead to the 

improvement of previously existing products and may contribute to the discovery and 

development of new biologics. It will also generate a rich and systematized knowledge base 

relating manufacturing conditions with drug products which may lead to more robust 

process control, process optimization and, potentially, development of novel and efficient 
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platforms for the manufacture of biological therapeutics. Implied in this is the considerable 

reduction in approval times which would heavily reduce costs of product and process 

development and eventually translate into lower costs for healthcare providers and patients. 

2.2. Other critical quality attributes of protein-based therapeutics  

Several drug characteristics other than glycosylation are considered critical quality 

attributes due to their impact on biological activity, pharmacokinetics or 

pharmacodynamics, and safety in terms of immunogenicity and toxicity. These can arise 

from variations in protein structure or from the presence of other adventitious molecules in 

the product formulation. Protein aggregation is a common protein-related CQA, which can 

occur at any stage of protein production or processing due to the protein structure, which 

may leave hydrophilic patches exposed, its concentration in the preparation or the process 

conditions. Temperature and pH extremes or physical stress can increase a protein’s 

propensity to aggregate. Although protein aggregation is known to affect efficacy, the main 

concern is the immunogenicity of aggregates [81, 82]. Protein aggregation may also be the 

result of modification reactions, such as oxidation, which is caused by increased levels of 

reactive oxygen species. This can additionally affect function, as, for example, in the case of 

antibodies where oxidation can alter the Fc structure and thus reduce its binding affinity 

[83]. Conformational changes can also occur at refolding steps of bacterial production 

platforms and are potentially immunogenic.  

Other possible structural changes include protein fragmentation, due to proteolytic enzymes 

present in the cell culture supernatant or in human plasma, extreme pH or temperature 

conditions, or because of chemical disruption of peptide bonds, C- and N-terminal 

truncation and deamidation. The effect of fragmentation is product-dependent, however it is 

known that it can impact biological activity, serum half life and immunogenicity due to the 

generation of novel epitopes [84, 85], whereas the remaining aforementioned changes do not 

appear to adversely affect product potency or safety [86-89], with the exception of 

deamidation within a complimentarity-determining region, which can affect biological 

activity [86]. Finally, glycation is another post-translational modification that involves the 

chemical addition of a monosaccharide on the side chain of a lysine residue. It occurs when 

a protein is incubated in the presence of reducing sugars, especially fructose and galactose 

and to a lesser extent glucose, in cell culture [90], and can affect its biological activity [91].  

In addition to the product-related critical quality attributes described above, the host cell 

line, raw materials and process operation can introduce impurities or contaminants with 

adverse effects on the formulation’s suitability for in vivo use. Host cell proteins are released 

mostly at later stages of the cell culture due to cell lysis and can be immunogenic [92], 

particularly when originating from microbial systems [93]. Additionally, host cell DNA 

poses considerable risk due to its potential integration and the possibility of a resulting 

carcinogenic effect. For this reason, the host cell DNA level cannot exceed 10ng per dose 

[94]. Impurities and contaminants can further be introduced from raw materials and lack of 

aseptic conditions. The most significant of these in terms of the risk they pose to product 
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integrity are viruses, microbial cells and their products, such as endotoxins, which are 

highly toxic to humans [95]. Due to the severity of the effects of human injection with such 

contaminants, sufficient clearance must be demonstrated to regulatory authorities for 

approval to be gained. A thorough review of the above critical quality attributes and their 

effects on product safety and efficacy is presented in [96]. 

2.3. Challenges in implementing QbD in biopharma  

Implementation of QbD to bioprocesses first requires thorough characterization of the drug 

substance (i.e. the therapeutic protein) in order to determine the attributes that define its 

safety and efficacy. Drug substance characterization, which in many cases is a challenging 

task, is usually done with liquid chromatography peptide mapping combined with mass 

spectrometry for amino acid sequencing [97-99], x-ray crystallography for three dimensional 

structure and different analytical chromatographic or electrophoretic techniques coupled to 

mass spectrometry for the analysis of N and O glycans which have been extensively 

reviewed by del Val et al [10]. The propensity of protein aggregation and fragmentation is 

usually measured through size exclusion chromatography [100-102]. By coupling these 

techniques to non-clinical (in vitro assays), preclinical and clinical trials, the CQAs for 

protein therapeutics are defined. However, despite the available methods for characterizing 

proteins and their CQAs, these are not always deemed sufficient to ensure identity. This is 

evidenced by current US and European legislation concerning Biosimilar products. Both the 

USFDA and the EMA have required phase I and phase III clinical trials in order to establish 

that a follow-on product is similar to its brand-named counterpart even when they have 

been shown to have equivalent CQA attributes according to the available analytical 

methods [103]. Lack of confidence in the current analytical techniques for drug substance 

characterization is a critical challenge that must be overcome for appropriate 

implementation of QbD to biopharmaceutical processes. Development of additional 

characterization methods are required to compare the product CQAs with the QTPPs 

defined during the early stages of process development. Furthermore, development of 

additional non-clinical studies for determining product safety and efficacy is required. In 

vitro assays for product safety and efficacy would dramatically reduce clinical trial 

associated costs and streamline data acquisition for determination of product CQAs. 

The next step under the QbD scope is to define the manufacturing process, the process 

inputs that affect product CQAs and the mechanisms by which this occurs. In contrast to 

their small-molecule counterparts which are largely produced in vitro, therapeutic proteins 

are produced by living organisms. Cellular metabolism is extremely complex and several 

mechanisms by which cells produce therapeutic proteins are yet to be fully described. 

Moreover, very little information that quantitatively relates process conditions with cell 

metabolism, protein synthesis and product CQAs is available. According to QbD guidelines, 

quantitative mechanistic models are ideal tools for relating process inputs with product 

CQAs. The challenge of relating process inputs with product CQAs may be overcome by 

additional data generation through an iterative process of DoE-aided experimentation and 

mechanistic modelling. Through this, sufficient data would be generated such that the 
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effects of process inputs on product CQAs are used to define an enhanced design space that 

could lead to higher assurance of product safety and efficacy. 

After defining the design space, a control strategy must be defined so that process inputs are 

maintained within the range that ensures product quality. A crucial challenge in defining 

the control strategy is the ability to measure the process inputs that influence product CQAs. 

The QbD and PAT guidance documents suggest that control should be established through 

timely measurements which, ideally, should be performed online. This, again, is not trivial 

in a biological system. The interior of a bioreactor is a complex environment mainly 

composed of culture medium, cells, product and co-products of cell culture. The culture 

medium itself is a complex mixture of nutrients. Many of the common process parameters 

are readily measurable such as pO2, pCO2, temperature cell density and certain metabolite 

concentrations. However, many of the single components that influence product CQAs are 

difficult to measure in such a complex mixture. Several analytical methods that have the 

ability of tracking single components in bioreactors are currently being explored. Some of 

the most promising technologies are based on infrared spectroscopy, and have been 

reviewed recently by Landgrebe et al. [104]. Successful implementation of these techniques 

may lead to absolute online monitoring and process control. In parallel, methods to measure 

the intracellular concentration of key nutrients and metabolites online are being developed 

with promising results [105]. On the other hand, mathematical modelling efforts are being 

developed to describe complex biological processes such as N-linked glycosylation. This 

work has yielded encouraging results for bioprocess control and optimization, and could 

potentially aid in cell line development for third generation therapeutic proteins[106]. 

Almost by definition, QbD is a self-catalytic process because it relies on, and generates, a 

wealth of information. The more QbD is implemented in bioprocess development and 

approval, further understanding will be gained and fed into the development of newer 

processes which will eventually culminate in near-complete description of therapeutic 

mechanisms, drug product CQAs and therapeutic protein bioprocessing. 

3. Overview of production organisms and manufacturing environment 

The majority of approved biopharmaceuticals are produced in mammalian cell culture 

systems, since they are the sole means to deliver proteins with desired glycosylation 

patterns and thus ensure reduced immunogenicity and higher in vivo efficacy and stability 

[32, 107, 108]. However, mammalian cell culture delivers a heterogeneous mixture of glycan 

structures which do not all have the same properties. Product half-life and activity is 

therefore compromised, while higher doses are required for efficacy. 

As in April 2012, there are 77 therapeutic glycoproteins out of the total 642 drugs approved 

by the European Medicines Agency (EMA). Host systems for their production include 

mammalian cells (65 drugs) and transgenic animals (2 drugs), while several are isolated 

from the blood plasma of healthy donors (10 drugs), as depicted in Figure 4A. Therapeutic 

classes of each glycoprotein drug are also presented in Figure 4B and involve mainly: 

hereditary diseases (Haemophilia A and B, Fabry disease, Gaucher disease, and others; 29% 

of EMA approved glycoproteins),  cancer (leukemia; cancer in ascites; thyroid, stomach, 
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breast, colorectal, etc. cancers or anaemia caused by chronic cancer; 26% of EMA approved 

glycoproteins), and autoimmune disorders (rheumatoid arthritis, multiple sclerosis, Crohn’s 

disease, Lupus Erythematosus; 18%). Other therapeutic areas for which glycoprotein drugs 

are prescribed include infertility, acquired injuries/disease (tibial fractures, 

spondylolisthesis, myocardial infarction), immunosuppresants during transplantations, for 

hemostasis after surgery, for anaemia caused by chronic kidney disorders, postmenopausal 

diseases (osteoporosis) and one against the respiratory syncytial virus (containing a 

monoclonal antibody as an active substance: Synagis®). 

The drug categories of current EMA approved glycoproteins (Figure 4C), based also on the 

classification in [109] include in descending order of approved drugs: polyclonal (mostly 

human plasma derived drugs) and monoclonal antibodies (mAbs), growth factors (e.g. 

erythropoietin, stimulating factors, bone morphogenetic proteins), blood factors and 

coagulants (e.g. factors: VIII, VIIa, IX and fibrinogen & thrombin), therapeutic enzymes (e.g. 

recombinant β-glucocerebrosidase), hormones (e.g. follitropin, lutropin), fusion proteins 

(e.g. Enbrel® the extracellular ligand-binding portion of human tumor necrosis factor 

receptor p75 linked to an analog human Fc portion of human IgG1), and serpins (serine 

protease inhibitors, e.g. C1 esterase inhibitor). Other classes involve thrombolytics and 

anticoagulants (e.g. tissue plasminogen activator and protein c, respectively) and cytokines 

(e.g. interleukins and interferons).  

Two other glycoproteins (Leukoscan® and Scintinum®) have been approved by EMA,but 

are used for radionuclide imaging rather than therapeutics and thus have not been included 

in the statistics shown in Figure 4A. Furthermore, denosumab a monoclonal antibody 

produced by Amgen is approved under two brand names Prolia® (for postmenopausal 

osteoporosis) and as Xgeva® (for bone metastasis in cancer), and hence only one has been 

included in final list of approved drugs. Two more mAbs have been approved for use in 

specific EU countries but are not approved by EMA and hence have also not been included 

(Orthoclone OKT3® and Reopro®). Finally, two drugs that contain the recombinant factor 

VIII as active ingredient are produced by Bayer Pharma AG using baby hamster kidney 

(BHK) cells as host cells from an identical fermentation procedure, but since they are 

purified through slightly different downstream processes, both have been included 

separately in the statistics shown in Figure 4. Vaccines are also not included in the list of 

glycoproteins because their production mainly involves the propagation of viruses and not 

specific glycoprotein production. Moreover, all recombinant vaccines are produced in 

microbial organisms and hence do not involve glycoprotein production, but amino acid 

sequences of antigens that are not glycosylated. 

CHO (Chinese hamster ovary) cells are the dominant host cells for the production of 

glycoproteins as far as the approvals in European Union are concerned, with 47 out of the 

total 77 therapeutic EMA approved glycoprotein drugs using them as host cells. Five drugs 

produced in CHO cells are biosimilars of recombinant erythropoietin (with reference 

product being a recombinant epoetin produced from Janssen-Cilag GmbH with brand 

names Eprex® in UK and Erypo® in Germany). All aforementioned biosimilars were 

approved in 2007. Biosimilars are defined from the EMA as drugs similar to a biological 
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drug already in the market that are used to treat the same disease and within the same range 

of doses. Hybridoma cells are the second most frequently used hosts for recombinant 

glycoprotein production (12 drugs), followed by glycoproteins purified from blood plasma 

from healthy donors (10 drugs). BHK cells, along with HT-1080 cells, a human sarcoma cell 

line, with three approved drugs from each cell line are fourth. All approved drugs produced 

in BHK cells involve blood factors. Regarding HT-1080 cell line, all of the drugs produced 

from it belong to Shire pharmaceuticals portfolio. The active substances of these drugs 

involve therapeutic enzymes, while these drugs are also classified as orphans. Orphan 

drugs, according to the EMA, are prescribed to treat diseases that do not affect more than 5 

in 10,000 individuals in the European Union at the time that the drug was submitted for 

approval. Finally, the host system classification list is completed with transgenic animals. 

Currently, two drugs are produced from transgenic animals and involve two serpins (serine 

protease inhibitors): antithrombin III (Atryn®) and C1 esterase inhibitor (conestat alfa; 

Ruconest®) isolated from goat and rabbit milk, respectively.  

3.1. Mammalian cell systems 

Mouse myeloma cell lines SP2/0 and NS0 are frequently used for research purposes [110], 

while human embryonic kidney 293 (HEK293) cells are often utilized to produce material 

for pre-clinical trials or research [111]. CHO cells are the workhorse of industrial production 

because of their ability to do gene amplification, which increases the level of product 

specificity and the ability to grow in serum-free suspension conditions [112]. Similarly, the 

myeloma cell-derived rodent NS0 cells have a high efficiency in producing recombinant 

immunoglobulin proteins and they can be cultured in both serum or serum/protein free 

suspension which reduces manufacturing costs during large-scale protein production [113]. 

Since CHO and NS0 originate from different mammalian species, the amount and type of 

glycosidases and transferases they have varies. Studies have reported that NS0 cells can 

produce glycoproteins that are highly immunogenic to human [114].  

Human cells, on the other hand, are alternative hosts. The fact that human cells generate 

recombinant products with PTMs similar to the native counterparts secreted inside the 

human body gives them an advantage over CHO and NS0, which lack some essential 

glycosylation enzymes, e.g. bisecting N-acetylglucosamine transferase and 2-6 

sialyltransferase. HEK 293 cells is the most-widely used human cell line for research into 

recombinant protein production and studies show that HEK 293 cells are capable of 

manufacturing Xigris (activated protein C) with proper -carboxylation and propeptide 

digestion at its glutamate amino acid residues, which CHO cells fail to offer [115]. In 

addition, the main advantage of protein expression in human cells is the low level of 

immunogenic reactions, with limited expression of N-glycolylneuraminic acid (Neu5Gc)-

bearing erythropoietin (EPO) in human HT1080 fibrosarcoma cell line than the CHO-

derived ones [116]. Some new human-based expression cell lines have been developed and 

are increasingly adopted by industry. For example, the Per.C6 cell line derived from the 

human retina cells have shown to give a protein titre of more than 2 g/L in simple fed-batch 

culture [117]. Unlike CHO cells, which often require product selection, the Per.C6 cell line 
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does not require any gene amplification or selection strategy, nor does it need a large gene 

copy number for stable protein expression [118]. Per.C6 derived-EPO is free of Neu5Gc thus 

limiting immunogenicity [119].  

 

Figure 4. The 77* EMA approved therapeutic glycoprotein drugs (up to April 2012) sorted by: A. Host 

system used for their production. B. Therapeutic area†. C. Drug category of the active substance based 

mainly on the classification in [109].  

* Actual total number of drugs is 80, but two drugs are used for radionuclide imaging and hence do not 

consist therapeutic proteins and one active substance has been approved two times, for details see main text.  
† Hereditary over autoimmune diseases at some cases are difficult to be distinguished, herein as 

hereditary diseases those that involve being born with the symptoms of the disease have been 

accounted for. In this graph, also the drugs Prolia and Xgeva that contain the same active substance but 

are authorised to treat different diseases have been individually taken into consideration and hence, the 

number of EMA glycoprotein therapeutic approved drugs for this case are 78.  
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3.2. Microbial cell systems  

Microbial cell systems from both eukaryotic and prokaryotic origin are commonly used for 

the expression of heterologous proteins. They have long been established for use in the 

production of recombinant proteins. This is due to their ease of use, the vast wealth of 

genetic and biochemical knowledge which has amassed, high protein yield and inexpensive 

production costs. The large availability of well-characterised host strains coupled with 

extensive customized expression vectors can provide manufacturers with functional protein 

of high yields. 

However, these microbial expression systems generally lack the ability to perform human-

like PTMs. Prokaryotic systems have difficulties in forming disulphide bonds and many 

species, such as Escherichia coli, lack the machinery to perform glycosylation. 

Glycosylation was always felt to be exclusive to eukaryotic domain, however the 

discovery that the pathogenic Campylobacter jejuni, associated with gastroenteritis in 

humans, can perform N-linked glycosylation [120] has changed this notion. However, 

there are several notable and important differences between prokaryotic and eukaryotic 

N-glycosylation (Table 1). 

Waker and  collaborators identified the native glycosylation capability in Campylobacter 

jejuni and demonstrated that their N-linked glycosylation pathway was also functional 

when transferred to Escherichia coli [121]. The C. jejuni glycosylation machinery is encoded 

by the gene locus pgl, consisting of 12 genes encoding for various glycosyltransferases 

(GTase), enzymes involved in sugar biosynthesis and an oligosaccharyltransferase (OT), all 

of which share similarity to their eukaryotic counterparts [122]. As in eukaryotes lipid-

bound sugar chain is transfer en bloc onto an asparagine amino acid in a specific sequence. 

Their work shows that it is perhaps possible to clone a universal N-linked glycosylation 

cassette in E. coli. 

A research team from Cornell University have used a bottom-up engineering approach to 

assemble a synthetic glycosylation pathway within E. coli to produce human-like 

glycoproteins. The challenge was to introduce a pathway which would lead to an Asn-

GlcNAc linkage, then couple this with the mammalian glycosylation pathway which would 

generate an acceptable sugar moiety, but this was achieved using metabolic engineering 

([123] [124] [125]. The E. coli was then further engineered to synthesis a mannose3-N-

acetylglucosamine2 (Man3GlcNAc2) glycan chain, a common core structure shared in all 

eukaryotes [126]. However, many challenges still remain. Most notably, the yield of 

glycosylated protein in this system is extremely low (~1%). In addition, the currently 

identified bacterial oligosaccharide transferases and known homologs do not to recognise 

the triplet eukaryotic consensus amino acid sequence, but rather a longer sequence which 

means protein engineering of glycoproteins will be required in order to use a microbial 

system. Finally, further sugar addition reactions are required to the core structure 

Man3GlcNAc2 to produce viable glycoproteins and each of these must be engineered 

separately into the host system.  
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 C. jejuni Eukaryotes  

N-glycosylation site 

consensus sequence 

 

Asp/Glu-Yaa-Asn-Xaa-Ser/Thr  

 

(where Yaa, Xaa are not Pro [127] 

Asn-Xaa-Ser/Thr 

Sugar Linkage Bac-Asn GlcNAcβ1-Asn  

Sugar Moiety transferred to 

Asn 

(GalNAc5GlcBac) Glc3Man9GlcNAc2 

Further sugar moiety 

processing after transfer 

Not Observed Yes 

Lipid carrier Undecaprenyl pyrophosphate 

(Und-PP) 

Dolichol Phosphate (Dol-P) 

 

oligosaccharyltransferase One protein  (subunit) Greater than eight different 

subunits 

Sugar Moiety Transfer 

Location 

Periplasma ER 

Protein State on Transfer Folded Unfolded 

Table 1. Differences between bacterial and eukaryotic N-linked glycosylation. 

Genetic engineering of E. coli is an ambitious task because the species does not naturally 

contain any N-glycosylation machinery, meaning everything must be inserted from the 

ground up. Non-mammalian eukaryotes are also seen as attractive expression systems and 

possess an N-glycosylation pathway with a common core structure, although the end-

product is remarkably different. Although yeast can perform many PTMs, similar to higher 

eukaryotic cells, they produce a non-human N-glycosylation profile of high mannose content, 

which can elicit an immune response in humans. Therefore microbial expression systems are 

only employed in the production of therapeutic proteins if the protein is functional without 

PTM, such as human insulin which is produced in E. coli [128], or where the PTM is required 

for folding and stability but does not affect drug efficacy, such as in several vaccines which are 

produced in Pichia pastoris [129, 130] (examples are presented in Table 2). 

Recently steps have been taken to genetically engineer humanized N-glycosylation 

pathways in non-mammalian eukaryotic expression systems such as yeast (Pichia Pastoris) 

and insect cell line Sf9. A synthetic glycosylation pathway has been established within the 

methyltrophic yeast species Pichia pastoris [131-133]. The challenge has been to remove 

hypermannosylation and replace this with glycosylation machinery to produce a more 

human-like glycan profile. This has been achieved by the removal (knock-out) of α-1-6-

mannosyltransferase enzyme (OCH1 in P. pastoris) and replacing this with various 

mammalian GTases which will synthesise a human-like glycan chain. 

The glyco-engineered P. pastoris developed by GlycoFi (a subsidiary of Merck & Co. Inc.) is at 

a more advanced stage than the E. coli expression systems. The humanized P. pastoris contains 

all the machinery to produce an N-Glycan chain of complex type, including the gene for the 

most complex step of human N-glycosylation, terminal sialylation. In total the engineered P. 

pastoris strain contains a set of 14 mammalian genes integrated into its genome. These include 
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glycosyltransferases, enzymes involved in sugar biosynthesis and sugar transporters. The 

result has been the successful production of a glycoprotein with and an oligosaccharide of the 

human complex type a highly homogeneous oligosaccharide of the human complex type 

[131-133]. 

The N-glycosylation pathway in insects is more similar to mammalian eukaryotic species 

than P. pastoris. Insect cell lines do not hypermannosylate but trim N-glycan to the core 

structure before adding GlcNAc to a mannose sugar, therefore halting N-glycosylation 

maturation before mammalian cells, and not gaining a complex or hybrid glycan chain [134]. 

The glycoengineering of insect cell lines does not require all the mammalian genes added in 

P. pastoris to reach an oligosaccharide of the human complex type. 

There are several examples of glycoengineered lepidopteran insect cell lines [135-138]. 

Specifically, a research group from University of Wyoming have transformed Spodoptera 

frugiperda (Sf9) cells with higher eukaryotic genes encoding for N-glycosylation pathway 

including gene products to enable terminal sialylation [136, 139]. Unlike previous 

glycoengineered species, which have incorporated genes into the genome, the glycosylation 

genes are placed under inducible plasmids in order to reduce metabolic overload, negative 

impact on growth rate,  and long-term instability [139]. The mammalian glycosylation genes are 

present on three vectors encoding six mammalian genes in total. These plasmids were 

transformed into Sf9 cell line which resulted in the sialylated N-glycosylation of a glycoprotein. 

 

Product 

Name 

Manufacturer Description Expression 

System 

Eurkaryotic or 

Prokaryotic 

GlucaGen® Novo-Nordisk 
Glucagon for acute 

hypoglycaemia

Saccharomyces 

cerevisiae 
Eurkaryotic 

HEPLISAV™ 
 Dynavax 

Technologies 
Hepatitis B vaccine# 

Hansenula 

polymorpha 
Eurkaryotic 

Engerix-B GlaxoSmithKline Hepatitis B vaccine 
Saccharomyces 

cerevisiae 
Eurkaryotic 

KALBITOR® Dyax Corp. 

Inhibitor of the 

protein kallikrein in 

treatment of hereditary 

angioedema 

Pichia Pastoris Eurkaryotic 

Humulin  
Genentech/ 

EliLilly  
Human Insulin Escherichia Coli Prokaryotic 

Table 2. Examples of commercialized recombinant biopharmaceuticals and the expression systems 

employed for their production. Products marked with # are currently in clinical trials. 

3.3. Manufacturing conditions 

From the discussion relating glycan moieties of IFN-β, EPO and both the antibodies’ Fc as 

well as the Fab region to in vivo function, it becomes apparent that exerting control over the 

glycoform of a biotherapeutics would be highly desirable. We know that many process 
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conditions will affect the glycoform such as high CO2 concentration, which will lead to 

increased osmolality and can limit growth, antibody production and also affect the 

glycoform [140]. Similarly culture modes, growth phase, and temperature among other 

factors will have significant effects on the quality of biotechnology products. This has been 

extensively summarised by del Val et al. [10] and an overview is presented in Table 3. 

 

Process 

Condition 
Product/Cell Line: Effect Proposed cause(s) 

Nutrient 

availability 

mAb/human hybridoma: change in 

microheterogeneity when glucose is 

substituted by fructose, mannose and 

galactose 

Differential efficiency with which 

the cells consume the different 

carbon sources [141] 

IFNγ/CHO site occupancy on at 

glucose<0.3mM  

Low biosynthesis of UTP and 

glucosamine 6- phosphate [142, 143] 

IFNγ/CHO sialylation and  high 

mannose glycans at  0.35mM 

<glucose<0.7mM and glutamine at  

0.1mM 

Decline of UDP-GlcNAc synthesis 

[144] 

Dissolved O2 

Effect 

depends 

on cell line 

and 

product 

EPO-Fc/CHO: no effect 

between 10-90% DOT,  

sialylation at 100% DOT 

Mechanism not defined [145] 

hFSH/CHO: maximum 

sialylation at 100%DOT 
Mechanism not defined [146] 

IL-2 glycovariant/BHK-21: 

no effect at 0% DOT 
Mechanism not defined [147] 

IgG1 mAb/murine 

hybridoma CC9C10: 

galactosylation with  

DOT 

UDP-Gal increases with DOT due 

to increased flux through glycolysis 

[148] 

Ammonia 

and pH 

The effect 

between  

NH4+ and 

pH is 

synergic 

mPL-I/murine:  site 

occupancy on at 9mM NH4+ 
Mechanism not defined [149] 

TNF-IgG/CHO: 40%  in 

galactosylation and 

sialylation 

pH inhibits GalT and SiaT 

activities. pH causes GnTI, ManII, 

GalT and SiaT to mislocalize in 

Golgi [150-152] 

IL-2/BHK-21:  branching in 

at 15mM NH4+ 

Concentration of UDP-GlcNAc 

and UDP-GalNAc reduces the 

concentration of UDP-Ga l[153] 

EPO/CHO:  sialylation of 

at 10mM NH4+ 

Concentration of UDP-GlcNAc 

decreases transport of CMP-

Neu5Ac into Golgi [154, 155] 

mPL-I/murine: 28% 

sialylation at 6.8<pH<7.8 

pH inhibits GalT and SiaT 

activities. pH causes GnTI, ManII, 
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Process 

Condition 
Product/Cell Line: Effect Proposed cause(s) 

GalT and SiaT to mislocalize in 

Golgi [149] 

Highest levels of IgG3 

mAb/murine hybridoma 

galactosylation at pH=7.4, 

lowest levels of sialylation at 

pH=6.9 

pH inhibits GalT and SiaT 

activities. pH causes GnTI, ManII, 

GalT and SiaT to mislocalize in 

Golgi [156] 

Viability, 

growth 

phase and 

temperature 

EPO/CHO:  branching at 32°C<T<37°C

 temperature decreases UDP-

GlcNAc and UDP-GalNAc 

concentration [157] 

Serum and 

lipid 

supplements 

 

 

IFNγ/CHO:  branching with lipid 

supplementation 

Mechanism not understood because 

serum composition is unknown 

[158] 

IgG1/CHO:  sialylation with serum-

free medium 

Mechanism not understood because 

serum composition is unknown 

[159] 

IL2/BHK-21:  fucosylation and  

sialylation with serum-free medium 

Mechanism not understood because 

serum composition is unknown 

[147] 

mAb/murine hybridomas: broader 

glycan distribution and  

galactosylation with BSA 

supplementation 

Mechanism not understood because 

serum composition is unknown 

[160] 

pCO2 and 

osmolality 

IgG2/SP2/0: unaffected up to 250mmHg 

pCO2 

 galactosylation at 320mOsm/kg and 

high pCO2 

25%  in galactosylation at 195mmHg 

pCO2 and 435mOsm/kg 

osmotic stress induces pH which 

inhibits GalT and SiaT activities and 

causes them to mislocalize [161] 

Stirring 

speed 

tPA/CHO: 72%  site occupancy at 

40<S<200rpm 

Shear stress increases protein 

syhtnesis wich reduces ER retention 

time [162] 

Culture 

modes 

I IFNγ/CHO: low dilution rates yield 

low site occupancy 

0.5<D<0.8day-1. 

Concentration of metabolites 

inhibits GalT and SiaT activity and 

mislocalizes these compounds. 

[143] 

Table 3. Effect of bioprocess conditions on therapeutic protein glycosylation. The upward arrow 

denotes increase and the downward arrow represents decrease. 
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From Table 3, it is evident that many process parameters influence protein N-linked 

glycosylation. These effects could initially be seen as potential sources for variability. 

However, if their underlying mechanisms were to be fully understood quantitatively, they 

could serve as variables for the modulation and control of glycosylation-associated quality 

attributes of therapeutic proteins.  

3.4. Medium formulation 

When formulating media for mammalian cell culture for the production of secreted 

glycoproteins, the carbon source is of paramount importance. The rate at which 

glycosyltransferases can process glycans is subject to changes in substrate concentrations. 

The substrates of the glycosyltransferase reactions are the antibodies as well as nucleotide 

sugar donors (NSD). In the case of biotherapeutics, the important NSDs are UDP-GlcNAc, 

UDP-Gal, GDP-Fuc CMP-NeuAc and CMP-NeuGc as well as UDP-GalNAc when murine 

cell lines are employed over CHO cells. High levels of CMP-NeuGc terminating 

carbohydrate moieties are unfavorable in a therapeutic context as they are oncofetal and 

potentially immunogenic [163, 164]. The metabolism pathways and biosynthesis of sugars in 

mammalian cells are well known and are graphically represented in Figure 5 where the 

transport into the Golgi is also indicated. Expanding on this, the glycoform can be controlled 

and the concept of feeding strategies is based on the hypothesis that addition of specific 

metabolic intermediates of the nucleotide-sugar biosynthesis to culture medium will drive 

metabolic flux towards the desired NSD and eventually influence the glycoform through the 

increase of desired rates of reaction [165]. Attention must be paid though to a number of 

inhibitory mechanisms which naturally regulate the depicted metabolic network. 

In contrast to supplementing the culture medium with glycosylation substrates to increase 

certain reaction rates, other strategies have consisted of adding glycosylation reaction 

inhibitors to achieve desired glycoforms. More specifically, non-reactive fucose analogues 

have been added to mammalian culture medium to avoid core fucosylation of mAb Fc 

glycans [166]. Others have added mannosidase inhibitors to prevent mAb Fc 

oligosaccharides form reaching more processed states [167]. 

3.5. In-process analysis of glycoproteins 

In general, the complete analysis of oligosaccharide structures and linkages requires a series 

of steps; for example, enzymatic fragmentation, chromatographic separation steps and 

either mass spectrometry (MS) or nuclear magnetic resonance spectroscopy (NMR) to 

determine the chemical structure of the fractions [168]. The technology for these offline 

analyses has improved in terms of the amount of material required, the sensitivity of the 

method, and the speed of analysis, but there is still room for improvement in 

miniaturization, speed, and throughput when it comes to analytics for bioprocessing. 

Particularly if analyses are going to be used to inform manufacturing operations in real-

time, then faster methods with lower sample requirements will be required. Preferably, 

these should also be automatable to reduce the requirement for human expertise. 
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Figure 5. The metabolic pathway of mammalian nucleotide sugar metabolism. 

Early attempts at the high throughput analysis of post-translational modifications included 

a microtitre plate-based assay, where a series of steps including capture, desalting and 

reduction on beads, followed by elution, tryptic digestion, fractionation, and isolation of N-

linked glycopeptides were performed in low volume before MALDI-TOF MS was used to 

identify structures [169]. While this method had the advantage of small sample volume, it 

still was a lengthy procedure and while technically automatable, would be difficult to 

implement in-process. 

One of the most important advances is the introduction of online methods for product 

analysis which will eventually enable real-time or quasi-real time control over the bioreactor 

environment in order to influence the product quality. Towards this end a number of new 

systems have been developed usually based on automated sampling followed by desalting 

via HPLC and analyses that have significantly shorter timescales from sampling to 

information.  

For example,a  two-dimensional system capable of analyzing up to 6 fractions from a 

separations operation was recently reported. Using a single HPLC system capable of 

running two columns simultaneously with independent gradients and switching between 

columns coupled to ESI-MS, fractions from size exclusion or ion exchange chromatography 

steps were analyzed for charge heterogeneity and size variation. An online concentration 
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step was used to analyse dilute fractions to elucidate minor size variants. While unable to 

give complete peptide mapping of glycoforms, this represents a first step towards 

monitoring some of the important QbD properties online including glycoform heterogeneity 

and N-cyclisation [170]. In another recent report, a method for the rapid detection and 

differentiation of sialic acids by HPLC was developed that is capable of analysing the 

content of N-acetylneuraminic acid versus N-glycolylneuraminic acid in about five minutes 

[171] simply by using a shorter column.  

In a further example, Mittermayr et al, made a serendipitous discovery which might lead to 

more rapid sample processing times when analysing glycans from the Fc region of mAbs. 

They initially sought to compare the analysis capabilities of a newly developed hydrophilic 

interaction chromatography method with capillary electrophoresis coupled to laser induced 

fluorescence analysis, but found that the techniques were actually highly complementary in 

their resolving power. Thus, using a combination of the two in a 2D analysis, separation 

time for each could be reduced to 20 minutes. However, some very similar structures could 

not be resolved from each other, making this method incomplete [172]. 

Since measuring glycoform profile in real-time will remain a challenge in the near future, 

another approach is to measure surrogate markers that correlate with the glycan structure 

(and ultimately make a link using metabolic modelling). This idea is very similar to finding 

biomarkers for diagnostic indicators for disease—in essence, one or more ‘biomarkers’ for 

particular glycan structures of interest (e.g. high mannose, highly branched, or high levels of 

sialic acid endcapping) should exist. Once these are identified a fluorescent, in vivo 

biosensor can be designed to monitor each ‘biomarker’ non-invasively in real-time. A 

variety of fluorescence monitoring equipment is available to accurately determine 

fluorescence levels in small volumes and in high throughput and this can then be exploited 

for process design, medium formulation, and cell line engineering experiments. We have 

demonstrated the utility of FRET-based biosensors for monitoring essential metabolites such 

as glucose and glutamine [173]. These can then be paired with metabolic models to predict 

the trajectory of glycoforms given the current nutrient availability. 

Also interesting are a suite of tools developed initially for glycomic analysis of whole cell 

samples (often in the context of disease investigations), but which might be adaptable to 

monitoring proteins secreted during bioprocessing. 

One of the most promising of these techniques is the lectin microarray. Lectins are naturally 

occurring carbohydrate binding proteins which show some degree of specificity and have 

been shown to detect glycoproteins in less than 1 pg amounts [174]. Previous work has used 

lectins conjugated to chromatography resin (e.g [175]) or to magnetic beads for recovering 

glycan containing proteins from a complex mixture, for example serum [176]. The process can 

be done in small volumes using microtitre plates and the glycoproteins can later be analysed 

by MS in a process that can be automated by the use of liquid handling apparati [177].  

Lectins immobilised to beads and fluorescence quenching of quantum dots have also been 

used to quantify specific types of glycoforms, suggesting a proof-of-principle for lectin 

based analysis [178]. However, the main issue with lectin-based detection as a standard is 
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that the specificity of individual lectins is broad, and therefore, specific detection of 

individual glycoforms is currently not possible. However, the possibility of using protein 

engineering or synthetic biology techniques to evolve panels of lectins with precise and 

varying specificity exists and could result in a platform amenable to high throughput in-

process detection  [179]. 

3.6. Experimental strategies for cell line modification  

Another strategy to reduce glycan heterogeneity is genetic modification of cell lines. This 

can be through the overexpression or knockout of the genes encoding for glycosyl 

transferase enzymes. Such attempts aim to produce mAbs with specific biological functions 

or to avoid the expression of mAbs with glycan structures that are potentially immunogenic 

to humans. Umaña’s group overexpressed N-acetylglucosylaminlytransferase III and V 

(GnT III & V) in a tetracyclin-regulated manner, with an aim to introduce bisecting GlcNAc 

and tri-antennary structures respectively in CHO-DUKX cells. Despite the successful 

production of mAb with desired glycan structure, overexpression of GnT III & V enzymes 

greatly impeded cell growth [180]. In the same year, Weikert and collaborators suggested 

the possibility of genetically engineering CHO cells for terminal galactose or sialic acid 

addition in order to encourage CDC and modulate inflammation. This group showed that 

overexpression of human -1,4 galactosyltransferase (GT) or -2,3 sialyltransferase (ST) 

genes reduced the level of terminal GlcNAc and more than 90 % of IgG Fc-oligosaccharides 

were sialylated [181]. The genetic knockout of -1,6 fucosyltransferase (FUT8) gene achieved 

via constitutive expression of small interfering RNA (siRNA) produced mAbs where around 

60% of them were defucosylated. This increased ADCC activity up to 100-fold in in vitro 

assays [182]. Genetic engineering is therefore a potential approach to produce mAbs under 

the QbD strategy, but optimisation is indeed required to minimise possible side-effects. 

Chaperone engineering can be another key parameter in boosting productivity. ER 

chaperones are responsible for correct protein folding and co-overexpression of chaperone 

genes and other regulatory elements (e.g. ERp57, calnexin/calreticulin, and/or protein 

disulfide isomerise) exhibited position effects in Productivity. Disulfide isomerase in 

particular increased specific mAb productivity by 55% in transient gene expression, but 

there were no/negative effects in stable gene expression  [33]. In addition, targeting the 

unfolded protein response (UPR) pathway is another approach to enhancing recombinant 

protein yield. The spliced form of X-box binding protein 1 (XBP-1s) is the spliced form of the 

parental XBP-1 protein and only exists upon the induction of ER-stress. Studies showed that 

overexpressing XBP-1s in mAb expressing-CHO-T cells under hypothermic condition 

increased total mAb concentration by 36 % [26]. 

4. In silico protein glycosylation studies 

Mathematical modeling is a powerful tool for in silico studies of complex phenomena. A 

high-fidelity model of protein production and glycosylation would be useful for bioprocess 

design, culture media formulation, and the design of genetic engineering strategies. Early 
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computational studies concerning intracellular glycosylation highlighted particular aspects 

of the biological machinery. Monica et al. investigated the role of diffusion in the trans-Golgi 

network on limited sialylation [183]. The model assumed an isotropic compartment with 

respect to both substrate and enzyme concentration and concluded that diffusion limitations 

are not significant with respect to the sialyltransferase-catalysed reactions. This finding is 

particularly significant with respect to other glycosyltransferase reactions as sialic acid is 

known to be at the lowest abundance compared to other nucleotide sugar species. Shelikoff 

et al. presented a first approach towards the mathematical modelling of macroheterogeneity 

in glycoproteins [184]. The work focused on the attachment of the glycan precursor to the 

Asp-X-Ser/Thr tripeptide sequence, which takes place in the ER. While site occupancy 

currently receives little attention in the production of mAbs, this aspect of glycosylation may 

be of greater significance in the near future as cellular antibody productivity keeps 

increasing and thus, placing more strain on the ER, which may lead to increased 

macroheterogeneity. 

The first mathematical investigation of glycosylation microheterogeneity was carried out by 

Umaña et al. in 1997 as part of a study into the effect of glycosyltransferase overexpression 

in a mammalian cell line in order to exert control over the glycoform [185]. As part of this 

study, a Central Reaction Network (CRN) to monitor a total of 33 species comprising 

mannosidases, GlcNAc-transferases (GnTs) and terminating upon the addition of the first 

galactose, which prevents further processing through GnTs or ManII of the glycan structure 

[186], was proposed. The calculations of species abundance were based on enzyme 

concentrations as well as distribution, kinetic constants of reaction, protein half-life in Golgi, 

the Golgi volume and finally the specific glycoprotein productivity. The underlying mode of 

operation for the Golgi is assumed to be the vesicular transport model, which states that 

vesicles will bud off their respective Golgi compartment at their bulk concentration and fuse 

with the next compartment in series. This mode of operation can be idealised and viewed as 

four continuously stirred tank reactors (CSTRs) in series, representing the cis-, medial-, 

trans-Golgi cisternae and the trans-Golgi network. The work paid particular attention to 

GnTIII, which catalyses the transfer of a bi-secting GlcNAc to an agalactosylated glycan 

moiety upon which no further GnTs can act and thus, capping antennarity. The authors of 

the study examined the overexpression of the particular glycosyltransferase in a number of 

in silico experiments and confirmed their hypothesis that antennarity was reduced and 

hybrid glycan content increased. This study provided an important first insight into the 

power of mathematical modelling as an approach towards glycan engineering. 

Krambeck and Betenbaugh extended the above described work through the inclusion of 

further glycosyltransferases and thus, expanding the number of structures from 33 to 7,565 

structures resulting from a total of 22,871 reactions, which accounts for core fucosylation, 

galactosylation and sialylation of carbohydrate moieties [187]. The model was also not 

specific to a single glycan site and viewed the Golgi compartments as four CSTRs in series. 

Building on previous work, enzyme dissociation constants from experimental investigations 

were employed for each glycosyltransferase and competitive product inhibition was taken 

into account. Furthermore, the model was evaluated and fitted against experimental data, 
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where the glycoform data was obtained from recombinant human thrombopoietin (TPO) in 

which an average of 5.4 occupied N-glycan sites have been reported per molecule [188]. Model 

optimisation was based on an averaged TPO glycan site, where enzyme concentrations were 

altered to give a closest fit to experimental data. Krambeck and Betenbaugh argue that while 

dissociation constants and kinetic data for the glycosyltransferases exist in literature, the 

enzyme concentration in the Golgi is cell line-dependent and will be subject to change based 

on culture conditions. Golgi-resident enzyme concentrations were changed to match data and 

resulted in improved model simulation results.  

Krambeck et al. extended the model further in a follow up study, where the model was 

tailored to analyse glycoforms from mass spectrometric data [189]. Mass spectrometry is 

based on mass to charge ratio of species and, thus, will not be able to distinguish between 

different structures of same molecular mass. The presented model attempts to resolve the 

issue through the prediction of alternative structures content for the same mass 

spectrometric data peak and eventually screen for glycan disease markers in humans. The 

model was extended through the addition of further glycosylation enzymes to makeup a 

total of 19 glycosyltransferases and subsequently enzyme activities were adjusted to match 

normal and malignant human monocyte N-glycan mass spectra. Through application of 

limiting conditions based on prior knowledge, glycans of probable negligible abundance can 

be omitted resulting in a total of 10,000 – 20,000 structures. The model gives valuable insight 

into changes in enzyme activity as a result of different diseases, but is rather limited in its 

application to the development and production of biotherapeutics, where large specificity 

with respect to the glycan structure and accessibility to the protein backbone is required for 

a highly accurate predictive model. 

Hossler et al. attempted to improve the predictive ability of glycan distribution models 

through the variation of reaction-related variables [190]. This model was the first to 

discriminate between reaction mechanisms for different glycosylation enzymes. ManI and 

ManII were modelled assuming Michaelis-Menten kinetics with substrate competition; the 

remaining transferases were modelled using a rapid equilibrium, random, Bi-Bi mechanism. 

While all previous models assumed the vesicular transport regime, which is modelled as a 

series of CSTRs, this study explored the hypothesis of the Golgi maturation model, which 

states that each compartment undergoes a maturation process to transform from early 

cisternae to late cisternae. In an idealised case this can be described by a plug flow reactor 

(PFR) and, thus, travelling through a tubular reactor, representing the Golgi cisternae. 

Modelling the Golgi apparatus as a single reactor of constant enzyme concentration showed 

that a long enough residence time will lead to highly processed glycan structures and 

changes in glycosyltransferase concentration can lead to a targeted glycoform for most 

glycan species. However, the authors of the study argued that a total of four reactors will be 

required to accurately simulate changes in the enzyme concentration along the length of the 

Golgi apparatus. The results show a greater appearance of under-processed glycan 

structures in the final product and generally less deviation from the data obtained from the 

CSTR-in-series model. A decrease in protein residence time was shown to have a much 

larger impact on the four PFR model than the CSTR model, with many more under-
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processed glycans were observed for the PFR case. It was further shown that modifications 

of the enzyme concentrations for the PFR-in-series model could lead to the most targeted 

glycoform and thus, demonstrating enzyme localization to be a very potent approach in 

glycan engineering. Hossler et al. concluded that while the actual biological mechanism will 

be less idealised than assumed in the study, the PFR-in-series model will give a more true 

distribution as demonstrated by comparison with experimental data. 

 

Figure 6. Calculated vs. experimental oligosaccharide profiles with the Jimenez del Val model [106]. 

The dark bars correspond to the experimental oligosaccharide profiles, and the light bars represent 

those calculated with the model. Comparison between Herceptin (A), Rituxan (B), Remicade (C), and 

Erbitux (D) are shown.  

Recently, Jimenez del Val et al. developed a model specifically tailored to the glycan found 

on the Asn297 position of an IgG antibody constant region [191]. The model includes a 

cisternal maturation approach and expands on rate expressions for various enzymes to 

include Michaelis-Menten, sequential Bi-Bi and random order Bi-Bi kinetics for specific 

glycosyltransferases as reported in previous literature for each enzyme. The model 

considers the Golgi apparatus to be a single PFR of constant diameter, no axial dispersion 

within the compartment, constant flow and no mass transfer limitation where enzyme 

recycling along the biological reactor length leads to changes in glycosyltransferase 

concentrations. As a result it proposes a novel representation of enzyme concentrations 

along the length of a PFR as normal distribution functions. The unknowns of the three 

parameter normal functions for the spatial distribution of the enzymes where found through 

optimization-based methods, where the minimum amount of total enzyme necessary to 
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achieve terminal oligosaccharide processing, including 50% sialylation, was sought. A 

further extension of previous mathematical models was the incorporation of protein-

mediated nucleotide sugar donor transport into the Golgi cisternae. Again, due to the 

assumption of Golgi-resident protein recycling, a distribution of transport proteins is 

expected along the length of the PFR, which was estimated using an optimisation-based 

method. The optimisation was based on the assumption that the rate of by-product 

dephosphorylation is much faster than nucleotide sugar donor accumulation and, therefore, 

parameter values for minimum transport protein concentration were determined. Further, it 

was argued that while the above distributions should not change significantly, the 

dissociation constants will differ for individual glycoproteins as well as glycan sites within a 

glycoprotein. This accounts for steric hindrance and much reduced sialylation in the 

antibody Fc region and, hence, by taking dissociation constants for various commercial 

mAbs from literature, a glycoform was obtained. A comparison with experimental data, the 

Krambeck and Bettenbaugh, as well as the Hossler et al. model showed that the hereby 

obtained mathematical tool presented the closest fit to experimental data for most glycan 

species analysed as shown in Figure 6. Furthermore the model was demonstrated to show 

good fit to experimental data under gene silencing as presented in Figure 7. 

 

Figure 7. A: Compares the reported oligosaccharide profiles (dark bars) with the ones calculated with 

the Jimenez del Val model (light bars), before FucT gene silencing. B: Compares reported and calculated 

oligosaccharide profiles after FucT silencing. Experimental results from [192]. 

5. Conclusions and outlook 

The main goal of QbD is to ensure product quality by building it into the manufacturing 

process. The initiative provides practical incentives, such as shorter approval times and 

higher flexibility towards changes in manufacturing process conditions, for industrial 

production. Despite the volume of data required for QbD, the benefits far outweigh the 

effort. The first goal of QbD for biopharmaceuticals should be to narrow the glycomic 

profile of glycoprotein-based drugs based on existing knowledge of the desired structures 

for the application at hand and of the effect of manufacturing conditions and media/feed 

formulation on the availability of nucleotide sugars and the resulting glycan profile. This 

can be achieved more effectively through the combination of fundamental biological 
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techniques for cell engineering, methodologies allowing rapid glycan analysis (in particular 

in vivo biosensors for ‘biomarkers’ of the desired glycan structure), and rational engineering 

design of manufacturing conditions.  

Rapid analytical tools will allow us to examine more samples in-process with the aim of 

controlling and potentially optimising conditions in real time. An enabling tool is 

mathematical modelling, which, given its tremendous progress in successfully simulating 

the modification of complex glycoproteins, could in the future allow us to collect in process 

information about a fermentation run arising from various analyses at line and use it to infer 

the current state of the system and design improved operation strategies in terms of 

supplementation of nutrients or precursors, or adjustment of DOT, culture pH or other key 

conditions.  

At the same time, while CHO cells clearly remain the dominant host system, research on 

other, more prominent cell lines that provide better glycosylation, or higher yield remains 

active. Yeast, insect, plant cells, and transgenic animals are amongst the more likely host 

systems to replace CHO cells. However, a significant amount of research effort regarding 

further bioprocess optimisation, as well as how they can be engineered to produce complex 

therapeutic molecules, such as heparin is still ongoing for CHO cells. Given the continued 

investment in CHO research, the number of existing production platforms, and pending 

patents as well as the stringency of the pharmaceutical regulatory agencies, they will likely 

remain a relevant industrial production host for at least another few decades.  

That being said, the ideal expression system would achieve a high level expression of 

recombinant protein at a low cost. This implies that microbial hosts would lead to a 

significant cost advantage. Advances in humanising the PTM machinery in microbial hosts, 

P. pastoris in particular, offer significant promise. However, the aforementioned research 

developments have been achieved in lab-scale fermentation. To reap their benefits, the 

glycosylation profile needs to be demonstrated to be consistently homogeneous in large-

scale fermentations. Overall, it is clear that the QbD initiative dictates a unified engineering 

and scientific approach to potentiate control over the glycomic profile of cell culture-derived 

protein-based drugs. 
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