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1. Introduction 

In this chapter, we present the current advances in flagellar glycosylation. Glycosylation is 

well-known as one of the most frequent posttranslational protein modification. 

Glycosylation is well studied in eukaryotes as the superficial and secretory proteins are 

mostly glycosylated in the eukaryotic cell. Protein glycosylation was considered to be a 

eukaryotic organism specific modification for many years. However, reports of bacterial 

glycosylation have increased since the discovery of surface layer glycosylation on the cell 

envelope in archaea and hyperthermophiles in the mid-1970’s (Mescher & Strominger, 1976; 

Sleytr, 1975; Sleytr & Thorne, 1976).  

1.1. Protein glycosylation 

Protein glycosylation is largely classified as N-linked or O-linked while C-mannosylation is 

rarely identified (Furmanek & Hofsteenge, 2000). Glycan structures are enzymatically 

transferred to amino acid residues where they can covalently conjugate via the amino group 

of asparagine residues (N-glycosylation) or the hydroxyl group of serine or threonine 

residues (O-glycosylation). Both linkage types are distributed in eukaryotes and 

prokaryotes. The N-linkage glycosylation pathway is characterized in all three domains of 

life (eukarya, archaea, and bacteria) (Calo et al., 2010; Haeuptle & Hennet, 2009; Szymanski 

& Wren, 2005; Weerapana & Imperiali, 2006). The carbohydrate chain is synthesized at the 

membrane (endoplasmic reticulum (ER) in eukarya, or on the cytoplasmic side of the 

plasma membrane in archaea and bacteria) via a specific glycosyltransferase which transfers 

a nucleotide-activated sugar precursor onto the lipid carrier (dolichol-phosphate in eukarya 

and archaea, or undecaprenyl-phosphate in bacteria). The synthesized carbohydrate chain 

(oligosaccharide) is flipped across the membrane using a specific flippase, and is transferred 

to the asparagine residue in the nascent protein en bloc by an oligosaccharyltransferase 

(OST), which is composed of nine subunits in eukarya. Archaeal and bacterial OST are 

encoded by the aglB (Abu-Qarn et al., 2007) or pglB (Wacker et al., 2002) gene to yield a 
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single protein, respectively. In eukarya and archaea, the asparagine residues of the N-

linkage glycosylation site are conserved in a sequon, the N-X-S/T motif (where X is any 

amino acid except proline). Recently, the bacterial N-linkage sequon was characterized from 

Campylobacter jejuni (Kowarik et al., 2006). The two N terminal extended residues, D/E-X1-N-

X2-S/T (where X1 and X2 are any amino acid except proline), were required for the bacterial 

OST recognition of the glycosylation site. 

In eukaryote, glycoproteins typically possess a pentasaccharide core carbohydrate structures 

which consist of (Man)2-Man-GlcNAc-GlcNAc with one or more glycan chain (N-

glycosylation) and di-, or trisaccharide core structure based on GalNAc attached to serine or 

threonine (O-glycosylation). However, recent reports on C. jejuni, Haemophilus influenzae, 

and Desulfovibrio desulfuricans N-glycosylations indicate that there is no conserved core 

structure in bacteria (Gross et al., 2008; Ielmini & Feldman, 2011; Young et al., 2002).  

Thus, in prokaryotes many different glycoprotein structures have been observed that 

display much more variation than those observed in eukaryotes.  

Glycoproteins have many biological functions: one example is recognition and adhesion 

among cells (Varki, 1993). The interactions between cells are mediated by the glycan 

structures on the cell surfaces. Therefore, the different glycan moieties on the cell surfaces 

serve as markers for cell recognition events, and modifications of the glycan structures can 

render several biological functions to the protein in eukarya. In recent years, accumulating 

studies for glycosylated bacterial proteins indicate that glycan structures mainly participate 

in the virulence of the mucosal pathogen (Szymanski & Wren, 2005). Most bacterial 

glycoproteins appear to be associated with the surface of the organism as in pili or flagella. 

Flagellin is one of the extensively studied glycosylated bacterial proteins and it is suggested 

that the flagellin glycosylation is responsible for their virulence, adherence, filament 

assembly, and filament stability (Arora et al., 2005; Goon et al., 2002; Szymanski et al., 2002; 

Taguchi et al., 2008). 

1.2. Flagellar structures 

Most bacterial species swim by means of rotating flagella that are powered by the 

monovalent cation (H+ or Na+) influx. Many bacteria have extracellular flagellar structures 

and the pattern of flagellar arrangement is an identification tool in bacteria. A variety of 

flagella structures and swimming patterns have been discussed in previous works 

(Armitage & Macna, 1987; Bardy et al., 2003; Charon & Goldstein, 2002; Macnab, 1977, 

McCarter, 2001, 2004; Shigematsu et al., 2005). There are classified in-to four flagella 

arrangements as follows: multi-flagella are randomly distributed on the overall cell surface 

(peritrichous; e.g. Escherichia coli, Salmonella typhimurium, Bacillus subtilis), several flagella are 

present at one end of the cell (lophotrichous; e.g. Pseudomonas fluorescens), a single polar 

flagella is projected from the cell end (monotrichous; e.g. Vibrio cholerae, Rhodobacter 

sphaeroides), and a single flagellum is present at each pole of the bacterium (amphitrichous; 

e.g. Spirillum serpens). Although bacteria possess different flagella arrangement, a basic 

flagella structure is common among many bacterial species. The study of bacterial flagella 
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has been intensively investigated in Escherichia coli and Salmonella typhimurium by using 

genetic and biochemical approaches. A typical flagella structure is shown in Figure 1. About 

50 genes, which are related to the bacterial flagellar assembly, have been identified. More 

than 20 distinct proteins make up the flagella structure and it consist of three main parts: a 

basal body, a hook, and a filament. The basal body consists of four rings (L, P, MS, and C-

ring) and rod which is located just above the MS-ring and connected to the proximal region 

of the hook. However, the L and P ring are not observed in gram-positive bacterial species, 

because of the difference in the cell wall architecture (DePamphilis & Adler, 1971; Francis et 

al., 1995). The C-ring which is a part of flagella rotor consists of three proteins, FliG, FliM, 

and FliN (in gram-positive bacteria FliY correspond to FliN). In particular, FliG is the most 

directly involved in the rotation of the flagella motor among the C-ring proteins, as it 

interact with the motor complex (MotA/B or PomA/B) component of the force-generating 

unit in the flagellar motor. The motor complex acts as the stator and the rotation energy is 

generated by the monovalent cation influx from the periplasmic space across the inner 

membrane. The C-ring is also called the “switch complex” as it can switch the direction of 

flagellar motor (Irikura et al., 1993; Kihara et al., 1996; Sockett et al., 1992). The switching 

event is caused by the binding of phosphorylated CheY (chemotaxis related gene) to the 

FliM of switch complex, and clockwise (CW)/counterclockwise (CCW) switching enable the 

bacterial cell to change swimming direction (Mathews et al., 1998; Sockett et al., 1992).  

 

Figure 1. The model structure of the flagellar motor in gram-negative bacteria. 

The motor consists of the Mot complex (MotA/B) and rotor (MS- and C-ring). The L- and P- 

ring do not exist in the gram-positive bacterial flagellar structure. The Mot complex is 

supposed to function as the force-generating unit via proton conduction while the C-ring 

functions as the switch. The phosphorylated form of CheY (CheY-P) interacts with FliM and 
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promotes CW rotation. When CheY-P is not bound to it, the motor rotates CCW. Flagellin 

subunits are transported from the cytoplasm and are delivered into a central channel in the 

basal body–hook filament structure (the diameter of the central channel is only 2 nm). OM, 

Outer membrane; PG, peptidoglycan layer; CM, cytoplasmic membrane (Irikura et al., 1993; 

Mathews et al., 1998).  

The most impressive structure of the bacterial flagella motor is an extracellular long helical 

filament. In general, the flagella filament is composed of 20,000 ~ 30.000 subunits of a single 

protein called flagellin, and it reaches to more than 10 μm in length (Namba & Vonderviszt, 

1997). The flagellar specific export apparatus is located on the inside of the C-ring, and most 

of the flagellar components proteins are translocated across the cytoplasmic membrane by 

this apparatus, and then the proteins are diffused in the narrow nascent lumen structure 

and self-assemble at the distal end of the flagellar structure (Aizawa, 1996). 

Flagellar-based motility is also common to archaea, but its structural features are quite distinct 

from bacteria. Archaeal flagella are closely related to bacterial type IV pili in their structure 

and assembly and the origin of bacterial flagella is considered to be a type III secretion system 

(Bardy et al., 2004). In bacteria, the flagellar filament is composed of a single flagellin subunit, 

in contrast, two or more distinct flagellin subunits are require for production of the flagellar 

filament. The other notable differences include that archaeal flagella rotation is powered by 

ATP, the flagellin subunit has a signal peptide which is cleaved by a specific peptidase for the 

secret matured flagellin subunit from the cell, and the flagella is grown from the proximal end 

of the cell surface by the addition of subunits to the base. 

1.3. Flagellin glycosylations 

Although flagella structures from both eubacteria and archaea are different, flagellin 

glycosylation is reported in both organisms. Eubacterial flagellin glycosylations are 

classified as either N- or O-linkage in a single subunit, and to date, most reports are about 

O-linkages. The O-linked glycan positions of bacterial flagellin proteins appear to be limited 

to the central region of the primary flagellin structure. The amino acid sequence alignment 

indicates that flagellin proteins are well conserved in the N- and C-terminal regions, while 

the central region is highly variable (Beatson et al., 2006). Although the intensively studied 

peritrichous flagella from Salmonella typhimurium do not have a glycosylated flagellin, a 

complete atomic model of its flagellin protein was resolved by excellent X-ray 

crystallography analysis and electron cryomicroscopic observation of the intact flagella 

filament (Samatey et al., 2001; Yonekura et al., 2003, 2005). These structural data revealed 

that the S. typhimurium flagellin protein consists of four major domains, D0, D1, D2, and D3 

(Figure 2). The N- and C-terminal regions of flagellin correspond to D0 and D1, which are 

composed mainly of α-helices, and they form the core part of a flagellar filament. D0 has 

two α-helices (ND0 and CD0), whereas D1 has two long α-helices (ND1a and CD1), one 

short α-helix (ND1b) and one short β-sheet. These domains are positioned in the filament 

core. Gugolya et al. suggested that the alpha-helical terminal regions that correspond to the 

D0 domains are important for the coiled-coil model of flagellar filament formation (Gugolya 

et al., 2003). The central variable region of flagellin forms the outside surface-exposed 
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domain (D2 and D3) in the assembled filament. Studies of the variable region have focused 

on its role in H antigenicity, the effect of deletions on filament formation and motility, and 

the insertion of foreign peptides for extracellular display on bacterial flagella (Malapaka et 

al., 2007; Reid et al., 1999; Westerlund-Wikström, 2000; Woodset al., 2007; Yoshioka et al., 

1995). Thus, flagellin glycan structures are restricted in the D2 and D3 domains (a few 

glycans were located at the D2 proximal end of the D1 domain), and it is considered that 

these glycan moieties are exposed to environmental conditions (Figure 3).  

 

Figure 2. Bacterial flagellar filament.  

Flagellar filament structure and complete flagellin 3D model of Salmonella typhimurium 

(Samatey et al., 2001; Yonekura et al., 2003, 2005). A flagellar filament consists of substantial 

amount of flagellin subunit and takes on a tubular structure. 

 

Glycosylated flagellins are schematically aligned with the S. typhimurium flagellin domain. Light and dark grey boxes 

indicate 100 highly conserved terminal amino acid residues which constitute the alpha-helical structures. The 

corresponding amino acid size of the flagellin proteins is indicated at the C-terminal. Positions of glycosylation on each 

flagellin are indicated ( ). 

Figure 3. O-linked glycosylation sites of bacterial flagellin. 
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In contrast with eubacteria, three archaeal flagellin glycosylations are reported as N-linkage 

(Chaban et al., 2007; Voisin et al., 2005; Wieland & Sumper, 1985). Work on the most 

extensively studied flagellin from Methanococcus voltae are demonstrated that the glycan 

attached positions are not limited to anywhere specific in the flagellin primary structure and 

the N-linked asparagine residues seem to follow the classic eukaryotic type consensus 

sequon (N-X-S/T) rather than the recently identified bacterial N-linkage sequence (D/E-X1-

N-X2-S/T). 

2. Flagellar glycosylation 

There have been many reports on flagella glycosylation since it was discovered about 20 

years ago. Flagellin glycosylation is mainly found in gram-negative pathogenic bacterial 

species, and has been identified in about 30 microorganism strains including the archaea 

and gram-positive species (Logan, 2006). The distribution of flagellin glycosylation among 

several species is shown in Table 1, and a gene cluster which is potentially involved in the 

posttranslational modification of flagellin glycosylation is shown in Figure 4. 

 

 

 

 

Figure 4. Organization of the glycosylation island located around the flagellin gene. 

The location of glycosylation islands was not restricted to directly upstream or downstream 

of the flagellin gene, and the component genes were highly-diverse. A glycosyltransferase, 

which is responsible for the glycan attachment to a flagellin protein is usually included in 

the proximal glycosylation island of a flagellin gene, whereas, it was not identified to date in 

this region in C. jejuni. 
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Organism 
linkage 

type 
Glycan characterization Function 

GTase*5

(OST) 
Reference 

Gram-negative           

Aeromonas caviae Sch3 O Pse5Ac7Ac Motility n.d. Tabei et al., (2009) 

Aeromonas caviae UU 51 O Pse5Ac7Ac8Ac n.d. n.d. Schirm et al., (2005) 

Aeromonas hydrophila AH3 n.d.*1 PAS*2 n.d. n.d. Rabaan et al., (2001) 

Agrobacterium tumefaciens 

C58C1 
n.d. PAS n.d. n.d. 

Deakin wt al., 

(1999) 

Azospirillum brasilense Sp7*2 O β-elimination*3 
Adsorptio

n  
n.d. Moens et al., (1995) 

Campylobacter jejuni 81-176 O 
Pse5Ac7Ac, PseAm, Pse8OAc 

PseAmGlnAc 
Assembly n.d. 

Thibault et al., 

(2001) 

Schirm et al., (2005) 

Campylobacter jejuni 11168 O 
Leg5Am7Ac, 

Leg5AmNMe7Ac 
n.d. n.d. 

Zampronio et al., 

(2011) 

Campylobacter coli VC167 O 

Pse5Ac7Ac, PseAm, 

Pse/PseAm-deoxypentose, 

Leg5Ac7Ac, Leg5Am7Ac, 

Leg5AmNMe7Ac 

Assembly n.d. Logan et al., (2002) 

Caulobacter crescentus CB15 n.d. SDS-PAGE*4 
Adherenc

e Stability 
n.d. 

Faulds et al., (2011) 

Johnson et al., 

(1983) 

Helicobacter pylori O Pse5Ac7Ac Assembly n.d. Schirm et al., (2003) 

Helicobacter felis CS1 n.d. SDS-PAGE n.d. n.d. 
Josenhans et al., 

(1999) 

Pseudomonas aeruginosa PAK O 

Rha-(2-7 variable 

oligosaccharide chain)-

deoxyhexosamine (dhexN)-

deoxyhexose (dHex) 

Virulence FgtA 
Schirm et al., 

(2004a) 

Pseudomonas aeruginosa 

PAO1 
O dHex(PO4)-192Da Virulence FgtA Verma et al., (2006) 

Pseudomonas aeruginosa 

JJ692 
O Rhamnose n.d. n.d. 

Schirm et al., 

(2004a) 

Pseudomonas syringae pv. 

tabaci 
O 

β-D-Quip4N(3-hydroxy-1-

oxobutyl) 2Me-(1-3)-α-L-

Rhap-(1-2)-α-L-Rhap 

Virulence

Stability 
Fgt1 

Takeuchi et al., 

(2007) 

Burkholderia pseudomallei O 291 Da carbohydrate Motility n.d. Scott et al., (2011) 

Burkholderia thailandensis O acetylated hexuronic acid n.d. n.d. Scott et al., (2011) 

Acidovorax avenae O n.d. 

epitope 

recognitio

n in rice 

Fgt 
Che et al., (2000) 

Hirai et al., (2011) 

Borrelia burgdorferi N SNA, GNA lectin binding n.d. n.d. Ge et al., (1998) 

Serpulina hyodysenteriae N SDS-PAGE n.d. n.d. Li et al., (1993) 

Spirochaeta aurantia n.d. Lectin binding n.d. n.d. 
Brahamsha & 

Greenberg, (1988) 

Treponema pallidum n.d. PAS n.d. n.d. Wyss, (1998) 

Shewanella oneidensis n.d. n.d. Motility n.d.  Wu et al., (2011) 

Marine magnetotactic ovoid 

bacterium MO-1 
n.d. n.d. 

filament 

lubricant? 
n.d. Zhang et al., (2012) 

Xanthomonas oryzae pv. 

Oryzae 
O n.d. Virulence rbfCxoo Sun et al., (2009) 
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Organism 
linkage 

type 
Glycan characterization Function 

GTase*5

(OST) 
Reference 

Thermus thermophilus HB8*4 N N-glycosydase F sensitive n.d. n.d. 
Papaneophytou et 

al., (2012) 

Clostridium tyrobutyricum n.d. β-elimination n.d. n.d. 
Bedouet et al., 

(1998) 

Clostridium acetobutylicum O PAS n.d. n.d. Lyristis et al., (2000) 

Clostridium difficile O HexNAc Assembly n.d. Twine et al., (2009) 

Clostridium botulinum O αLeg5GluNMe7Ac n.d. n.d. Twine et al., (2008) 

Butyrivibrio fibrisolvens n.d. PAS n.d. n.d. 
Kalmokoff et al., 

(2000) 

Listeria monocytogenes O 
N-acetylglucosamine 

(GlcNAc) 
n.d. GmaR Shen et al., (2006) 

Geobacillus 

stearothermophilus 
O PAS, β-elimination Assembly n.d. 

Hayakawa et al., 

(2009a) 

Bacillus sp. PS3 O PAS, β-elimination Assembly n.d. 
Hayakawa et al., 

(2009a) 

Archaea 

Halobacterium salinarum N 

Glc(4-1)GlcASO4(4-

1)GlcASO4 

(4-1)GlcASO4 

Stability n.d. 
Wieland et al., 

(1985) 

Methanococcus voltae N 

β-ManpNAcA6Thr-(1-4)-β-

GlcpNAc3NAcA-(1-3)-β-

GlcpNAc 

Assembly 
AglA 

(OST) 
Voisin et al., (2005) 

Methanococcus maripaludis N 

Sug-4-β-

ManNAc3NAmA6Thr-4-β-

GlcNAc3NAcA-3-β-GalNAc 

Motility 
AglB  

(OST) 

VanDyke et al., 

(2009) 

*1 not determined; *2 Periodic acid stain; Carbohydrate specific staining method; *3 Removal of Ser/Thr binding 

carbohydrate structure; *4 Protein anomalous migration on SDS-PAGE; *5 Responsible for glycan attachment to 

flagellin.  

Table 1. Flagellin glycosylations 

2.1. Gram-negative 

2.1.1. Pseudomonas spp. 

Pseudomonas spp. are ubiquitous in nature and frequently isolated as opportunistic 

pathogen of both plant and animal. P. aeruginosa has a single polar flagellum which is 

classified by its type of flagella filament (type-a and type-b) by flagellin subunit size, 

amino acid sequence, and antigenicity (Allison et al., 1985; Lanyi, 1970). Both types of P. 

aeruginosa flagellin are known to contain O-linked glycosylated proteins. P. aeruginosa 

PAK and P. aeruginosa JJ692 produce glycosylated type-a flagellin protein, which is 

modified with a rhamnose (Rha) residue based on the glycan attached at two sites of each 

flagellin monomer (Schirm et al., 2004a). The glycan structure of PAK flagellin is a 

complex oligosaccharide which is composed of Rha-(2-7 variable oligosaccharide chain)-

deoxyhexosamine (dhexN)-deoxyhexose (dHex), whereas JJ692 flagellin has only a single 

Rha glycosylation on both glycosylation site. The glycan form of PAO type-b flagellin is 

simpler than that of the PAK type-a flagellin, as it has a dHex linked sugar containing a 
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phosphate moiety at two sites of the flagellin monomer (Verma et al., 2006). With regards 

to the Pseudomonas spp. of plant pathogens, flagellin glycosylation from Pseudomonas 

syringae pv. glycinea, Pseudomonas syringae pv. tomato, and Pseudomonas syringae pv. tabaci 

6605 have been identified (Taguchi et al, 2003, and Takeuchi et al., 2003). The structural 

characterization of the flagellin protein from P. syringae pv. tabaci 6605 revealed that six 

sites of the flagellin were modified with a novel trisaccharide, which was composed of 

two rhamnosyl (Rha) residues and one modified 4-amino-4,6-dideoxyglucosyl (Qui4N; 

trivial name, viosamine; Vio) residue, β-D-Quip4N(3-hydroxy-1-oxobutyl)2Me-(1-3)-α-L-

Rhap-(1-2)-α-L-Rhap (Takeuchi et al., 2007). The flagella glycosylation island of these 

Pseudomonas spp. have been identified and located in the upstream region of their flagellin 

gene (Arora et al., 2001; Taguchi et al., 2006) (Figure 4). The PAK glycosylation island is 

composed of 14 ORFs (~16 kb) containing putative carbohydrate synthesis related genes 

and glycosyltransferase (orfN). In contrast, both the PAO and syringae pv. tabaci 

glycosylation island are more simple (only 4 and 3 genes, respectively), and a putative 

glycosyltransferase is encoded for each. Functional analysis of these glycosyltransferases 

demonstrated that they are essential for the addition of glycan structure to flagellin 

protein (Schirm et al., 2004a; Verma et al., 2006; Taguchi et al., 2006). Recently, a flagellin 

glycan biosynthesis gene cluster was newly identified from P. syringae pv. tabaci (Nguyen 

et al., 2009). The gene cluster is related to viosamine biosynthesis (viosamine island) and 

these genes are homologous to a part of the PAK glycosylation island (orfA-E and orfG) 

(Chiku et al, 2011). Mutagenesis analysis of glycosyltransferases and flagellin subunits 

demonstrated that flagellin glycosylation of PAK and PAO was not require for flagella 

biosynthesis and motility, but a remarkable reduction of virulence was observed upon 

mutation (Montie et al., 1982; Arora et al., 2005). Whereas, in P. syringae pv. tabaci, loss of 

flagellin glycosylation reduce not only virulence but also motility, in addition, mutations 

which resulted in a loss of glycosylation showed differences in the bundle formation of 

flagella, i.e. flagella bundles on the wild-type cell were loose, and in contrast mutant 

filaments seemed to be tightly interacting with each other. These results indicated that 

glycosylation stabilizes the filament structure and lubricates the rotation of the bundle 

(Taguchi et al, 2008, 2010). A similar conclusion was drawn for the glycan function of 

flagellin in the marine magnetotactic ovoid bacterium MO-1. Flagella bundles of MO-1 

were enclosed with in sheaths structure and its glycosylation was required for smooth 

swimming (Lefèvre et al., 2010). Flagellin proteins were also glycosylated and each 

flagella bundle consisted of seven individual flagella filament, which were organized in a 

hexagon with a seventh in the middle. Considering the compact arrangement of the seven 

flagella filaments in the bundle, flagellin glycosylation might function as a lubricant 

(Zhang et al., 2012). Recently, an fgt2 inactivation mutant from the biosurfactant 

producing species P. syringae pv. syringae B728a demonstrate upregulation of the late-

stage flagellar genes (class IV), and increase surfactant production (Burch et al., 2012; Xu 

et al., 2012). The authors suggested that over-production of the biosurfactant helps 

smooth cell migration and minimize flagella breakage on sticky surfaces, such as a leaf 

surface.  
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2.1.2. Campylobacter spp. 

Campylobacter jejuni have polar flagellum at one or both ends of the cell. The flagellin 

proteins are extensively O-glycosylated with structural analogues of the nine-carbon sugar 

pseudaminic acid (Pse), legionaminic acid (Leg), and their derivatives. Flagellin 

glycosylation is well characterized in three species of Campylobacter, i.e. Campylobacter jejuni 

81-176, C. jejuni NCTC 11168, and C. coli VC167. Flagellin modification of Campylobacter 

species were identified at 19 serine or threonine residues, 16 sites, and at least 4 sites, in C. 

jejuni 81-176, C. coli VC167, and C. jejuni NCTC 11168, respectively (Thibault et al., 2001; 

Logan et al., 2002; Zampronio et al., 2011). The flagellin molecular weight from C. jejuni 81-

176 is predicted by its amino-acid sequence to be 59.5 kDa, however flagellin from this strain 

is actually approximately 65 kDa. The additional 10% mass is attributed to attachment of 

substantial glycan structure (Thibault et al., 2001). In strain 81-176, the probable flagellin 

glycosylation related genes are largely involved in pseudaminic acid and acetamidino 

pseudaminic acid biosynthesis (Pse family), and lie downstream of the flagellin gene (about 

27 kb) (Guerry et al., 2006). Similarly, Pse family glycosylation islands were identified in 

both C. coli VC167 and C. jejuni NCTC 11168, and in addition, in C. coli VC167 other flagellin 

modification genes which are involved in the synthesis of legionaminic acid and its 

derivatives (ptm family) were identified (McNally et al., 2007). However, the 

glycosyltransferase which catalyzes the addition of sugar residues to the protein backbone 

has not been identified. A mutation in the first step Pse biosynthesis gene leads to 

intercellular accumulation of unglycosylated flagellin protein (Goon et al., 2003). The 

biological roles of Campylobacter flagellin glycosylation have been mentioned in many 

reports. In 2007, an excellent review of the functions of flagellin glycosylation from 

Campylobacter species was published (Guerry, 2007). 

2.1.3. Helicobacter pylori 

Helicobacter pylori is a human gastric pathogen associated with gastric and duodenal ulcers 

as well as gastric cancer. Flagella and motility are important for colonization onto the 

mucosal of the human stomach. Two distinct flagellin subunits (FlaA and FlaB) were 

identified as glycosylated, and their glycan structures were characterized in a similar 

manner to that of C. jejuni, with Pse5Ac7Ac found at seven sites on FlaA and ten sites on 

FlaB, in addition flagellin glycosylation is required for functional filament assembly (Schirm 

et al., 2003, 2005; Josenhans et al., 2002). The mutagenesis analysis of four genes (HP0178, 

HP0326A, HP0326B, and HP0114) previously reported to be involved in flagellar 

glycosylation and polysaccharide biosynthesis demonstrated a non-motile phenotype with 

no structural flagella filament and only minor amounts of flagellin protein (Schirm et al., 

2003). In contrast, inactivation of HP0518 resulted in altered motility and an increased level 

of flagellin glycosylation (Asakura et al., 2010). Complementation of a H. pylori HP0518 

mutant and a recombinant HP0158 protein assay demonstrated the decreased glycosylation 

level of H. pylori flagellin in vivo and in vitro suggesting that HP0518 functions in the 

deglycosylation of flagellin. The H. pylori HP0518 mutant showed an increased colonization 

capability for the gastric tissues of mice. These results indicate that HP0518 is involved in 

the deglycosylation of flagellin, thereby regulating pathogen motility. 
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2.1.4. Burkholderia spp. 

Burkholderia pseudomallei is also known as Pseudomonas pseudomallei and is important as a 

human and animal pathogen. In contrast, Burkholderia thailandensis is closely related to B. 

pseudomallei but is a nonpathogenic bacterium. Top-down and bottom-up mass spectrometry 

(MS) analyses of both flagellin proteins identified that there were posttranslationally 

modified with novel glycans (Scott et al., 2011). MS analysis of the flagellin carbohydrate 

moiety suggested that B. pseudomallei flagellin was modified with a glycan with a mass of 

291 Da, while B. thailandensis flagellin protein was modified with related glycans with a 

mass of 300 or 342 Da which included an acetylated hexuronic acid. A mutagenesis analysis 

of the lipopolysaccharide (LPS) O-antigen biosynthetic cluster demonstrated that it was 

important for flagellin glycosylation and motility in B. pseudomallei. 

2.2. Gram-positive 

2.2.1. Clostridium 

Clostridium spp., a gram-positive spore-forming anaerobic bacterium, is an emerging 

opportunistic pathogen towards humans and plants, and includes Clostridium botulinum, 

Clostridium difficile, and Clostridium glumae. The genus Clostridium provides the most 

examples of gram-positive bacterium flagellin glycosylation which has been known since 

the discovery of Clostridium tyrobutyricum (Bédouet et al., 1998, Arnold et al., 1998). 

Structural characterization of the carbohydrate moiety from C. botulinum flagellin has been 

achieved, and it was shown to be composed of the Leg derivative, 7-acetamido-5-(N-methyl-

glutam-4-yl)-amino-3,5,7,9-tetradeoxy-d-glycero-α-d-galacto-nonulosonic acid 

(αLeg5GluNMe7Ac) (Twine et al., 2008). For the C. botulinum strain Langeland, a 

bioinformatic analysis of the flagella glycosylation island was completed between flgB and 

fliD as a large gene cluster (~48 kb), many of which appeared to be involved in carbohydrate 

biosynthesis (Sebaihia et al., 2007). This glycosylation island could be divided into two 

regions, a variable region which was located immediately downstream of the flagellin gene, 

and a subsequent conserved region. The carbohydrate biosynthesis genes, which are 

significantly related to the legionaminic acid biosynthesis genes (ptm family) in 

Campylobacter coli, were encoded in the variable region, whereas the conserved region also 

encoded the carbohydrate biosynthesis genes (McNally et al., 2007). The C. botulinum strain 

Langeland was found to have homologous proteins to the capsular biosynthetic proteins 

from Streptococcus agalactia, including those derived from a second set of the sialic acid 

biosynthetic genes, neuA and neuB. 

2.2.2. Listeria monocytogenes 

Listeria monocytogenes is a gram-positive bacterium responsible for listeriosis, and Listeria 

species are found throughout the food-processing environment. Flagellin subunits are 

covalently modified by monomeric β-O-linked N-acetylglucosamine (GlcNAc) residues at 

three to six sites per subunit (Schirm et al., 2004b). The functional consequence of flagellin 



 

Glycosylation  138 

glycosylation in L. monocytogenes was investigated by modification of the O-GlcNAc 

transferase (Lmo0688 renamed to GmaR), which is located just upstream of the flagellin 

gene (Shen et al., 2006). An in-frame deletion mutant of lmo0688 (Δ688) resulted in a 

nonmotile bacteria similar to what was observed for Campylobacter species and Helicobacter 

pylori (Josenhans et al., 2002), but this phenotype differed from that reported for gram-

negative species, as it was caused by a loss of flagellin expression. The point mutation 

analysis of the functional residues involved in the glycosyltransferase activity demonstrated 

full flagellin expression (without glycosylation) and motility. The authors concluded that 

GmaR is a bifunctional glycosyltransferase. However, glycosylation of flagellin is not 

required for any flagella functions and it remains to be determined what role glycosylation 

of the flagellin protein plays in Listeria monocytogenes. 

2.2.3. Thermophilic Bacillus spp. 

Thermophilic Bacillus species have been isolated from deepest sea mud, hot springs, and soil, 

and produce multiple peritrichous flagella. These thermophiles belong to genus Geobacillus 

and are not considered to be pathogens regardless of their flagellin glycosylation. In recent 

years, O-linked flagellin glycosylation was reported in two thermophilic Bacillus species, 

Geobacillus stearothermophilus NBRC 12550 and Bacillus sp. PS3 (Hayakawa et al., 2009a). These 

flagellin glycosylations were confirmed by PAS staining and beta-elimination. The analysis of 

the modification sites indicated that glycan structures were attached to at least 4 sites of the 

flagellin monomer in Bacillus sp. PS3, but the structural detail of the carbohydrate chains and 

total number of the modification sites is currently unknown. Although it was a partial 

sequence, the probable glycosylation islands from both thermophilic bacterial species were 

confirmed downstream of these flagellin genes (J. Hayakawa and M. Ishizuka, unpublished 

data). In G. stearothermophilus, a dTDP-L-rhamnose biosynthesis gene cluster (rml operon) was 

also identified immediately after GTases, which is highly homologous to the glycan 

biosynthesis genes of the S-layer glycoprotein from a closely related G. stearothermophilus strain 

(G. stearothermophilus NRS2004/3a) (Novotny et al., 2004 and Steine et al., 2007). The 

heterologous gene expression of these flagellin in a Bacillus subtilis flagellin deficient mutant 

demonstrated that unglycosylated flagellin proteins were intracellularly accumulated and 

phenotypically paralyzed (Hayakawa et al., 2009a), however amino acid substitutions could 

restore functional filament assembly and motility (Hayakawa et al., 2009b. described below). 

These results supported the proposal that flagellin glycosylation is important for filament 

assembly. However, the carbohydrate structure and more detail of the biological functions 

remain to be elucidated. 

2.3. Archaea 

Archaeal flagellin glycosylation was first identified in Halobacterium salinarum (Wieland et 

al., 1985). Its flagellin subunit was glycosylated with sulfated glucuronic acid which is the 

same type as the cell surface S-layer glycoprotein. The detailed structural characterization of 

flagellin attached carbohydrate was accomplished for Methanococcus voltae (Voisin et al., 
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2005). M. voltae flagellin proteins were modified with a novel trisaccharide, β-

ManpNAcA6Thr-(1-4)-β-GlcpNAc3NAcA-(1-3)-β-GlcpNAc, N-linked to Asn. In addition, 

the peptide containing the N-linked sequence motif of the flagellin protein was Asn-X-

Ser/Thr, which is identical to that observed for S-layer protein glycosylation. Recently, a 

tetrasaccharide glycan which was N-linked to the flagellin subunits in M. maripaludis was 

also characterized, with a reported structure of Sug-4-β-ManNAc3NAmA6Thr-4-β-

GlcNAc3NAcA-3-β-GalNAc, where Sug is a (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-l-

erythro-hexos-5-ulo-1,5-pyranose, representing the first example of a naturally occurring 

diglycoside of an aldulose (Kelly et al., 2009, Jones et al., 2012). A deletion mutant analysis of 

three glycosyltransferases and an oligosaccharyltransferase (Stt3p homologue) from M. 

maripaludis revealed that these genes were responsible for flagellin glycosylation supported 

by the fact that glycan reduced flagellins were not assembled into the flagella filament 

(VanDyke et al., 2009). The structural and genetic analysis of archaeal flagellin glycosylation 

is frequently linked with S-layer protein glycosylation, and the reader is referred to a recent 

detailed review (Jarrell et al., 2010).  

3. Glycosylation pathway 

The complete pathway of bacterial flagellin glycosylation is still not clarified. There are two 

reviews which provide an overview of the O-linked flagellin glycosylation pathway (Logan 

et al., 2006; Nothaft & Szymanski, 2010). Bacterial flagella assembly occurs at the distal end 

of the basal body. The nascent flagellin protein is transported across the cytoplasmic 

membrane by a type three secretion system, and then proceeds through the narrow central 

channel of the flagella structure. Finally, the flagellin subunit associates with the tip of the 

filament structure which is elongated and reaches a length of about ten micrometers. In 

contrast to the archaeal flagellin export pathway, bacterial flagellin protein is not exposed 

outside of the inner membrane containing the periplasmic space until assembled into the 

filament. In other words, if flagellin glycosylation occurred extracellularly, it must be 

achieved far away from the cell. Therefore, it is reasonable to assume that the flagellin 

glycosylation machinery is located in the vicinity of the flagella basal body. Recently, the C. 

jejuni O-linked flagellin glycosylation machinery was localized at the pole of the cell along 

with the flagella (Ewing et al., 2009). Three genes involved in pseudaminic acid biosynthesis 

(PseC, which is the enzyme involved in the second step of PseAc synthesis, PseE, the 

putative PseAc transferase, and PseD, the putative PseAm transferase) were labeled with 

GFP fusion and expressed in C. jejuni 81-176. The fluorescent microscopic observation 

demonstrated that some, but not all, of the enzymatic glycosylation machinery was localized 

at the poles of the cells, consistent with a possible association with the flagellar basal 

body/export apparatus. Further study indicated that O-linked glycan biosynthesis could be 

reconstructed in vitro (Schoenhofen et al., 2009). The flagellin monomers from Campylobacter 

species are predominantly glycosylated with pseudaminic acid (Pse) and legionaminic acid 

(Leg). The precursors of these glycans are utilized in the form of CMP-activated sugars 

(CMP-Pse, CMP-Leg, and their derivatives), and they are added to the serine or threonine 

residues of flagellin by a specific glycosyltransferase (Note that the glycosyltransferases 
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responsible for O-glycan attachment to flagellin have yet to be identified). The eleven 

candidates of glycan biosynthetic enzymes (PtmF, PtmA, PgmL, PtmE, GlmU, LegB, LegC, 

LegH, LegG, LegI, and LegF) from Campylobacter jejuni have been individually purified and 

characterized. It was confirmed that Leg and its CMP-activated form were synthesized from 

fructose-6-phosphate. The authors also suggested that O-linked glycan biosynthesis was 

involved in the synthesis of the N-linked glycan. 

4. Amino acid substitutions of flagellin protein 

Many attempts have been carried out to obtain insight into the significance of flagellin 

glycosylation. One of the most visible experiments is the disruption of glycosyltransferase 

activity which allows the evaluation of the flagella assembly, filament morphology, motility, 

and virulence (see above). In this section, we focus on the effects of amino acid substitution 

in glycosylated flagellin proteins. 

4.1. Influence of loss of glycosylation to the motility and virulence 

4.1.1. Campylobacter jejuni 81-176 

The major flagellin of Campylobacter jejuni 81-176, FlaA, has been shown to be glycosylated at 

19 serine or threonine residues, and this glycosylation is required for flagellar filament 

formation (Thibault et al., 2001; Goon et al., 2003). Mutants were constructed in which each 

of the 19 serine or threonines that are glycosylated in FlaA was converted to an alanine. 

Eleven of the 19 mutants displayed no observable phenotype, but the remaining 8 mutants 

had two distinct phenotypes. Five mutants (mutations S417A, S436A, S440A, S457A, and 

T481A) were fully motile but defective in autoagglutination. Three other mutants (mutations 

S425A, S454A, and S460A) were reduced in motility and synthesized truncated flagellar 

filaments (Ewing et al., 2009). 

4.1.2. Pseudomonas syringae pv. tabaci 

Flagellin glycosylation of Pseudomonas syringae pv. tabaci 6605 has been reported at six serine 

residues, positioned at amino acids 143, 164, 176, 183, 193 and 201 (Taguchi et al., 2006). 

Mutants where 6 serine residues were converted to alanine individually were compared 

with the mutant containing the flagellin specific glycosyltransferase, fgt1. All mutants 

displayed reduced swarming ability, swimming speed, filament stability, and virulence 

(Taguchi et al., 2006; 2008; Takeuchi et al., 2008). In addition, reduction of the molecular 

weight of each mutant flagellin protein corresponded to the loss of a single carbohydrate 

chain moiety, and the degree of reduced biological functions were smaller than that of an all 

glycosylation-serine-replacement mutant (6 S/A). 

4.2. Restoration of filament formation without glycosylation 

Flagellin glycosylation of a thermophilic bacillus species was recently reported for Bacillus 

sp. PS3. Although there was low coverage of the flagellin sequence, at least four serine and 
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threonine residues were identified as glycosylation sites (Hayakawa et al., 2009a). This 

potentially glycosylated flagellin protein was expressed in B. subtilis Δhag (flagellin deficient 

mutant strain) for complementation. The resulting transformant was non-motile, and the 

produced flagellin protein derived from Bacillus sp. PS3 was not glycosylated and 

accumulated intercellularly. However, spontaneously isolated flagellin mutants partially 

restored the motility and produced a truncated flagella filament without glycosylation 

(Hayakawa et al., 2009b and J. Hayakawa and M. Ishizuka, unpublished data). All 

characterized suppressing mutations contained single or double point mutations and about 

30 residue intragenic duplications in the flagellin in the highly variable region (D2 and D3 

domain) and the end of the α-helical structure (D1 domain). The positions of these 

mutations were in good accordance with the previously reported flagellin glycosylations 

sites from many other bacterial species. To our knowledge, this is the first report of a gain-

of-function mutant of flagellin glycosylation. 

5. Conclusions 

Glycosylation is no longer a rare event regardless of whether bacteria or eukaryote are 

considered. Complete genomic information for several bacteria is now available and 

bioinformatic analyses demonstrated that bacterial flagellin glycosylation is widely spread 

over several genera. Many speculative functions of flagella glycosylation have been 

demonstrated, for example filament assembly (including flagellin export), filament stability, 

motility, virulence, gene regulation and mimicry with host-cell surface glycan structure. 

These glycosylation functions are similar regardless of the variety of eukaryote. In addition, 

the bacterial glycosylation pathway is becoming better defined; many genes which 

participate in flagellin glycosylation have been identified, but their number and loci are 

diverse in each bacterial species. Rapid increases in the knowledge of glycosyltransferases 

and glycan biosynthesis gene clusters will undoubtedly be achieved through 

glycoengineering with an aim to design a bacterial flagella motor for the development of a 

novel vaccine or drug-delivery-system. 
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