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1. Introduction 

1.1. Cell-wall polysaccharide of Porphyridium sp. 

1.1.1. Chemical studies 

The cells of the red microalga Porphyridium sp. are encapsulated within a polysaccharide, 

one of the main products of this alga and that is vital for its survival [1-4]. Due to the unique 

properties of this polysaccharide, which has tremendous value in the biotechnology field, 

strenuous, interdisciplinary efforts have been devoted in the past few decades to the study 

of its chemical structure, rheological properties, and bioactivities [3]. 

The red microalga Porphyridium sp. cell-wall polysaccharide comprises negatively charged 

heteropolymers with a relatively high molecular mass, apparently in the 2*106 Da range [5-

8]. The precise pka value of dissociation is very low and is somewhat difficult to determine 

due to the heterogeneous nature of the molecules. The polysaccharide is composed of 10 

different monosugars, proteins, and sulfate groups (~7.6 %w/w) [5-6, 8-10]. The prominent 

sugars are glucose:galactose:xylose in a molar ratio of 1:1.9:3.2 , respectively [10]. The minor 

sugars include rhamnose, arabinose, mannose, and methylated monosugars [5-6, 8, 10]. 

Moreover, it is anionic due to the presence of uronic acid groups and half-ester sulfate 

groups [1, 5-6, 11], the latter of which are attached to the 3 or 6 position of glucose and 

galactose [11].  

During growth, the external part of the polysaccharide (known as the "soluble fraction") is 

released to the surrounding aqueous medium and accumulates in the medium, while the 

remainder, i.e., most of the polysaccharide (~ 50-70%, known as the "bound fraction"), 

remains attached to the cell [1-4, 12]. When red microalgae are grown in a liquid medium, 

the viscosity of the medium increases continuously as the polysaccharides are released from 
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the cell surface [1, 13]. As a result, during the logarithmic phase of growth polysaccharide 

capsules are thinnest, while during the stationary phase they are thickest. Cell-wall 

polysaccharide production (quantity and quality) has been found to be affected by 

environmental conditions and genetic modifications [4]. For example, growing Porphyridium 

sp. in a medium deprived of nitrate and sulfate enhances production and solubilization of 

the polysaccharide [14]. Moreover, these conditions have also been shown to change 

polysaccharide compositions [14]. 

The precise structure of the Porphyridium sp. cell-wall polysaccharide is not fully understood 

due to its complexity and the lack of known specific enzymes that degrade it [3]. Although 

several studies have been conducted on Porphyridium sp. polysaccharide structure, most 

have focused mainly on the soluble fraction of the polysaccharide. The soluble 

polysaccharide of Porphyridium sp. was found to have a basic building block comprising 

aldobiouronic acid 3-O-( α -D-glucopyranosyluronic acid)-L-galactopyranose disaccharide 

[15]. This building block has also found in other red microalgal cell-wall polysaccharides, 

i.e., Porphyridium aerugineum and Dixoniella grisea [15]. Moreover, it was also discovered to 

be part of a bigger structure, composed of a larger, linear building block that contains (12 

or 14)-linked xylopyranosyl, (13)-linked galactopyranosyl, and (13)-linked 

glucopyranosyl or glucopyranosyluronic acid residues [16]. Two oligosaccharides isolated 

from the bound fraction were also investigated. They were shown to comprise three major 

neutral monosaccharides – Xylose, Glucose Galactose, and GlcA – the last of which did not 

contain the disaccharide building block that was found in the soluble polysaccharide 

fraction [17]. 

1.1.2. Rheological studies 

Their physicochemical natures make the red microalgal polysaccharides potentially valuable 

candidates for various industrial applications. One of the most important properties of the 

polysaccharides is their capacity to yield highly viscous solutions, comparable with those of 

industrial polysaccharides such as xanthan and carageenan, under relatively low polymer 

concentrations [4]. The Porphyridium sp. polysaccharide is composed of an oriented single, 

two-fold helical structure with a pitch of 1.6 nm (i.e., a single chain helix with two chemical 

repeats, which are probably the aldobiouronic acid) [18-19]. Chain stiffness is in a range 

comparable to that of rigid helicels such as xanthan gum and DNA [18].  

A heteropolyelectrolyte, the polysaccharide of Porphyridium sp. shows marked shear 

thinning (with no evidence of a Newtonian plateau, typical of a structured medium), 

thixotropic, and elastic behaviors [18-19]. It was suggested that the shear thinning behavior 

and the capability to yield highly viscous solutions under relatively low polymer 

concentrations can be attributed to the ability of the polysaccharide to form a weakly cross-

linked, elastic, gel-like network structure (that breaks down under shear).  

The similarity of the physicochemical properties of red microalgal polysaccharides to those 

of other polysaccharides currently used in industry as gelling agents, thickeners, stabilizers, 

and emulsifiers (such as xanthan) make the red microalgal polysaccharides a valuable 
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alternative source to these existing industrial polysaccharides. One of their unique 

advantages over those of other phycocolloids, mainly for commercial applications, is their 

stability over wide temperature, pH value, light, and salinity ranges [4, 6, 18-22]. 

There is evidence that upon heating the Porphyridium sp. cell-wall polysaccharide in 

solution, the weak elastic gel, transforms into a stronger elastic network that is reversible by 

cooling [19]. Aqueous preparations that gel with heating and melt upon cooling are rare and 

may have unique industrial applications. This phenomenon demonstrates again the notable 

stability attributed to the polysaccharides that differentiate them from other known 

phycocolloids, e.g., agar-agar. Another significant property of the red microalgal 

polysaccharides that confers on them great industrial value is their effectiveness in drag 

reduction [4, 23]. Indeed, they were proposed as ideal for cargo ships to lessen the drag felt 

by the marine transport vessels, thereby reducing the needed propulsion power and fuel 

costs or, alternatively, increasing ship speeds [24]. 

The Porphyridium sp. cell-wall polysaccharide was found to adsorb onto mica surfaces 

(negatively charged), forming ultrathin coating layers in the nanometer range [21-22]. The 

polysaccharide layer appeared to remain highly mobile at the surface, as flexible microfibrils 

(~ 10 nm in width and 1 to 2 nm in height), [21]. However, hyaluronic acid under the same 

conditions did not show any sign of adsorption onto the mica surfaces [22]. 

One of the most outstanding properties of Porphyridium sp. polysaccharide lubricating films 

is that only a subnanometric (0.5-1 nm) monolayer is needed to provide a stable, low-friction 

coefficient, robustness (high load carrying capacity), and good wear protection, and the 

friction force exhibits a weak dependence on sliding velocity [22]. Moreover, 

pressing/shearing was shown to affect the adhesion such that the application of pressure 

plays an important role in reordering the polysaccharide molecules between two surfaces, 

binding them together to protect them from damage and control their friction.  

In comparison to the other biopolymers investigated so far, the Porphyridium sp. 

polysaccharide at once possesses most of the tribological requirements for efficient 

biolubrication, e.g., steady low friction, stability at high pressures, stability at high and low 

velocities, and wear protection and stability over large shearing distances. In addition, the 

polysaccharide was shown to be superior to hyaluronic acid as biolubricants in terms of 

stability, friction reduction, and adsorption [21-22]. Also, the polysaccharide was affected 

neither by hyaluronidase activity, in contrast to hyaluronic acid [22], nor by carbohydrolases 

[25]. In summary, these properties combine to make the red microalgal polysaccharide of 

Porphyridium sp. ideal for applications in various industries, i.e., marine transport, 

biomedical, cosmetics, and nutrition. 

1.1.3. Bioactivities 

Among its bioactivities whose potential has been at least partially realized are the 

Porphyridium sp. polysaccharide’s anti-inflammatory and anti-irritating activities [26]. 

Found to be generally well-suited for a variety of skin applications, the polysaccharide was 
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shown to have a marked soothing affect on the irritation associated with common skin 

inflammations. Moreover, using TBA and FOX methods, the polysaccharide was also shown 

to have potent antioxidant properties [27]. Indeed, these proven polysaccharide bioactivities 

led to its current application as an anti aging agent by a leading global cosmetics company 

and have promoted further research aimed at discovering additional uses. 

In addition to bioactivities with dermal applications, the polysaccharide was also found to 

possess anti-viral activity against animal viruses [28-33]. Moreover, it was shown to 

significantly inhibit infection with retroviruses (murine leukemia virus, HIV-1, and HIV-2) 

and cellular transformation by murine sarcoma virus [29].  

The Porphyridium sp. polysaccharide can also be used as a nutritional agent, as the fibers it 

contains constitute a viable dietary supplement. Animal feeding experiments have shown 

that rats whose diets were supplemented with low concentrations of polysaccharide had 

considerably lower levels of serum cholesterol, triglycerides, and very low-density 

lipoprotein (VLDL) [34-36]. This diet also resulted in an increase in feces mass (by 130%) and 

in bile acid excretion (5.1 fold or more). Moreover, rats fed the polysaccharide exhibited 

longer small intestines (by 17%) and colons (by 8.5%) [36]. An important finding is the 

complete absence of toxic effects following the Porphyridium sp. polysaccharide diet in 

comparison to diets based on other known sulphated polysaccharides that were found to be 

toxic [37]. It was thus suggested that the Porphyridium sp. polysaccharide could be produced 

and marketed commercially as a dietary fiber supplement [35-36]. 

It is noteworthy to add that the beneficial bioactivities and fluid dynamic behavior observed 

in Porphyridium sp. polysaccharide are probably the direct results of the their general role in 

their natural surroundings, isolated from the sea sand, where the environmental conditions 

are subject to harsh, widely fluctuating conditions, i.e., extreme light and drought during 

ebb tides. Most likely the unique polysaccharide structure is responsible for these special 

properties. Indeed, the polysaccharide form the boundary between the cell and its 

surroundings, functioning as a capsular defense barrier. 

2. The 66-kDa glycoprotein 

Almost no work has been reported on the cell-wall proteins of red microalgae. However, a 

number of non-covalently-bound cell-wall proteins were detected in SDS polyacrylamide 

gel electrophoresis (SDS-PAGE) when the cell-wall polysaccharide complex of Porphyridium 

sp. was loaded on the gel after it had been boiled in sample buffer containing SDS and β-

mercaptoethanol (Figure 1). The most prominent of those proteins is named after its 

molecular mass: the 66-kDA cell-wall glycoprotein. The total mass of all N-glycans attached 

to the protein was estimated at 8 kDa [38-39]. 

The 66-kDa glycoprotein was found to be non-covalently, tightly bound to the 

polysaccharide [38-39]. Although it could not be co-eluted with the polysaccharide in size-

exclusion chromatography (SEC) by increasing NaCl concentrations (0.25-1.5M), it could be 

partially dissociated from the polysaccharide by SEC in the presence of 2M guanidine 
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hydrochloride. Furthermore, the glycoprotein could not be completely separated from the 

polysaccharide that had been denaturated by boiling, in buffer containing SDS and β-

mercaptoethanol before loading it into an SEC column. Western blot analysis (using 

polyclonal antiserum raised against the 66-kDa glycoprotein) revealed that the glycoprotein 

is specific to Porphyridium sp. and its closely related isolates, but it is not detected in other 

red microalgae, blue-green algae, or plants [38-39]. Indirect immunofluorescent assay and 

immune-gold labeling with the antiserum showed that the 66-kDa glycoprotein is located in 

the Golgi and on the cell surface of Porphyridium sp. 

 

Figure 1. Cell-wall proteins of the Porphyridium sp. polysaccharide. The polysaccharide (36 µg) was 

subjected to SDS-PAGE and stained with Coomassie blue.  

The 66-kDa glycoprotein was also detected in genetically spontaneous mutants that are 

resistant to the cellulose biosynthesis inhibitor 2,6-dichlorobenzonitrile (DCB) or in 

physiologically modified cell-wall complexes of Porphyridium sp. (from sulfate, nitrate, 

calcium starved cultures) [38-39]. 

By means of an in vitro assay, it was demonstrated that the 66-kDa glycoprotein binds to the 

cell-wall polysaccharide of Porphyridium sp. Furthermore, it also binds to the cell-wall 

polysaccharides of two other species of red microalgae, Dixoniella grisea and Porphyridium 

aerugineum, and to λ-carrageenan from a red seaweed. But it does not bind to the other 

polysaccharides examined, i.e., dextran, dextran sulfate, xylan, and xanthan gum [38-39].  

Sequencing of a cDNA clone encoding the 66-kDa glycoprotein revealed that this is a novel 

protein, with four potential N-glycan sites, which does not show similarity to any protein in 

the public domain databases.  

Although the sequencing clone revealed this glycoprotein to be a novel protein, it does show 

structural similarities, within the carbohydrate-binding domain (CBD), to some protein 

superfamilies, namely, glycosyltransferases, pectin lyase-like, sialidases, and conA-like 

lectins/glucanases in the SCOP and PROSITE databases, indicating a possible role of the 66-
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kDa glycoprotein in cell-wall polysaccharide synthesis/modification [38-39]. In addition, two 

amino acid sequences of the N-terminus and several internal peptides showed some 

homology to endo β 1-4 xylanase [38-39]. Moreover, this protein was found in the early 

stages of the cell-wall cycle as an intermediate product [40-41] and in all mutants 

characterized by modified cell walls [39], which indicates that it may be involved in 

polysaccharide biosynthesis. In addition, the glycoprotein was shown to play a role in 

biorecognition [42]: Porphyridium sp. cells that were treated with antibodies to the 66-kDa 

glycoprotein were not recognized by the microalga’s predator, the dinoflagellate 

Crypthecodinium cohnii [42]. 

3. N-Glycan structures of the 66-kDa glycoprotein 

The primary structures of the 66-kDa N-glycan have been investigated by various 

methodologies. Preliminary characterization of glycan moieties attached to the 66-kDa 

protein was done by lectin array analysis. The SDS-PAGE–resolved polysaccharide proteins 

(containing the 66-kDa glycoprotein) were blotted onto nitrocellulose membranes and 

probed with lectin-conjugated-biotin and streptavidin-conjugated-HRP according to Gravel 

[43]. The glycoprotein was detected by the lectins ConA (Concanavalin A), GNA (Galanthus 

nivalis lectin), and GSL I (Griffonia (Bandeiraea) simplicifolia lectin I (Figure 2). ConA has 

high affinity to α-D-mannose and lower affinity to α-D glucose [44]. GNA recognized a 

terminal mannose via α(1-3), α(1-6) or α(1-2) to another mannose residues [45]. The positive 

reactions with the lectins ConA and GNA suggest the presence of N-glycosidically-linked 

"high mannose" or hybrid"-type glycan chains while that with GSL I indicates the possible 

presence of O-linked chains comprising α-Gal/α-GalNac monosaccharides. In contrast, the 

glycoprotein could not be detected by the lectins DSA (Datura stramonium), AAA (Aleuria 

aurantia agglutinin), RCA I (Ricinus communis agglutinin I), PNA (Peanut Agglutinin), WGA 

(Wheat Germ Agglutinin), SNA (Sambucus nigra), or MAA (Maackia amurensis lectin, 

suggesting that it lacks the Galβ(1-4)GlcNAc, GlcNAc-Ser/Thr, α(1-6)-linked fucose, terminal 

β-D-galactose, Gal β(1-3) GalNAc, GlcNAcβ(1-4)GlcNAc, sialic acid terminally linked to α(2-

6)Gal, or GlcNAc and sialic acid terminally linked to α(2-3) Gal groups, respectively. 

Other direct, well-known methods for N-glycan analysis have also been conducted as 

follows. The glycoprotein was separated using a funnel-shaped polyacrylamide gel under 

conditions described previously [38-39]. The 66-kDa glycoprotein was detected by 

Coomassie blue staining, and its N-glycans were separated using in-gel digestion with 

PNGase F according to Küster et al. [46]. Following several cleaning steps [47], part of the 

separated N-glycans were labeled with the fluorescence agent 2AB according to the method 

described by Bigge et al. [48], and the rest were kept for mass spectrometry analysis. An NP-

HPLC analysis of the 2AB-labeled N-glycans revealed four main peaks, indicating a 

minimum of four different N-glycans in the sugar moieties of the 66-kDa glycoprotein 

(ranging in size from 7 to 8.5 GU values in terms of the glucose ladder standard) [47]. To test 

whether the N-glycan moieties contain other types of sugars, i.e., those containing a 3-linked 

fucose attached to the reducing terminal GlcNAc residue, the 66-kDa glycoprotein was 
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digested with PNGase A [47]. Following labeling of the PNGAse-A–released N-glycans, 

they were run on an NP-HPLC. The resulting NP-chromatogram was identical to that of the 

PNGase-F–released glycans, indicating the absence of a core α1,3-linked Fuc. 

 

Figure 2. Lectin analysis of the 66-kDa cell-wall glycoprotein. The cell-wall polysaccharide (36 µg) was 

subjected to SDS-PAGE. Following electrophoresis, the proteins were blotted onto a nitrocellulose 

membrane and probed with ConA, GNA, and GSL I.  

To elucidate the N-glycan structures, the next step was to use an exoglycosidase array of 

enzymes that normally cleave the non-reducing end of typical N-glycans. Following the 

digestion of the 2AB- labeled PNGase-F–released N-glycans with an exoglycosidase array 

(ABS, BTG, SPH, BKF, XYL, JBM), the glycan NP-HPLC chromatogram did not change in 

comparison to that prior to digestion, indicating that the mixture of N-linked glycans obtained 

from the 66-kDa glycoprotein of Porphyridium sp. differs from glycans known to date [47]. To 

obtain more information about N-glycan structures, the labeled and unlabeled N-glycans were 

analyzed by mass spectrometry (positive-ion MALDI-TOF MS and negative-ion ESI-MS). As 

expected, the results did not match the typical mass values of other known, investigated N-

glycans. Moreover, the 2AB-labeled N-glycan fraction released after PNGase F/A was also run 

on WAX-HPLC, and all the glycans were found to be neutral [47]. 

Traditionally, the gold standard for such studies would have been to include GC/MS and/or 

NMR data, which is not the case here. Since the glycoprotein is associated with the soluble 

polysaccharide, first it has to be separated from the polysaccharide (loading volume was 1.7 

ml). Working with the polysaccharide is tedious and time consuming due to its high 

viscosity with excessive shear thinning. Moreover, the polysaccharide contains numerous 

other compounds, which dictated that we first dialyze it against double distilled water and 

dilute its concentration to 0.3 w/v. At the gel loading point, the polysaccharide concentration 

was lower since it was diluted again with Laemmli sample buffer (lowering the final 

concentration to about 0.2 w/v). Each gel run yielded one band (1 cm × 0.5 mm) that 

contained about 30 µg of the glycoprotein and a relatively small amount of total N-glycans 
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(about 500 pmol, calculated by 2AB calibration standards). To analyze the glycan structures 

using GC-MS, it was vital to collect enough material. Glycans from 40 gel pieces were 

collected, separated from the gel pieces, and cleaned. We hydrolyzed the glycans by 

rigorous acid conditions, methylated them, and tried to compare their GC-MS spectra to that 

of known methylated monosaccharide standards. The methylated monosaccharide GC-MS 

spectra derived from the unknown glycans contained a lot of background noise that 

presumably hid the monosaccharide peaks. The noise probably derived from the 

preparation of the polyacrylamide gel pieces together with the steps leading to the GC-MS 

analysis. We now understand that conventional strategies (collection of small glycan 

amounts from relatively large gel pieces) are insufficient in this research. As a result, it was 

necessary to use indirect methodologies to obtain structural information. In future research, 

we hope to develop a method for producing uncontaminated proteins from the 

polysaccharide. 

To understand the N-glycan compositions suggested by the mass values, the identities of 

the constituent monosaccharides of the N-glycans were determined. The N-glycans were 

hydrolyzed and labeled with 2AB and analyzed using a combination of MS spectrometry 

and a comparison of monosaccharide standards to the hydrolyzed monosaccharide 

chromatograms of the N-glycans obtained by NP/RP-HPLC [47]. The analysis indicated that 

each of the N-glycans derived from the 66-kDa glycoprotein comprised the same four 

monosaccharides: GlcNAc, mannose, probably 6-O-MeMan and xylose. Integrating 

monosaccharide identity data with the MS analysis, a sugar composition can be determined 

for each N-glycan feature (Table 1): 

 

N-Glycan calculated mass (Da) 
Composition 

Mannose MeMan GlcNAc Xylose 

1894.70 5 3 2 1 

2026.75 5 3 2 2 

2056.76 6 3 2 1 

2188.80 6 3 2 2 

Table 1. Compositions of the N-glycans from the 66-kda glycoprotein [47] 

The N-glycans were also released by Endo-H and then analyzed by NP-HPLC. To estimate 

the difference in glucose unit values between the PNGase-F– and Endo-H–released N-

glycans from the 66-kDa glycoprotein, the NP-HPLC chromatograms of the two 

preparations were compared to the NP-HPLC chromatogram of a known standard of 

PNGase-F– and Endo-H–released N-glycans derived from RNase B. The differences in the 

elution times (in the NP-chromatogram) of the 66-kDa glycoprotein fractions compared to 

those of the RNase B fractions showed the same pattern. The NP-HPLC chromatogram of 

the N-glycans released from the RNAse B glycoprotein (data not shown) indicated that the 

size difference between 2AB-labeled glycans released by the action of PNGase F and Endo H 

is very small (0.16 GU or less). For example, the size of the oligomannose structure with five 

mannose residues, which was separated from RNase B by PNGase F action, exceeded that 
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obtained by Endo H digestion by a mere 0.16 GU. It was also shown that the size difference 

between the PNGase-F– and Endo-H–released glycans decreased as glycan size increased: 

Oligomannose structures with eight or nine mannose residues exhibited no size difference 

between PNGase-F– and Endo-H–released materials. The small difference in glycan size (in 

GU values) between the smallest glycan, released by PNGase F and yielding the smallest 

GU value (m/z 1895), and the major peak obtained in the NP-HPLC chromatogram after 

Endo H digestion, indicates that the glycan features are the same as those associated with N-

glycans from RNase B. A comparison of the sizes of the minor peaks for the derived glycans 

released by Endo H compared to those released by PNGase F digestion (corresponding to 

2027, 2057, 2189 Da) was in good agreement with the differences found in the measurements 

of the RNase B fraction. The yield of these glycans released by Endo H was found to be 

much lower than expected compared to the major glycan released by Endo H. This 

observation indicates the possible existence of structures with positions that interfere with 

Endo H activity. In addition, to verify that the glycans released after Endo H were derived 

from the same N-glycans released after PNGase F digestion, a comparison of analyses of 

their masses by MS indicated that they possess the same glycan features.  

To obtain a more detailed analysis, unlabeled oligosaccharides released by PNGase F were 

subjected to negative mode MS/MS [47]. The negative ion MS/MS spectra were typical of 

neutral glycans run as phosphate adducts (phosphate was the anion used to ionize the 

compounds) [47]. Spectra were interpreted according to published data [49-52]. All spectra 

contained a major ion 259 mass units below that of the molecular ion and consistent with a 
2,4A fragmentation (Domon and Costello [53] nomenclature) of the core HexNAc (Scheme 1, 

loss of 161 mass units and the phosphate adduct) following abstraction of the 3-proton by 

the phosphate. This mass loss showed no substitution of the core GlcNAc. 

 

Scheme 1. Fragmentation mechanism in the GlcNAc ring of the chitobiose core 

A second ion, 60 mass units below this ion, was also present in all compounds and 

corresponds to a BR cleavage (the subscript is used here to refer to the “reducing terminus”) 

(Scheme 2) consistent with a β(1→4)-linkage. 

The spectra of the compounds weighing 1991 and 2153 Da contained an additional ion, 203 

mass units below that of the 2,4AR ion, corresponding to a similar cleavage of the penultimate 

GlcNAc (Scheme 3).  
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Scheme 2. Fragmentation mechanism between the two GlcNAc residues of the chitobiose core 

 

Scheme 3. Fragmentation mechanism in the penultimate GlcNAc of the chitobiose core  

The spectra of compounds weighing 2123 and 2285 Da, that had an extra xylose residue did 

not contain this ion, suggesting that the xylose was attached to the 3-oxygen of the 

penultimate GlcNAc, blocking the abstraction of a proton at this site and accounting for the 

absence of the 2,4AR-1 ion [47]. 

Normally, xylose is found attached to the 2-position of the branching mannose. However, 

the negative ion MS/MS spectrum of [Man]2[GlcNAc]2[Xyl]1[Fuc]1 from horseradish 

peroxidase, which contains such a 2-linked xylose, contained an abundant ion 

corresponding to the 2,4AR-1 fragment (m/z 677) consistent with the 3-proton being available 

for abstraction [47]. Thus, it appears that the compounds with two xylose residues have one 

xylose attached to the 3-position of the penultimate GlcNAc residue [47]. 

The negative ion MS/MS spectra of all four compounds were virtually identical. The group 

of ions at m/z 1131, 1113, 1059, and 1029 (weak) are similar to those from high-mannose 

glycans and correspond to D, [D-18]-, O,3AR-2, and O,4AR-2 , respectively (Scheme 4)[47]. 

The similarity of these ions to those in the high-mannose glycans again suggests no xylose 

substitution on the core mannose. The mass of the D ion, which contains the 6-antenna, 

indicated a composition of [Hex]4[MeHex]2[Xyl]1 leaving after subtraction of the core 

GlcNAc residues. The similarity of the spectra to those of the high-mannose glycans 

suggests a similar topology, and therefore, the two branches of the 6-antenna contain Hex-
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MeHex and Xyl-Hex-MeHex compositions. The composition of the ion at m/z 631 appears to 

be [Hex]2[MeHex]1[Xyl]1, which is consistent with that of a D’ ion [the linkage (3 and 6) 

around the mannose attached to the 6-position of the core mannose is the same as that of the 

core mannose itself, Scheme 5]. 

 

Scheme 4. Fragmentation mechanism between the branching Mannose and the penultimate GlcNAc of 

the core core (D, O,3AR-2 and O,4AR-2 ions) 

 

 

Scheme 5. Fragmentation mechanism in the 6-branch mannose, creating the D’ ion. 

To further elucidate the glycan structures, each of the 2AB-labeled glycans were also 

analyzed by positive MS/MS. The results of the positive MS/MS spectra were in good 

agreement with those of the negative spectra, indicating that each of the N-glycans 

possesses the same core structure with a composition comprising [MeMan]2[Man]4 

[Xyl]1[GlcNAc]2 [47]. It can also be suggested that the glycans with the additional xylose 

residues (2026, 2188 Da) are attached to the penultimate GlcNAc. The major 2AB Endo-H–

released glycan was also analyzed by positive MS/MS, indicating the existence of two 

isomers in the fractions. The positive MS/MS spectra also indicated that different isomers 

exist in two of the glycan features [47]. 

Based on a combination of the two MS/MS spectra, the following structures were suggested 

[47] (Table 2): 
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N-Glycan calculated mass (Da) Suggested structure

1894.70 

 

 

 

 

                    

            

2026.75 
 

          

2056.76 

2188.80 

 

 

Table 2. Suggested structures of N-glycans separated from the 66-kDa glycoprotein within the-cell wall 

polysaccharide of Porphyridium sp. 

All these diverse glycan structures were found to have oligomannose topologies, containing 

unique motifs that differentiate them from other, known N-linked glycan structures found 

to date in other organisms, including the 6-methylation of mannose residues inside the 

glycan chain and the xylose attached in different positions, both of which have never before 

been reported [47].  

4. Effect of growth conditions on the cell-wall glycoproteins and on N-

glycans within the 66-kDa glycoprotein 

Since different physiological conditions were found to influence polysaccharide production 

[4] and since the 66-kDa glycoprotein is part of the polysaccharide structure, the study of 

Isomer 2Isomer 1

Isomer 1 Isomer 2 
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cell-wall glycoprotein production and its N-glycosylation may help us understand the 

biosynthesis process and function of the polysaccharide. As a result, in addition to N-glycan 

structure determination of the 66-kDa cell-wall glycoprotein, the effect of growth conditions 

along with the starvation of sulfate, nitrogen and calcium or the enrichment of sulfate were 

also tested on the composition and structure of the N-glycan moieties. Prior to the 

experiments, Porphyridium sp. cells were cultivated in accordance with the treatment 

conditions as follows: The sulfate-enriched growth medium contained four-fold sulfate 

concentration compared to the original medium (ASW). Sulfate starvation cultures were 

cultivated for five cycles (five days each) in a medium containing 1/100 of the sulfate 

concentration of the regular medium. Cells subjected to starvation of either nitrogen or 

calcium were cultivated in a deficient medium free of nitrate or calcium (without KNO3 or 

CaCl2, respectively). The Porphyridium sp. control cells were cultivated in ASW medium.  

After two weeks of growth, all of the cultures (sulfate enrichment or sulfate and nitrogen 

starvation, or regular medium), which were in the stationary phase, were centrifuged and 

the supernatant, which contained the polysaccharide, was isolated and dialyzed and 

concentrated to a final concentration of 0.3 w/v. The amount of cell-wall proteins within the 

concentrated polysaccharide (1.7 ml) was determined for each of the treatments by Lowry 

analysis [54]. To isolate the 66-kDa glycoprotein, the concentrated polysaccharide in the 

different treatments (1.7 ml) was run through SDS-PAGE electrophoresis, and the N-glycans 

were released by PNGase F following 2AB labeling. The NP-HPLC results for the N-glycans 

released from the 66-kDa protein were compared between the different treatments. In each 

NP-HPLC chromatogram, the molar ratios between the sugar features were determined 

with Empower HPLC software, which calculates the area under each peak, an indication of 

the sugar molar rate. The fluorescence rate was calibrated to mole amounts using 2-AB 

calibration standards. Each experiment was repeated twice. 

Polysaccharide protein amounts produced under sulfate or nitrogen starvation treatments 

were 90% less than under the control or sulfate enrichment condition. Accordingly, the N-

glycan amounts measured within the 66-kDa glycoproteins produced under these starvation 

conditions were also low (50 pmol compared to 500 pmol in the control and 450 pmol under 

the sulfate enrichment conditions). In addition, there was no difference compared to the 

control in either the cell-wall protein or N-glycan amounts measured within the 66-kDa 

protein produced under calcium starvation conditions. The NP-HPLC chromatogram of the 

2AB- labeled N-glycans released from the 66-kDa glycoprotein, which were separated from 

algal cultures grown in the different treatments, are shown in Figure 3. The molar rate 

percentage of the various peaks detected in the different treatments are described below 

(Table 3). There is no significant change between the NP-HPLC chromatogram and the 

molar ratio of the different glycans produced under the sulfate enrichment, calcium 

starvation or control condition. However, an additional N-glycan feature was detected in 

the algae grown under sulfate enrichment conditions (designated in *, Figure 3A). It is 

interesting to note that under sulfate starvation conditions, the largest N-glycans were not 

found in the NP-HPLC (peaks 6 and 7, Figure 3). Similar to the findings under sulfate 

starvation, the largest N-glycan was not detected in the NP-HPLC chromatogram of the 
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nitrogen starvation chromatogram (peak 7, Figure 3B). Therefore, the effects of nitrogen and 

sulfate starvation on N-glycosylation of the 66-kDa protein were found to be similar. These 

observations are in agreement with former studies [55-57], where it was reported that in both 

starvation conditions, the cells directed most of their energy toward the synthesis of cell- wall 

polysaccharide, an activity that is probably important for its survival. The decrease in 66-kDa 

protein production and in its N-glycan composition in both starvation conditions was 

expected, because under these conditions, the cells inhibit protein synthesis to the benefit of 

polysaccharide production. Although amounts of the glycoprotein under these starvation 

regimes are much lower than for the control, it is still being produced, just not at levels 

observed in the control cells, a finding that hints at the protein's vitality to cell survival. Since 

polysaccharide compositions in the sulfate/nitrogen deficient conditions (particularly the 

increased methyl hexose amounts) were found to differ from that of the control [57], the 66-

kDa protein's role in polysaccharide production cannot be ruled out (i.e., it could be part of a 

specific polysaccharide process that does not occur under these starvation conditions).  

 

Figure 3. NP-HPLC chromatograms of N-glycans released from the 66-kDa glycoprotein produced in 

different treatments: A – sulfate enrichment, B – Sulfate starvation, C – Nitrogen starvation, D –

Control/ASW medium 
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Since polysaccharide quantity in the medium was also found to be affected by growth phase 

(thinnest in logarithmic phase vs. thicker in stationary phase), cell-wall protein production 

and the 66-kDa glycoprotein N-glycans were studied as described above. In contrast to the 

nitrogen/sulfate starvation treatments, no difference was observed between the two phases 

of growth either in cell-wall protein production or in the 66-kDa N-glycan chromatograms. 

This observation lends credence to the hypothesis suggested by Ramus [58], i.e., in the 

stationary phase, polysaccharide production is not increased, but rather, its level of 

production exceeds its dissolution into the medium. If polysaccharide production were 

actually increasing throughout the stationary phase, then we would expect the 

corresponding increased energy consumption to be at the expense of protein production, as 

found in the algae grown under the sulfate/nitrogen starvation conditions. That was not the 

case here, where no difference in the cell-wall glycoprotein amount was observed between 

these two growth phases.  

 

Molar rate percentage of peak** 

 

Treatment 

7- n.d 6- n.d 5- 

2188.8 

Da 

n.d - *   4- 2056.76 

Da 

3- 2026.75 

Da 

2- n.d 1-1894.70 

Da 

5.28 Little 20.86 1.56 37.6 12.95 8.09 13.67 Sulfate 

Enrichment 

n.f n.f 13.97 n.f 49.59 18.21 1.64 16.59 Sulfate 

Starvation 

n.f 2.75 28.83 n.f 39.86 13.32 3.62 11.62 Nitrogen 

Starvation 

8.76 4.07 20.54 n.f 41.31 8.65 4.96 11.70 Calcium 

starvation 

7.17 2.55 24.74 n.f 35.42 12.23 4.08 13.81 Logarithmic 

phase  

6.77 2.21 25.68 n.f 35.08 12.93 4.32 13.01 Control 

** Each peak matches its GU value in line with those shown in the NP-HPLC (in Figure 3). The molar rate was 

calculated by Water Empower software. 

n.f- not found 

n.d- not defined 

Table 3. Molar rate percentage of the different N-glycans released from the 66-kDa glycoprotein that 

was isolated from the polysaccharide produced under different treatments. 

5. Significance 

Several years of intensive, multidisciplinary research have been directed at red microalgae, 

particularly Porphyridium sp. Among the various chemicals produced by Porphyridium sp., 

sulphated polysaccharides have perhaps garnered the most attention because of their 

potentially high value in biotechnological applications [2-4, 59-60]. However, little attention 
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has been devoted to elucidating the glycosylation process in red microalgae. To date, our 

study is the first to report the structures of several N-glycans from a specific red microalga 

species, Porphyridium sp. [47]. This knowledge is important for both basic and applied 

research. An understanding of the way in which the sugar moieties of glycoproteins are 

bound to the microalgal proteins will elucidate glycosylation pathways, in the process 

revealing the enzymes involved, and it will contribute to an understanding of the role(s) of 

the sugar moieties in microalgal glycoproteins. The findings of this study will thus facilitate 

the identification of glycan biosynthetic components, thereby making an invaluable 

contribution to a comprehensive understanding of N-glycosylation in red microalgae. Since 

the N-glycan structures within the cell-wall glycoprotein were found to be novel, one 

particularly intriguing research direction will be to test whether these glycosylation 

structures are unique to the formation of the cell-wall polysaccharide. Alternatively, perhaps 

they are part of the general glycosylation process in these red microalgae cells exclusively or 

in a variety of red microalgae species.  

Importantly, the technology for growing this species in controlled environments, both in 

small-scale laboratory facilities and in large-scale, semi-industrial systems, is already well-

developed. A stable chloroplast transformation system [62], and recently, a nuclear 

transformation system, have been developed [63], the latter of which has paved the way for 

the expression of foreign genes in red algae and has far-reaching biotechnological 

implications. A growing number of scientists around the world are building a novel 

assortment of pharmaceutical products using algae as cell factories [64-66]. However, 

although they are well suited to the large-scale production of recombinant proteins, algae 

have not been extensively utilized for protein expression [66-67]. There are a number of 

advantages in cultivating algae as a platform for producing therapeutic proteins. Relatively 

simple and cheap to grow, algae are also amenable to cultivation under a variety of growth 

conditions. In addition, they are energy efficient, have a minimal negative impact on the 

environment, and they are easy to collect and purify. It is, therefore, of the utmost 

importance to evaluate the glycans attached to any recombinant protein expressed in any 

system. Since glycosylation may affect the biological role(s) of proteins or elicit an 

immunogenic response, knowledge of the structure of the microalgal N-glycans is essential 

for these applications. Moreover, knowledge of glycosylation patterns in algae will enable 

us to evaluate the potential of red microalgae species, particularly of Porphyridium sp., to be 

used as hosts and as potential alternatives to other plant-derived, transgenic therapeutic 

proteins. Furthermore, to fully exploit the inherent biotechnological potential of algae, it is 

important to initiate an overarching research program on the glycosylation pathways in 

algae that will include in-depth study of the enzymes involved. On the basis of the results 

toward elucidation of N-glycoslation pathways in red microalgae, we will be able to suggest 

glycosylation pathway manipulations to produce therapeutic proteins with ideal 

glycosylation patterns. In addition, the study can provide information about the 

evolutionary status of the red microalgae, since the N-glycans of the red microalgae 

combine not only the structural features of eukaryotes and prokaryotes, they also contain 

additional elements (e.g., the O-methylhexose and the pentose modifications) never before 

reported in other organisms. 
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6. Suggested biochemical processes of N-glycosylation 

Our study to elucidate 66-kDa glycoprotein N-glycan structures found that those released 

from the 66-kDa protein possess oligomannose topology. The oligomannose topology may 

imply the existence of a conserved N-glycosylation pathway in red microalgae that takes 

place in the ER – which is common to eukaryotic organisms – and that includes the building 

of the N-glycan on the lipid substrate-dolichol-phosphate and its transfer to the protein. The 

results of other studies, such as that by Fishcer [68], also hint at the existence of this 

conserved pathway. Supporting evidence is based on homology searches for N-

glycosylation protein sequences using the TBLASTN function on the algae DNA scaffold 

contigs database. Homologs were found for all N-glycosylation protein sequences in the ER 

pathways in the algae, thus suggesting that the pathway is conserved in Porphyridium sp. as 

it is in other organisms (animals, plants, yeast, etc.).  

All the N-glycans investigated seem to go through the same intermediate glycan feature 

within their glycosylation biosynthesis, that probably have similar basic form based on the  

Man-9 topology structure constructed along the pathways typical of the ER. However, other 

enzymes, not typical to N-glycosylation pathways investigated so far, are involved in this 

pathway (e.g., the xylose, mannose, and methylated tranferase enzymes). However, we do 

not know at what stage the methyl and xylose groups were added to the mannoses during 

biosynthesis. In addition, we do not know if the glycan is assembled by incorporation of 

methyl-mannose rather than plain mannose or where the methyl groups are added to the 

intact high-mannose glycans. 

If the methylated mannoses were incorporated into the assembled core oligosaccharide 

(parallel to [Glc]3[GlcNAc]2[Man]9) via the same conserved pathway in the ER, the following 

mechanism can be suggested. The assembled core oligosaccharide (containing methylated 

groups) is transferred onto a nascent polypeptide imported into the ER (because of its signal 

sequence). This step is probably catalyzed by an enzyme complex (oligosaccharide 

transferase). Following Glucosidase I and II actions, the 3 glucose residues are cleaved from 

the end of the 6-branch, which initiates a process called glycan-mediated chaperoning. The last 

sugar that is removed in the ER is a mannose that is trimmed by an α-1,2-mannosidase 

through the action of ER mannosidase I (ManI, scheme 6), an enzyme that is also normally 

active in N-glycosylation processes, creating Man-8. However, this enzyme seems to be 

partially activated, as it does not cleave all the mannose residues. This phenomenon can be 

explained based on the methyl group structure of the oligosaccharide, which may interfere 

with enzyme cleavage. As a result, two different glycoprotein structures exit the ER (Figure 4): 

 

Figure 4. Two suggested intermediate features that are leaving the ER, Followed the ER they are getting 

their final structures within the Golgi apparatus (GA) by different enzymes. 
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Other changes are probably made in the GA by various xylose transferases (XylT) and a 

specific mannosidase (Man-2, scheme 6), the latter of which may only be able to remove the 

terminal mannose on the 3-antenna of the mannose-9 analog. Moreover, this enzyme may be 

a Golgi endomannosidase [69-70] that specifically cleaves the α1-2 linkage between the 

glucose-substituted mannose residue and the more internal portion of its polymannose 

branch, leading to the formation of the [Man]8[GlcNAc]2 (Man 8A) isomer [71]. 

Based on an assumption about N-glycosylation of the 66-kDa protein, namely, that 

processes occurring in the red microalgal ER are conserved as in eukaryote cells, a scheme 

for the mechanism of 66-kDa protein N-glycosylation is presented (Scheme 6). 

 

Scheme 6. Suggested mechanism of 66-kDa protein N-glycosylation, after formation of the basic core 

structure [GlcNAc]2[MeMan]9. 

Another mechanism for N-glycosylation in red microalgae may be suggested based on the 

assumption that mannose methylation takes place in the GA, after mannose incorporation 

into the assembled ER core oligosaccharide. The following mechanism (Scheme 7) is based 

on the additional assumption that the conserved ER pathway of red microalgae functions 

much the same as in most eukaryotes, including synthesis of a lipid-linked oligosaccharide, 

transfer of glucose trimming in the ER, and subsequent cycles of glucose re-addition and 

removal involved in protein-folding quality control. After core oligosaccharide construction 

in the ER (following mannosidase I (ManI) cleavage), the ER oligosaccharide is further 

modified in the GA. The pathway present in the Golgi probably includes the cleavage of 3 

mannose sugars by an α-1,2-mannosidase to produce [Man]5[GlcNAc]2, the known substrate 

for N-acetylglucosaminyltransferase I, which adds a single N-acetylglucosamine (GlcNAc) 

sugar onto the terminal of the 1,3-mannose in the mammalian glycosylation pathway. 

However, the structures found in this study indicate that the [Man]5[GlcNAc]2 is the 

substrate for the methyl-transferase (MeT) enzyme. Following the addition of methyl groups 

to the non-reducing end of the substrate, more changes occur, including the addition of 

mannose and xylose residues to the oligosaccharide mediated by specific transferases 
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(xylose tranferases designated as XylT-1 and XylT-2, and mannose transferases as ManT, 

scheme 7).  

 

Scheme 7. Suggested mechanism of 66-kDa protein N-glycosylation, after formation of the typical 

eukaryote core structure comprising [GlcNAc]2[MeMan]9  and based on the assumption that mannose 

methylation takes place in the GA. 

In both the suggested glycosylation pathways, xylose transferases, novel in N-glycosylation 

pathways, play prominent roles in the glycosylation. Since the ER pathway is probably 

conserved, it may be assumed that mannose methylation and xylose addition take place in 

the GA. Moreover, these novel enzymes are probably identical to those involved in the cell-

wall polysaccharide biosynthesis that occurs in the GA. 

A previous study of the evolutionary conservation of genes that participate in the N-

glycosylation pathway in Porphyridium sp. showed that the protein sequences had relatively 

high similarity (40%) to orthologous sequences from red and green algae, diatoms, 

mammals and yeast [68]. These data are indicative of the extent of conservation of the N-

glycosylation pathway and of its general importance in eukaryotes, particularly in 

photosynthetic organisms. The phylogenetic status of the algae can also be discussed based on 

the structure of the bodies involved in the N-glycosylation, e.g., ER and Golgi. The Golgi 

bodies and ER of red microalgae have not been extensively studied. Ultrastructural studies of 

these cells have produced little information. Both the smooth and rough ER appear to be 

present, although typically not in large quantities, in red algal unicells that have been studied. 

One characteristic shared by all unicells studied is a smooth ER system lining the entire 

interior of the plasma membrane [72-75]. The wide region between this peripheral ER system 

and the plasma membrane is 100-150 nm and free of major organelles (including ribosomes), 

but it does appear to contain a fibrous substance [76]. At irregular intervals, tubules arise at 
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right angles from the ER toward the plasma membrane. Some appear to fuse with the plasma 

membrane, suggesting direct communication between the ER and the cell exterior [72]. Evans 

et al. [77] suggested that this system may play a role in mucilage production.  

The presence of structures indicative of a eukaryotic organism may also imply that the ER-

based glycosylation occurs similar to how it does in other eukaryote organisms. In addition, 

all red algae also contain a typical eukaryotic GA, comprising 4 to 15 cisternae [72] that are 

especially prominent during sporogenesis. GA numbers, size and morphology may vary 

with the cell cycle or culture conditions [75], i.e., in the logarithmic phase of growth of 

Porphyridium, the Golgi bodies are larger and more numerous (due to its higher number of 

dictyosomes, which are larger and have distended cisternae) than in stationary phase cells 

[75, 78]. Whereas in most eukaryotes, the cis-Golgi is associated with the ER, in red 

microalgae it may be involved with other bodies. Some red microalgal ultrastructure 

micrographs show a thin line of an apparently fibrillar substance between the forming face 

of the Golgi body and its associated organelles [79], representing a possible cytoskeleton 

element, such as actin. Moreover, it may be responsible for maintaining the associations 

between dictyosomes and other organelles.  

Golgi involvement in the N-glycosylation pathway has yet to be elucidated. However, some 

reports have been published about the relationship between cell-wall polysaccharide 

biosynthesis and the Golgi. The GA of Porphyridium sp. [12, 58, 80] and of other red 

microalgae species [77, 81] were found to be involved in the synthesis of the cell-wall 

polysaccharide. Polysaccharide synthesis in P. aerugineum and Rhodella reticulata  and their 

subsequent packaging into vesicles takes place in the Golgi [77, 82]. The vesicles are 

transported, fuse with the plasma membrane, and then secrete their contents on the cell 

surface [12, 58, 77]. Involvement of the GA in polysaccharide biosynthesis may indicate the 

existence of an unusual algal glycosylation process, i.e., enzymes responsible for 

polysaccharide biosynthesis also act on other glycol-substrates, in our case N-glycans.  

The immunological natures of the additions unique to the red microalgal polysaccharide, 

including methylated and xylose residues, need to be determined. Xylose residues are found 

in N-glycans from plants [83], insects [84], molluscs [85], and rarely in parasitic helminths 

[86], but not normally in mammals [47]. In addition, the position and linkage of xylose 

(attached to the 2-position of the core branching mannose) is the same in all the organisms 

mentioned above. In this study, we found, for the first time, a xylose residue attached to the 

mannose of the 6-antenna and 1→3-linked to the penultimate GlcNAc of the core. These 

xylose residues are attached to a different monosaccharide (and in a different linkage 

position) than known glycans. Therefore, it is not known whether the xylose residues 

reported here have allergenic natures similar to those of the xylose residues found in other 

known glycans [87-88]. In addition, we also do not know how the additional methyl groups 

affect the protein and its immunogenic response. 

The many remaining questions about N-glycosylation in the cell wall of red microalgae prevent 

the full potential of Porphyridium sp. to serve as a host for therapeutic protein production from 

being realized. For example, is not known whether the unusual N-glycan structures are typical 

specifically to the 66-kDa glycoprotein (that is part of the polysaccharide) or whether they 
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represent glycosylation structures characteristic of all algal N-glycosylation processes. 

Therefore, microalgal potential as a protein production machine cannot be evaluated without 

additional and extensive research, preferably with a multidisciplinary approach. 
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