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1. Introduction

The problem of filter design for descriptor systems system has been intensively studied by
a number of researchers for the past three decades; see Ref.[1]-[6]. This is due not only to

theoretical interest but also to the relevance of this topic in control engineering applications.
Descriptor systems or so called singularly perturbed systems are dynamical systems with
multiple time-scales. Descriptor systems often occur naturally due to the presence of small
“parasitic” parameter, typically small time constants, masses, etc.

The main purpose of the singular perturbation approach to analysis and design is the
alleviation of high dimensionality and ill-conditioning resulting from the interaction of slow
and fast dynamics modes. The separation of states into slow and fast ones is a nontrivial
modelling task demanding insight and ingenuity on the part of the analyst. In state
space, such systems are commonly modelled using the mathematical framework of singular
perturbations, with a small parameter, say ε, determining the degree of separation between
the “slow” and “fast” modes of the system.

In the last few years, many researchers have studied the H∞ filter design for a general class of
linear descriptor systems. In Ref.[3], the authors have investigated the decomposition solution
of H∞ filter gain for singularly perturbed systems. The reduced-orderH∞ optimal filtering for
system with slow and fast modes has been considered in Ref.[4]. Although many researchers
have studied linear descriptor systems for many years, the H∞ filtering design for nonlinear
descriptor systems remains as an open research area. This is because, in general, nonlinear
singularly perturbed systems can not be easily separated into slow and fast subsystems.

Fuzzy system theory enables us to utilize qualitative, linguistic information about a highly
complex nonlinear system to construct a mathematical model for it. Recent studies show
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that a fuzzy linear model can be used to approximate global behaviors of a highly complex
nonlinear system; see for example, Ref.[7]-[19]. In this fuzzy linear model, local dynamics in
different state space regions are represented by local linear systems. The overall model of the
system is obtained by “blending" these linear models through nonlinear fuzzy membership
functions. Unlike conventional modelling where a single model is used to describe the global
behaviour of a system, the fuzzy modelling is essentially a multi-model approach in which
simple sub-models (linear models) are combined to describe the global behaviour of the
system.

What we intend to do in this paper is to design a robust H∞ filter for a class of nonlinear
descriptor systems with nonlinear on both fast and slow variables. First, we approximate
this class of nonlinear descriptor systems by a Takagi-Sugeno fuzzy model. Then based on
an LMI approach, we develop an H∞ filter such that the L2-gain from an exogenous input
to an estimate error is less or equal to a prescribed value. To alleviate the ill-conditioning
resulting from the interaction of slow and fast dynamic modes, solutions to the problem are
given in terms of linear matrix inequalities which are independent of the singular perturbation
ε, when ε is sufficiently small. The proposed approach does not involve the separation of states
into slow and fast ones and it can be applied not only to standard, but also to nonstandard
nonlinear descriptor systems.

This paper is organized as follows. In Section 2, system descriptions and definitions are
presented. In Section 3, based on an LMI approach, we develop a technique for designing
a robust H∞ filter for the system described in section 2. The validity of this approach is

demonstrated by an example from a literature in Section 4. Finally in Section 5, conclusions
are given.

2. System descriptions

In this section, we generalize the TS fuzzy system to represent a TS fuzzy descriptor system
with parametric uncertainties. As in Ref.[19], we examine a TS fuzzy descriptor system with
parametric uncertainties as follows:

Eε ẋ(t) = ∑
r
i=1 μi(ν(t))

[

[Ai + ΔAi]x(t) + [B1i
+ ΔB1i

]w(t) + [B2i
+ ΔB2i

]u(t)
]

z(t) = ∑
r
i=1 μi(ν(t))

[

[C1i
+ ΔC1i

]x(t) + [D12i
+ ΔD12i

]u(t)
]

y(t) = ∑
r
i=1 μi(ν(t))

[

[C2i
+ ΔC2i

]x(t) + [D21i
+ ΔD21i

]w(t)
]

(1)

where Eε =

[

I 0
0 εI

]

, ε > 0 is the singular perturbation parameter, ν(t) = [ν1(t) · · · νϑ(t)]

is the premise variable vector that may depend on states in many cases, μi(ν(t)) denotes
the normalized time-varying fuzzy weighting functions for each rule (i.e., μi(ν(t)) ≥ 0 and

∑
r
i=1 μi(ν(t)) = 1), ϑ is the number of fuzzy sets, x(t) ∈ ℜn is the state vector, u(t) ∈ ℜm is the

input, w(t) ∈ ℜp is the disturbance which belongs to L2[0, ∞), y(t) ∈ ℜℓ is the measurement
and z(t) ∈ ℜs is the controlled output, the matrices Ai, B1i

, B2i
, C1i

, C2i
, D12i

and D21i
are

of appropriate dimensions, and the matrices ΔAi, ΔB1i
, ΔB2i

, ΔC1i
, ΔC2i

, ΔD12i
and ΔD21i

represent the uncertainties in the system and satisfy the following assumption.
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New Results on Robust H∞ Filter for Uncertain Fuzzy Descriptor Systems 3

Assumption 1.

ΔAi = F(x(t), t)H1i
, ΔB1i

= F(x(t), t)H2i
, ΔB2i

= F(x(t), t)H3i
,

ΔC1i
= F(x(t), t)H4i

, ΔC2i
= F(x(t), t)H5i

, ΔD12i
= F(x(t), t)H6i

and ΔD21i
= F(x(t), t)H7i

where Hji
, j = 1, 2, · · · , 7 are known matrix functions which characterize the structure of the

uncertainties. Furthermore, the following inequality holds:

‖F(x(t), t)‖ ≤ ρ (2)

for any known positive constant ρ.

Next, let us recall the following definition.

Definition 1. Suppose γ is a given positive number. A system (1) is said to have an L2-gain less than

or equal to γ if

∫ Tf

0

(

z(t)− ẑ(t)
)T(

z(t)− ẑ(t)
)

dt ≤ γ2

[

∫ Tf

0
wT(t)w(t)dt

]

(3)

with x(0) = 0, where (z(t)− ẑ(t)) is the estimated error output, for all Tf ≥ 0 and w(t) ∈ L2[0, Tf ].

3. Robust H∞ fuzzy filter design

Without loss of generality, in this section, we assume that u(t) = 0. Let us recall the system
(1) with u(t) = 0 as follows:

Eε ẋ(t) = ∑
r
i=1 μi

[

[Ai + ΔAi]x(t) + [B1i
+ ΔB1i

]w(t)
]

z(t) = ∑
r
i=1 μi

[

[C1i
+ ΔC1i

]x(t)
]

y(t) = ∑
r
i=1 μi

[

[C2i
+ ΔC2i

]x(t) + [D21i
+ ΔD21i

]w(t)
]

.

(4)

We are now aiming to design a full order dynamic H∞ fuzzy filter of the form

Eε ˙̂x(t) = ∑
r
i=1 ∑

r
j=1 μ̂iμ̂j

[

Âij(ε)x̂(t) + B̂iy(t)
]

ẑ(t) = ∑
r
i=1 μ̂iĈi x̂(t)

(5)

where x̂(t) ∈ ℜn is the filter’s state vector, ẑ ∈ ℜs is the estimate of z(t), Âij(ε), B̂i and

Ĉi are parameters of the filter which are to be determined, and μ̂i denotes the normalized
time-varying fuzzy weighting functions for each rule (i.e., μ̂i ≥ 0 and ∑

r
i=1 μ̂i = 1), such that

the inequality (3) holds. Clearly, in real control problems, all of the premise variables are not
necessarily measurable. In this section, we then consider the designing of the robust H∞ fuzzy
filter into two cases as follows.
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3.1. Case I–ν(t) is available for feedback

The premise variable of the fuzzy model ν(t) is available for feedback which implies that μi is
available for feedback. Thus, we can select our filter that depends on μi as follows:

Eε ˙̂x(t) = ∑
r
i=1 ∑

r
j=1 μiμj

[

Âij(ε)x̂(t) + B̂iy(t)
]

ẑ(t) = ∑
r
i=1 μiĈi x̂(t).

(6)

Before presenting our next results, the following lemma is recalled.

Lemma 1. Consider the system (4). Given a prescribed H∞ performance γ > 0 and a positive constant
δ, if there exist matrices Xε = XT

ε , Yε = YT
ε , Bi(ε) and Ci(ε), i = 1, 2, · · · , r, satisfying the following

ε-dependent linear matrix inequalities:
[

Xε I
I Yε

]

> 0 (7)

Xε > 0 (8)

Yε > 0 (9)

Ψ11ii
(ε) < 0, i = 1, 2, · · · , r (10)

Ψ22ii
(ε) < 0, i = 1, 2, · · · , r (11)

Ψ11ij
(ε) + Ψ11ji

(ε) < 0, i < j ≤ r (12)

Ψ22ij
(ε) + Ψ22ji

(ε) < 0, i < j ≤ r (13)

where

Ψ11ij
(ε) =

⎛

⎝

(

E−1
ε AiYε + YεAT

i E−1
ε + γ−2E−1

ε B̃1i
B̃T

1j
E−1

ε (∗)T

[

YεC̃T
1i
+ E−1

ε CT
i (ε)D̃

T
12

]T −I

⎞

⎠ (14)

Ψ22ij
(ε) =

(

AT
i E−1

ε Xε + XεE−1
ε Ai + Bi(ε)C2j

+ CT
2i
BT

j (ε) + C̃T
1i

C̃1j
(∗)T

[

XεE−1
ε B̃1i

+ Bi(ε)D̃21j

]T −γ2 I

)

(15)

with
B̃1i

=
[

δI I 0 B1i
0
]

,

C̃1i
=

[

γρ
δ HT

1i

γρ
δ HT

5i

√
2λρHT

4i

√
2λCT

1i

]T
,

D̃12 =
[

0 0 0 −
√

2λI
]T

,

D̃21i
=

[

0 0 δI D21i
I
]

and λ =

⎛

⎝1 + ρ2
r

∑
i=1

r

∑
j=1

[

‖HT
2i

H2j
‖+ ‖HT

7i
H7j

‖
]

⎞

⎠

1
2

,

then the prescribed H∞ performance γ > 0 is guaranteed. Furthermore, a suitable filter is of the form
(6) with

Âij(ε) = Eε

[

Y−1
ε − Xε

]−1Mij(ε)Y
−1
ε

B̂i = Eε
[

Y−1
ε − Xε

]−1Bi(ε)
Ĉi = Ci(ε)E

−1
ε Y−1

ε

(16)
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where

Mij(ε) = −AT
i E−1

ε − XεE−1
ε AiYε −

[

Y−1
ε − Xε

]

E−1
ε B̂iC2j

Yε − C̃T
1i

[

C̃1j
Yε + D̃12ĈjYε

]

−γ−2
{

XεE−1
ε B̃1i

+
[

Y−1
ε − Xε

]

E−1
ε B̂iD̃21i

}

B̃T
1j

E−1
ε .

Proof: It can be shown by employing the same technique used in Ref.[18]-[19].

Remark 1. The LMIs given in Lemma 1 may become ill-conditioned when ε is sufficiently small, which
is always the case for the descriptor systems. In general, these ill-conditioned LMIs are very difficult
to solve. Thus, to alleviate these ill-conditioned LMIs, we have the following ε-independent well-posed
LMI-based sufficient conditions for the uncertain fuzzy descriptor systems to obtain the prescribed H∞

performance.

Theorem 1. Consider the system (4). Given a prescribed H∞ performance γ > 0 and a positive
constant δ, if there exist matrices X0, Y0, B0i

and C0i
, i = 1, 2, · · · , r, satisfying the following

ε-independent linear matrix inequalities:

[

X0E + DX0 I
I Y0E + DY0

]

> 0 (17)

EXT
0 = X0E, XT

0 D = DX0, X0E + DX0 > 0 (18)

EYT
0 = Y0E, YT

0 D = DY0, Y0E + DY0 > 0 (19)

Ψ11ii
< 0, i = 1, 2, · · · , r (20)

Ψ22ii
< 0, i = 1, 2, · · · , r (21)

Ψ11ij
+ Ψ11ji

< 0, i < j ≤ r (22)

Ψ22ij
+ Ψ22ji

< 0, i < j ≤ r (23)

where E =

(

I 0
0 0

)

, D =

(

0 0
0 I

)

,

Ψ11ij
=

(

AiY
T
0 + Y0AT

i + γ−2B̃1i
B̃T

1j
(∗)T

[

Y0C̃T
1i
+ CT

0i
D̃T

12

]T −I

)

(24)

Ψ22ij
=

(

AT
i XT

0 + X0 Ai + B0i
C2j

+ CT
2i
BT

0j
+ C̃T

1i
C̃1j

(∗)T

[

X0 B̃1i
+ B0i

D̃21j

]T −γ2 I

)

(25)

with
B̃1i

=
[

δI I 0 B1i
0
]

,

C̃1i
=

[

γρ
δ HT

1i

γρ
δ HT

5i

√
2λρHT

4i

√
2λCT

1i

]T
,

D̃12 =
[

0 0 0 −
√

2λI
]T

,

D̃21i
=

[

0 0 δI D21i
I
]

and λ =

⎛

⎝1 + ρ2
r

∑
i=1

r

∑
j=1

[

‖HT
2i

H2j
‖+ ‖HT

7i
H7j

‖
]

⎞

⎠

1
2

,

469New Results on Robust ∞ Filter for Uncertain Fuzzy Descriptor Systems
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then there exists a sufficiently small ε̂ > 0 such that for ε ∈ (0, ε̂], the prescribed H∞ performance
γ > 0 is guaranteed. Furthermore, a suitable filter is of the form (6) with

Âij(ε) =
[

Y−1
ε − Xε

]−1M0ij
(ε)Y−1

ε

B̂i =
[

Y−1
0 − X0

]−1B0i

Ĉi = C0i
Y−1

0

(26)

where

M0ij
(ε) = −AT

i − Xε AiYε −
[

Y−1
ε − Xε

]

B̂iC2j
Yε − C̃T

1i

[

C̃1j
Yε + D̃12ĈjYε

]

−γ−2
{

Xε B̃1i
+

[

Y−1
ε − Xε

]

B̂iD̃21i

}

B̃T
1j

Xε =
{

X0 + εX̃
}

Eε and Y−1
ε =

{

Y−1
0 + εNε

}

Eε (27)

with X̃ = D
(

XT
0 − X0

)

and Nε = D
(

(Y−1
0 )T − Y−1

0

)

.

Proof: Suppose the inequalities (17)-(19) hold, then the matrices X0 and Y0 are of the following
forms:

X0 =

(

X1 X2

0 X3

)

and Y0 =

(

Y1 Y2

0 Y3

)

with X1 = XT
1 > 0, X3 = XT

3 > 0, Y1 = YT
1 > 0 and Y3 = YT

3 > 0. Substituting X0 and Y0 into
(27), respectively, we have

Xε =
{

X0 + εX̃
}

Eε =

(

X1 εX2

εXT
2 εX3

)

(28)

Y−1
ε =

{

Y−1
0 + εNε

}

Eε =

(

Y−1
1 −εY−1Y2Y−1

3
−ε(Y−1Y2Y−1

3 )T εY−1
3

)

. (29)

Clearly, Xε = XT
ε , and Y−1

ε = (Y−1
ε )T . Knowing the fact that the inverse of a symmetric matrix

is a symmetric matrix, we learn that Yε is a symmetric matrix. Using the matrix inversion
lemma, we can see that

Yε = E−1
ε

{

Y0 + εỸ
}

(30)

where Ỹ = Y0Nε(I + εY0Nε)−1Y0. Employing the Schur complement, one can show that there
exists a sufficiently small ε̂ such that for ε ∈ (0, ε̂], (8)-(9) holds.

Now, we need to show that
(

Xε I

I Yε

)

> 0. (31)

By the Schur complement, it is equivalent to showing that

Xε − Y−1
ε > 0. (32)

470 Fuzzy Controllers – Recent Advances in Theory and Applications
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Substituting (28) and (29) into the left hand side of (32), we get

⎡

⎣

X1 − Y−1
1 ε(X2 + Y−1

1 Y2Y−1
3 )

ε(X2 + Y−1
1 Y2Y−1

3 )T ε(X3 − Y−1
3 )

⎤

⎦ . (33)

The Schur complement of (17) is

⎡

⎣

X1 − Y−1
1 0

0 X3 − Y−1
3

⎤

⎦ > 0. (34)

According to (34), we learn that

X1 − Y−1
1 > 0 and X3 − Y−1

3 > 0. (35)

Using (35) and the Schur complement, it can be shown that there exists a sufficiently small
ε̂ > 0 such that for ε ∈ (0, ε̂], (7) holds.

Next, employing (28), (29) and (30), the controller’s matrices given in (16) can be re-expressed
as follows:

Bi(ε) =
[

Y−1
0 − X0

]

B̂i + ε
[

Nε − X̃
]

B̂i
Δ
= B0i

+ εBε i

Ci(ε) = ĈiY
T
0 + εĈiỸ

T Δ
= C0i

+ εCε i
.

(36)

Substituting (28), (29), (30) and (36) into (14) and (15), and pre-post multiplying by

(

Eε 0
0 I

)

,

we, respectively, obtain

Ψ11ij
+ ψ11ij

and Ψ22ij
+ ψ22ij

(37)

where the ε-independent linear matrices Ψ11ij
and Ψ22ij

are defined in (24) and (25),
respectively and the ε-dependent linear matrices are

ψ11ij
= ε

⎛

⎜

⎝

AiỸ
T + ỸAT

i (∗)T

[

ỸC̃T
1i
+ CT

ε i
D̃T

12j

]T
0

⎞

⎟

⎠
(38)

ψ22ij
= ε

⎛

⎜

⎝

AT
i X̃ + X̃T Ai + Bε i

C2j
+ CT

2i
BT

ε j
(∗)T

[

X̃B̃1i
+ Bε i

D̃21j

]T
0

⎞

⎟

⎠
. (39)

Note that the ε-dependent linear matrices tend to zero when ε approaches zero.

Employing (20)-(22) and knowing the fact that for any given negative definite matrix W , there
exists an ε > 0 such that W + εI < 0, one can show that there exists a sufficiently small ε̂ > 0
such that for ε ∈ (0, ε̂], (10)-(13) hold. Since (7)-(13) hold, using Lemma 1, the inequality (3)
holds.

471New Results on Robust ∞ Filter for Uncertain Fuzzy Descriptor Systems



8 Will-be-set-by-IN-TECH

3.2. Case II–ν(t) is unavailable for feedback

The fuzzy filter is assumed to be the same as the premise variables of the fuzzy system
model. This actually means that the premise variables of fuzzy system model are assumed
to be measurable. However, in general, it is extremely difficult to derive an accurate fuzzy
system model by imposing that all premise variables are measurable. In this subsection, we
do not impose that condition, we choose the premise variables of the filter to be different from
the premise variables of fuzzy system model of the plant. In here, the premise variables of
the filter are selected to be the estimated premise variables of the plant. In the other words,
the premise variable of the fuzzy model ν(t) is unavailable for feedback which implies μi

is unavailable for feedback. Hence, we cannot select our filter which depends on μi. Thus,
we select our filter as (5) where μ̂i depends on the premise variable of the filter which is
different from μi. Let us re-express the system (1) in terms of μ̂i, thus the plant’s premise
variable becomes the same as the filter’s premise variable. By doing so, the result given in the
previous case can then be applied here. Note that it can be done by using the same technique
as in subsection. After some manipulation, we get

Eε ẋ(t) = ∑
r
i=1 μ̂i

[

[Ai + ΔĀi]x(t) + [B1i
+ ΔB̄1i

]w(t)

z(t) = ∑
r
i=1 μ̂i

[

[C1i
+ ΔC̄1i

]x(t)
]

y(t) = ∑
r
i=1 μ̂i

[

[C2i
+ ΔC̄2i

]x(t) + [D21i
+ ΔD̄21i

]w(t)
]

(40)

where

ΔĀi = F̄(x(t), x̂(t), t)H̄1i
, ΔB̄1i

= F̄(x(t), x̂(t), t)H̄2i
, ΔB̄2i

= F̄(x(t), x̂(t), t)H̄3i
,

ΔC̄1i
= F̄(x(t), x̂(t), t)H̄4i

, ΔC̄2i
= F̄(x(t), x̂(t), t)H̄5i

, ΔD̄12i
= F̄(x(t), x̂(t), t)H̄6i

and ΔD̄21i
= F̄(x(t), x̂(t), t)H̄7i

with

H̄1i
=

[

HT
1i

AT
1 · · · AT

r HT
11
· · · HT

1r

]T
, H̄2i

=
[

HT
2i

BT
11
· · · BT

1r
HT

21
· · · HT

2r

]T
,

H̄3i
=

[

HT
3i

BT
21
· · · BT

2r
HT

31
· · · HT

3r

]T
, H̄4i

=
[

HT
4i

CT
11
· · · CT

1r
HT

41
· · · HT

4r

]T
,

H̄5i
=

[

HT
5i

CT
21
· · · CT

2r
HT

51
· · · HT

5r

]T
, H̄6i

=
[

HT
6i

DT
121

· · · DT
12r

HT
61
· · · HT

6r

]T

H̄7i
=

[

HT
7i

DT
211

· · · DT
21r

HT
71
· · · HT

7r

]T
and

F̄(x(t), x̂(t), t) =
[

F(x(t), t) (μ1 − μ̂1) · · · (μr − μ̂r) F(x(t), t)(μ1 − μ̂1) · · · F(x(t), t)(μr −

μ̂r)
]

. Note that ‖F̄(x(t), x̂(t), t)‖ ≤ ρ̄ where ρ̄ = {3ρ2 + 2} 1
2 . ρ̄ is derived by utilizing the

concept of vector norm in the basic system control theory and the fact that μi ≥ 0, μ̂i ≥ 0,

∑
r
i=1 μi = 1 and ∑

r
i=1 μ̂i = 1.

Note that the above technique is basically employed in order to obtain the plant’s premise
variable to be the same as the filter’s premise variable; e.g. [17]. Now, the premise variable of
the system is the same as the premise variable of the filter, thus we can apply the result given
in Case I. By applying the same technique used in Case I, we have the following theorem.

472 Fuzzy Controllers – Recent Advances in Theory and Applications
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Theorem 2. Consider the system (4). Given a prescribed H∞ performance γ > 0 and a positive
constant δ, if there exist matrices X0, Y0, B0i

and C0i
, i = 1, 2, · · · , r, satisfying the following

ε-independent linear matrix inequalities:
[

X0E + DX0 I
I Y0E + DY0

]

>0 (41)

EXT
0 = X0E, XT

0 D = DX0, X0E + DX0>0 (42)

EYT
0 = Y0E, YT

0 D = DY0, Y0E + DY0>0 (43)

Ψ11ii
< 0, i = 1, 2, · · · , r (44)

Ψ22ii
< 0, i = 1, 2, · · · , r (45)

Ψ11ij
+ Ψ11ji

< 0, i < j ≤ r (46)

Ψ22ij
+ Ψ22ji

< 0, i < j ≤ r (47)

where E =

(

I 0
0 0

)

, D =

(

0 0
0 I

)

,

Ψ11ij
=

(

AiY
T
0 + Y0AT

i + γ−2 ˜̄B1i
˜̄BT

1j
(∗)T

[

Y0
˜̄CT
1i
+ CT

0i

˜̄DT
12

]T −I

)

Ψ22ij
=

(

AT
i XT

0 + X0 Ai + B0i
C2j

+ CT
2i
BT

0j
+ ˜̄CT

1i

˜̄C1j
(∗)T

[

X0
˜̄B1i

+ B0i
˜̄D21j

]T −γ2 I

)

with
˜̄B1i

=
[

δI I 0 B1i
0
]

,

˜̄C1i
=

[

γρ̄
δ H̄T

1i

γρ̄
δ H̄T

5i

√
2λ̄ρ̄H̄T

4i

√
2λ̄CT

1i

]T
,

˜̄D12 =
[

0 0 0 −
√

2λ̄I
]T

,

˜̄D21i
=

[

0 0 δI D21i
I
]

and λ̄ =

⎛

⎝1 + ρ̄2
r

∑
i=1

r

∑
j=1

[

‖H̄T
2i

H̄2j
‖+ ‖H̄T

7i
H̄7j

‖
]

⎞

⎠

1
2

,

then there exists a sufficiently small ε̂ > 0 such that for ε ∈ (0, ε̂], the prescribed H∞ performance
γ > 0 is guaranteed. Furthermore, a suitable filter is of the form (??) with

Âij(ε) =
[

Y−1
ε − Xε

]−1M0ij
(ε)Y−1

ε

B̂i =
[

Y−1
0 − X0

]−1B0i

Ĉi = C0i
Y−1

0

(48)

where

M0ij
(ε) = −AT

i − Xε AiYε −
[

Y−1
ε − Xε

]

B̂iC2j
Yε − ˜̄CT

1i

[ ˜̄C1j
Yε + ˜̄D12ĈjYε

]

−γ−2
{

Xε
˜̄B1i

+
[

Y−1
ε − Xε

]

B̂i
˜̄D21i

}

˜̄BT
1j

Xε =
{

X0 + εX̃
}

Eε and Y−1
ε =

{

Y−1
0 + εNε

}

Eε

with X̃ = D
(

XT
0 − X0

)

and Nε = D
(

(Y−1
0 )T − Y−1

0

)

.
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Proof: It can be shown by employing the same technique used in the proof for Theorem 1.

4. Example

Consider the tunnel diode circuit shown in Figure 1 where the tunnel diode is characterized
by

iD(t) = 0.01vD(t) + 0.05v3
D(t).

Assuming that the inductance, L, is the parasitic parameter and letting x1(t) = vC(t) and

vv
c

C

i

R

i icL

+

−

L
D

D

Figure 1. Tunnel diode circuit.

x2(t) = iL(t) as the state variables, we have

Cẋ1(t) = −0.01x1(t)− 0.05x3
1(t) + x2(t)

Lẋ2(t) = −x1(t)− Rx2(t) + 0.1w2(t)
y(t) = Jx(t) + 0.1w1(t)

z(t) =

[

x1(t)
x2(t)

]

(49)

where w(t) is the disturbance noise input, y(t) is the measurement output, z(t) is the state to
be estimated and J is the sensor matrix. Note that the variables x1(t) and x2(t) are treated as
the deviation variables (variables deviate from the desired trajectories). The parameters of the
circuit are C = 100 mF, R = 10 ± 10% Ω and L = ε H. With these parameters (49) can be
rewritten as

ẋ1(t) = −0.1x1(t) + 0.5x3
1(t) + 10x2(t)

εẋ2(t) = −x1(t)− (10 + ΔR)x2(t) + 0.1w2(t)
y(t) = Jx(t) + 0.1w1(t)

z(t) =

[

x1(t)
x2(t)

]

.

(50)

For the sake of simplicity, we will use as few rules as possible. Assuming that |x1(t)| ≤ 3, the
nonlinear network system (50) can be approximated by the following TS fuzzy model:
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Plant Rule 1: IF x1(t) is M1(x1(t)) THEN

Eε ẋ(t) = [A1 + ΔA1]x(t) + B11
w(t), x(0) = 0,

z(t) = C11
x(t),

y(t) = C21
x(t) + D211

w(t).

Plant Rule 2: IF x1(t) is M2(x1(t)) THEN

Eε ẋ(t) = [A2 + ΔA2]x(t) + B12
w(t), x(0) = 0,

z(t) = C12
x(t),

y(t) = C22
x(t) + D212

w(t)

where x(t) = [xT
1 (t) xT

2 (t)]
T, w(t) = [wT

1 (t) wT
2 (t)]

T,

A1 =

[

−0.1 10
−1 −1

]

, A2 =

[

−4.6 10
−1 −1

]

, B11
= B12

=

[

0 0
0 0.1

]

,

C1 =

[

1 0
0 1

]

, C21
= C22

= J, D21 =
[

0.1 0
]

,

ΔA1 = F(x(t), t)H11
, ΔA2 = F(x(t), t)H12

and Eε =

[

1 0
0 ε

]

.

Now, by assuming that ‖F(x(t), t)‖ ≤ ρ = 1 and since the values of R are uncertain but
bounded within 10% of their nominal values given in (49), we have

H11
= H12

=

[

0 0
0 1

]

.

Note that the plot of the membership function Rules 1 and 2 is the same as in Figure 2. By
employing the results given in Lemma 1 and the Matlab LMI solver, it is easy to realize that
ε < 0.006 for the fuzzy filter design in Case I and ε < 0.008 for the fuzzy filter design in Case II,
the LMIs become ill-conditioned and the Matlab LMI solver yields the error message, “Rank
Deficient". Case I-ν(t) are available for feedback

In this case, x1(t) = ν(t) is assumed to be available for feedback; for instance, J = [1 0]. This
implies that μi is available for feedback. Using the LMI optimization algorithm and Theorem
1 with ε = 100 μH, γ = 0.6 and δ = 1, we obtain the following results:

Â11(ε) =

[

−0.0674 −0.3532
−30.7181 −4.3834

]

, Â12(ε) =

[

−0.0674 −0.3532
−30.7181 −4.3834

]

,

Â21(ε) =

[

−0.0928 −0.3138
−34.7355 −3.8964

]

, Â22(ε) =

[

−0.0928 −0.3138
−34.7355 −3.8964

]

,

B̂1 =

[

1.5835
3.2008

]

, B̂2 =

[

1.2567
3.8766

]

,

Ĉ1 =
[

−1.7640 −0.8190
]

, Ĉ2 =
[

4.5977 −0.8190
]

.
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1

0

1

2 

M  (x  )

M  (x  )

x 

1

1

1
 −3  3

Figure 2. Membership functions for the two fuzzy set.

Hence, the resulting fuzzy filter is

Eε ˙̂x(t) =
2

∑
i=1

2

∑
j=1

μiμj Âij(ε)x̂(t) +
2

∑
i=1

μiB̂iy(t)

ẑ(t) =
2

∑
i=1

μiĈi x̂(t)

where
μ1 = M1(x1(t)) and μ2 = M2(x1(t)).

Case II: ν(t) are unavailable for feedback

In this case, x1(t) = ν(t) is assumed to be unavailable for feedback; for instance, J = [0 1].
This implies that μi is unavailable for feedback. Using the LMI optimization algorithm and
Theorem 2 with ε = 100 μH, γ = 0.6 and δ = 1, we obtain the following results:

Â11(ε) =

[ −2.3050 −0.4186

−32.3990 −4.4443

]

, Â12(ε) =

[ −2.3050 −0.4186

−32.3990 −4.4443

]

,

Â21(ε) =

[ −2.3549 −0.3748

−32.4539 −3.9044

]

, Â22(ε) =

[ −2.3549 −0.3748

−32.4539 −3.9044

]

,

B̂1 =

[−0.3053

3.9938

]

, B̂2 =

[−0.3734

5.1443

]

,

Ĉ1 =
[

4.3913 −0.1406
]

, Ĉ2 =
[

1.9832 −0.1406
]

.
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The resulting fuzzy filter is

Eε ˙̂x(t) =
2

∑
i=1

2

∑
j=1

μ̂iμ̂j Âij(ε)x̂(t) +
2

∑
i=1

μ̂iB̂iy(t)

ẑ(t) =
2

∑
i=1

μ̂iĈi x̂(t)

where
μ̂1 = M1(x̂1(t)) and μ̂2 = M2(x̂1(t)).
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Figure 3. The ratio of the filter error energy to the disturbance noise energy:
(

∫
Tf

0 (z(t)−ẑ(t))T(z(t)−ẑ(t))dt
∫

Tf
0 wT(t)w(t)dt

)

.

Remark 2. The ratios of the filter error energy to the disturbance input noise energy are depicted in
Figure 3 when ε = 100 μH. The disturbance input signal, w(t), which was used during the simulation
is the rectangular signal (magnitude 0.9 and frequency 0.5 Hz). Figures 4(a) - 4(b), respectively, show
the responses of x1(t) and x2(t) in Cases I and II. Table I shows the performance index γ with different
values of ε in Cases I and II. After 50 seconds, the ratio of the filter error energy to the disturbance input
noise energy tends to a constant value which is about 0.02 in Case I and 0.08 in Case II. Thus, in Case I
where γ =

√
0.02 = 0.141 and in Case II where γ =

√
0.08 = 0.283, both are less than the prescribed

value 0.6. From Table 9.1, the maximum value of ε that guarantees the L2-gain of the mapping from
the exogenous input noise to the filter error energy being less than 0.6 is 0.30 H, i.e., ε ∈ (0, 0.30] H in
Case I, and 0.25 H, i.e., ε ∈ (0, 0.25] H in Case II.
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Figure 4. The histories of the state variables, x1(t) and x2(t).
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The performance index γ

ε Fuzzy Filter in Case I Fuzzy Filter in Case II

0.0001 0.141 0.283

0.1 0.316 0.509

0.25 0.479 0.596

0.26 0.500 > 0.6

0.30 0.591 > 0.6

0.31 > 0.6 > 0.6

Table 1. The performance index γ of the system with different values of ε.

5. Conclusion

The problem of designing a robust H∞ fuzzy ε-independent filter for a TS fuzzy descriptor
system with parametric uncertainties has been considered. Sufficient conditions for the
existence of the robust H∞ fuzzy filter have been derived in terms of a family of ε-independent
LMIs. A numerical simulation example has been also presented to illustrate the theory
development.
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