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1. Introduction 

Structural control has been introduced, several decades ago, as one of the basic forms of 

smart systems [1, 2]. The structural system’s performance is enhanced by the presence of a 

closed loop feedback controller that employs observed data, about the system’s responses, 

in evaluating and applying corrective actions in order to improve its performance. Initially, 

conventional control theory has been the backbone of such controllers [1, 2]. Yet, the sheer 

complexity and size of such structural systems, coupled with the time required for solving 

the control problem and thus evaluating the necessary corrective actions, limited the 

applications of such concepts. Needless to say, such systems are intended to operate real 

time during the occurrence of earthquake events, which are usually over in about few 

minutes at the most. Recently, smart control algorithms have been introduced in an attempt 

to fill that gap [3, 4].  

Fuzzy control is one of the smart control strategies that were employed in structural 

control recently [5, 6]. Fuzzy controllers employ a set of input control variables, a rule-base 

and an inference engine to infer proposed actions aiming at the improvement of the 

system’s performance [7]. Several factors are crucial to a successful fuzzy controller design, 

namely, membership functions of fuzzy variables, rule-base generation and suitable 

implication functions [7]. Several membership functions were employed in various 

applications of fuzzy controllers. It is imperative to select the membership functions that 

best captures the nature of the modeled variables [7]. The generation of a relevant and 

suitable rule-base is another major concern, several approaches have been employed, such 

as relying on expertise of human operators as opposed to designing a smart algorithm 

which would generate the rule-base, such as neural networks. Finally, appropriate 

implication functions should be carefully selected in order to reflect the proper and 

expected performance of the designed controller. 
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Fuzzy control, as a heuristic-based control strategy and given the uncertain nature of the 

problem in question, would definitely require a reliability assessment and assurance 

algorithms to reinforce its implementation in such a critical application. Successful reliability 

evaluation of any given system is performed in consecutive steps that start with creating a 

comprehensive reliability assessment framework, developing a system model, complete 

definition of potential failure modes, transformation of such failure modes into limit state 

equations and finally the calculation of the reliability measures for the component and/or 

system in question. 

In this chapter, the design of fuzzy controllers, tailored for functioning as structural 

controllers, is outlined together with all necessary definitions of relevant variables, their 

membership functions, fuzzification and de-fuzzification procedures. The definition of the 

required inference engine and its underlying rule-base, implication functions and inference 

mechanisms are also presented. Knowing the importance of reliable performance of such 

heuristic systems and to ensure their general applicability, a reliability assessment 

procedure is also outlined to evaluate the reliability of the designed controllers. Finally, 

other potential applications of fuzzy inference systems are also briefly presented, such 

applications include, but not limited to, smart abstract deformed shape identification of 

structural systems under earthquake excitation.  

2. Smart sustainable structural systems 

2.1. Introduction 

Sustainable design entails a range of actions, decisions and procedures that would result in 

an environmentally friendly structural system. Such a concept has long been ignored in 

structural engineering and when realized was taken as one that relates to a single 

dimensional approach which always referred to the use of recyclable materials. Surely, 

recyclable materials are considered one of the main players in such a design problem, 

however, structurally speaking this process requires a multi faceted approach that employs 

higher levels of design decisions and considerations. A sustainable structural system would 

be one that employs the optimum amount of environmentally friendly construction 

materials with ensured reliable performance along its expected life time. The keywords here 

are being recyclable, optimum and reliable. Therefore, when designing a structural system 

that is expected to withstand uncertain loading conditions, such as earthquake loads, it is 

more sustainable to design a smart system that is capable of adjusting its own physical 

and/or engineering characteristics in order to improve its response to such loads, as opposed 

to a system that is designed to resist loads that it may or may not encounter during its life 

time. Smart systems, by definition, would result in lighter more optimum systems which 

definitely would be even more sustainable if they are constructed using a recyclable 

material, such as structural steel. Even if more invasive materials were used, such as, 

reinforced concrete, the optimum design coupled with the smart features would result in a 

more sustainable system. Therefore, it is proposed that if it is possible to design reliable 

smart structural systems, this would result in a more sustainable structural design. 
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Smart structural systems are defined as ones that demonstrate the ability to modify their 

characteristics and/or properties in order to respond favorably to unexpected severe loading 

conditions [8]. Conventional structural systems are usually designed to resist predefined 

loading conditions. However, due to the uncertain nature of engineering systems, and the 

lack of complete and accurate information about some types of highly uncertain loads, such 

as earthquakes, smart structural systems have emerged as a potential solution for such 

problems. Instead of designing systems to withstand a single extreme earthquake event that 

may or may not occur in its lifetime, new designs of smart systems could emerge where the 

system is capable of responding favorably, in a smart manner, to any type of loading that 

was not specifically considered at the design stage. The significance of such systems is even 

further enhanced when modeled systems are unconventional such as historic buildings 

and/or structures.  

As in all engineering endeavors, with a long deep look at god's creations, one can surely 

develop a lot of smart ideas. For example, if a similarity is drawn between a human trying to 

balance himself on a shaky table, and a building trying to balance itself on a shaking 

ground. The first, develops no mathematical models, solves no complicated sets of 

equations and yet is successfully capable of balancing himself. He simply employs three 

basic properties of his. First, his sensing capabilities, through his nervous system, which 

sends messages to his brain, signaling that an adverse effect is about to happen. The brain 

uses this piece of information and, based on its collection of experiences and reasoning 

capabilities, develop a balancing solution for the problem. The brain, then, sends specific 

commands to a set of muscles that are capable of restoring the balance of the human body. 

The body is balanced throughout a smart procedure that started with data collection about 

the current state of the body, then, data processing, state identification and problem solving. 

The final step is action implementation.  

If a building is required to balance itself on a shaking ground, in a similar manner, it should 

employ similar smart procedures. Therefore, for any structural system to behave in a smart 

manner, it should go through three basic steps. First, it has to realize, somehow, what is going 

on in terms of adverse effects. Second, it should be able to process this information, i.e., translate 

that into state identification, and accordingly decide the type of necessary countermeasures. 

Third, it should have the ability to perform whatever corrective action is required. A structural 

system, designed as such, should employ three basic components, integrated within its 

structure, in order to be able to perform the previously mentioned activities. 

 First, Sensors, which are analogous to the human nervous system, shall be employed in 

order to measure and register important internal and external information and / or 

changes. 

 Second, Processors, which are brain-like units, that are responsible for interpreting the 

collected data into meaningful state identifications and accordingly necessary corrective 

actions to be taken. 

 Third, Actuators, which are elements that maintain the capability of adjusting either the 

system structural characteristics or its own characteristics in order to respond favorably 

to external excitation. 
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According to the type and nature of the employed components, several levels of smart 

systems could be developed. It should be realized that both the actuators and processors, in 

a human being, have additional levels of smartness based on their nature. For example, the 

muscles, i.e., the actuators, exert a variable amount of force depending on the signals sent by 

the brain. The brain, itself, employs highly adaptive thinking and learning techniques in its 

reasoning process. Therefore, multiple integrated levels of smart structural systems could be 

realized according to the type and properties of the components used in its development. As 

the level of integration increases, the level of smartness of the resulting system increases. 

Figure 1 shows a model of a smart single-degree-of-freedom system, while Figure 2, shows a 

smart three-story building. Both figures outline the inter-relations among the additional 

components that drive the performance of the smart system. It should be noted that multi-

degree-of-freedom systems require a more complex processor that incorporates two main 

components, i.e., a fuzzy state identifier in addition to the fuzzy controller. The state 

identifier is required to define the deformed shape of the system, thus, guiding the firing 

sequence of relevant actuators. The following discussion outlines the properties of each of 

the three basic components in the sake of providing a comprehensive description of the 

system under consideration. 

  

Figure 1. Smart Single-Degree-of-Freedom System 

2.2. Sensors 

Sensors are the first component of any smart structural system. The system needs to be able 

to identify any changes occurring to its state in order to perform any corrective action [8]. 

The monitoring operation could be implemented in two possible modes. The first mode is a 

continuous monitoring for a select group of parameters, such as displacements, velocities 

and accelerations. The second mode is a continuous monitoring for a select group of damage 

indicators such as cracking, fatigue, corrosion or excessive deflections. The smart structural 

system application, in question, dictates the required mode of monitoring. Currently, such 

systems are either designed for structural control, or for structural health monitoring 
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applications. The first application requires the first mode of monitoring, while the second 

application requires the second mode of monitoring.  

 

Figure 2. Smart Sustainable Steel Frame 

There are several potential sensor technologies that are being used or considered for the 

smart structural applications in civil engineering. As indicated earlier, a higher level of 

smartness is attained if smart materials are used as sensors in addition to, or instead of, 

conventional sensor technologies. Conventional sensor systems are ones that do not posses 

any smart potential. In other words, such materials are incapable of altering or adjusting 

their own characteristics in response to external excitation. Their role would be to measure 

specific state variables and send such records to the processor unit for state identification 

and corrective action evaluation. Such sensors are very well documented and have been 

implemented in civil / structural applications for a long time. As an example, Displacement 

Transducers, Velocity and Acceleration Transducers and Strain Transducers are considered 

as conventional sensors. Smart sensors, on the other hand, by definition are ones that are 

capable of altering or adjusting their characteristics in response to external excitation. Such 

excitation might be temperature, electric current or mechanical movements, piezoelectric 

ceramics and optical fibers are examples of such smart sensors. 
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2.3. Processors 

Processors are brain-like units that are capable of evaluating the current state of the system, 

based on the data communicated by the sensors, and proposing corrective actions 

accordingly [8]. The processor shall be capable of operation in one of two modes. The first 

mode is system monitoring, where the processor only identifies the state of the system 

without taking any remedial actions. The second mode is system control, where the 

processor is called upon to identify the state of the system, evaluate the proper corrective 

action to be taken and implement the suggested action automatically. It should be pointed 

out that system control mode, by definition, employs system monitoring mode as a 

subsequent major component. One of the major factors that would dictate the mode of 

operation of the processor is the type of application and the state parameter being 

monitored. For example, RC elements might be supplied with a monitoring system, in order 

to identify any potential damage to a given element, such as steel corrosion, concrete 

cracking, excessive deflection, etc. The processor, in this case, is only called upon to identify 

the occurrence of a certain type of damage. Furthermore, any structural system could be 

supplied with a control system that is capable of suppressing the vibration and balancing 

the system under wind and earthquake excitations. Thus, a processor operating at the 

control mode would be required for such an application. 

2.4. Actuators 

Actuators act as the muscles of the structural system. Actuator technology is responsible for 

the development of materials and/or devices that would either apply control forces to the 

system or add new characteristics to the structure [8]. Actuators do not necessarily apply 

balancing forces to the structural system. In case smart actuators are utilized, the system 

adjusts its structural characteristics without any introduction of external forces, which is the 

current preferred approach.  

All applications that employed conventional actuator technologies were in the field of 

structural control [1, 2]. Structural control is one of the early applications of smart structural 

systems. There are three potential schemes of structural control, namely, Passive, Active and 

Semi-Active [1, 2, 4]. Passive control employs energy dissipation components that are 

designed for predefined limits and possess no adaptive capabilities. Although most of the 

practical applications of structural control, currently in operation, are of this primitive type, 

they do not show efficient performance under real conditions. Active Control employs the 

basic conventional structure of a smart structural system. It comprises sensors, processors 

and actuators that are, predominantly, of the conventional type [1, 2]. This type of control 

exerts an external control force that is utilized in balancing the system in response to 

external loads. Semi-Active control has received increased attention recently as the most 

practical and state of the art control system [3, 4]. Semi-Active control employs actuators 

that are, predominantly, of the smart type. Such actuators cannot inject mechanical energy 

directly to the system, yet, they have the ability to adjust their properties in a way to 

optimally adjust the response of the system under unforeseen external events. Some of the 
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smart actuators which are currently being explored for application in civil engineering 

systems are Shape Memory Alloys (SMA), Piezoelectric Ceramics, Electro-Rheological (ER) 

fluids, and Magneto-Rheological (MR) fluids. MR fluids, which are employed in 

manufacturing MR dampers, have already reached full-scale applications and showing very 

promising results in civil engineering applications [3, 4]. 

3. Fuzzy controllers as processors 

Fuzzy controllers are known to employ fuzzy logic and fuzzy set theory in developing 

their control strategies and evaluating control actions [9, 10, 11, 12, 13]. Fuzzy logic has two 

primary advantages, as opposed to conventional mathematical algorithms, when employed 

in control applications. First, it reduces the difficulties of modeling and analysis of 

extremely complex systems. Second, it is capable of incorporating several qualitative 

aspects of the human knowledge in the control laws [10, 11, 12, 13]. Fuzzy control is based 

on the fuzzy set theory which allows for the qualitative, imprecise and/or vague 

information to be quantitatively included in the evaluation of a representative control 

action [5, 6, 7, 10, 11, 12, 13]. Such inherent uncertainty would probably be ignored in a 

conventional mathematical algorithm, thus, rendering inaccurate control forces. Fuzzy set 

theory utilizes a very important tool in its manipulation procedure, which is the 

membership function [7]. The membership function, usually takes one of the following 

forms, i.e., triangular, trapezoidal or Gaussian, in order to evaluate a degree of 

membership for the element in question. This degree of membership is the major difference 

between this approach and conventional mathematical methods. Fuzzy control comprises 

four main components [5, 6, 7, 10, 11, 12, 13]; 

 Fuzzification: the state variables to be monitored, when measured, have crisp values. 

These values should be fuzzified, using fuzzy linguistic terms defined by the 

membership functions of the individual fuzzy sets. 

 Rule-Base: is a collection of If-Then rules describing the control laws governing the 

evaluation of necessary control actions. 

 Inference Engine: comprises two main stages, namely, Implication and Aggregation. 

The implication procedure evaluates a control action from each applicable rule, given a 

certain input fuzzy value. The Aggregation procedure evaluates a collective control 

action, i.e., output, by adding all control actions from all applicable rules in a 

predefined manner. 

 Defuzzification: the resulting control action is in a fuzzified form that could not be 

applied to any actuator device. Thus, this step evaluates an equivalent crisp value for 

the fuzzy collective control action.  

The processor, as identified in smart structural applications could perform two main tasks, 

the first is state identification, if necessary, while the second is control action evaluation. 

Figure 1 shows a fuzzy controller without a state identifier, while Figure 2 shows a fuzzy 

dual processor which comprises a fuzzy state identifier and a fuzzy controller. The fuzzy 

controller would employ the input variables in addition to the output of the fuzzy state 
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identifier in evaluating the appropriate control action. The following sections outline the 

implementation of fuzzy control in the development of the controller component of the 

processor while the fuzzy state identifier is discussed in section 5. The reliability of fuzzy 

controllers when operating within the smart system is a major concern if such a setup is 

considered for designing systems that are sustainable as defined above. The reliability 

framework and assessment procedures for fuzzy processors are discussed in section 4 of this 

chapter. 

3.1. Input variables 

Fuzzy controllers usually employ two input variables one is an error measure while the 

second is a rate of change of that error [7]. In that context, it is usually required of the 

controller to monitor the performance of the modeled system in order to minimize or even 

eliminate the error if possible. In case of structural control, this corresponds to the dynamic 

movement of the controlled system which is generally measured by the velocity of a select 

set of control points referred to as degrees of freedom [8]. Such degrees of freedom 

correspond to the floor levels of the framed building shown in Figures 1 & 2 and have 

assigned sensors to measure their movements. The rate of change of the measured variable, 

i.e., velocity, would be the acceleration of the control points. Therefore, in structural control 

applications it is expected to include the velocity and the acceleration of degrees of freedom 

as input variables to the fuzzy controllers. When dealing with complex systems, having so 

many degrees of freedom, and in order to attain the objective of reliable, optimum and 

sustainable systems, it is expected that the control actions would not be required of all 

actuators, however, a select group of actuators which are identified based on the deformed 

shape of the controlled building would be fired. Therefore, the input variables to the fuzzy 

controller should include an additional input variable which classify the current deformed 

shape of the monitored building. Thus, three dimensional rules would be necessary to drive 

the inference engine of structural fuzzy controllers. Input variables, as well as, output 

variables need to be fully defined as part of the design of a fuzzy controller. Such definition 

would not be complete without the identification of a suitable membership function for each 

variable. 

3.1.1. Membership functions 

A major step in defining control variables in fuzzy control applications is the definition of 

membership functions [7]. Such a task has to be performed in two main underlying steps. The 

first is the selection of the range of values which the function should cover while the second is 

the type of membership function to be employed and its relevant parameters. Several 

membership functions were reported successfully in several fuzzy control applications, such 

as, triangular, trapezoidal and Gaussian functions [7]. For structural control applications it is 

expected that either triangular and/or Gaussian membership functions would be suitable for 

modeling control input and output variables. The proper identification of a representative 

range of values for properly defining such membership functions should be based on actual 
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results of the modeled system. In order to evaluate the range of values, a structural model of 

the system under consideration should be created and a time history analysis shall be 

conducted [14, 15, 16]. The results of such an analysis would generate all potential values of 

velocities and accelerations of control points. These values could be used in identifying 

several bands within the expected range, correlate these bands to fuzzy variables and 

evaluate the required parameters, for each band, of the velocity and/or acceleration [17]. 

Gaussian Membership Functions, The Gaussian membership function is fully defined by two 

main parameters, namely, the average value and the standard deviation. Figure 3 outlines a 

generic Gaussian membership function with the expected form of the function [7, 8]. When 

modeling input and/or output variables using a Gaussian membership function, the time 

history of the modeled variable needs to be evaluated using a finite element model of the 

structural system under consideration. The resulting time history would allow the 

segmentation of the variable range into several bands with relevant fuzzy labels and 

suitable standard deviations.  

Average Value

3σ3σ

 

Figure 3. Generic Gaussian Membership Function  

 

Figure 4. A Singleton Gaussian Fuzzy Variable with Zero Label 
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For example a fuzzy variable with a zero label would have a zero average value and a very 

narrow standard deviation to simulate the singleton value of zero as shown in Figure 4. 

While a negative fuzzy variable would have a negative average value, that is equivalent to 

the range of values the variable takes as indicated by the time history analysis results, and a 

suitable standard deviation to model the dispersion about this average value as shown in 

Figure 5. 

 

 

Figure 5. A Gaussian Fuzzy Variable with Negative Label 

The standard deviation in the first case was selected to be 0.001 to reflect the narrow range 

and refelect the singleton nature of the zero label, while the standard deviation in Figure 5 

was selected to be 1 to reflect the uncertainty associated with the negative label. Depending 

on the range of input variables some or all of the memebrship functins could be used in 

modeling the variable.  

Triangular Membership Functions, The triangular membership function is one of the most 

widely used and successful membership functions in a wide variety of applications [7, 11, 

12, 17]. Figure 6 shows a generic triangular membership function where three basic 

parameters are necessary in order to fully define the function [17]. The parameters are 

identified as (a, b and c) in Figure 6 where (a) represents the lower bound of the function, (b) 

defines the average value and (c) defines the upper bound of the membership function. As 

in the case of Gaussian membership functions, the range of input values would dictate if the 

whole function is employed or just a portion is only enough to represent the modeled 

variable. Moreover, the amount of uncertainty incorporated in the function which is 

measured by the triangular base of the function, i.e., (c-a), is also problem dependant and 

should be evaluated based on the actual data resulting from the finite element model of the 

system. If the same variables, modeled with Gaussian membership functions, are modeled 

using triangular functions, the zero fuzzy label and the negative fuzzy label would be 

defined as shown in Figure 7 

Negative Average 

Value
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Figure 6. Generic Triangular Membership Function  

 

Figure 7. Triangular Fuzzy Variable with Zero, Positive & Negative Labels 

The triangular membership functions for variables shown in Figure 7 are defined 

mathematically as follows: 
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Where, (.), (.) & (.)
NEGATIVE ZERO POSITIVE

   = are the membership functions for the three fuzzy 

states of an input variable, NEGATIVE, ZERO & POSITIVE respectively; LB & UB = are the 

lower and upper bounds of the interval holding the range of values of the variable, as 

evaluated by a time history analysis, at any point in time, LB < 0 and UB > 0; and x = is the 

value of the variable, at any point in time. For the shown membership functions in Figure 7 

the bounds of the interval holding the variable range of values is [-0.55, 0.55]. 

3.2. Inference engine 

Fuzzy controllers are built on top of an inference engine which employs a rule-base that 

summarizes the necessary knowledge for inferring actions and an inference engine which 

performs the evaluation process based on fuzzy logic [7, 12]. The Inference engine comprises 

inference functions, inference mechanisms and aggregation functions that would combine 

the results of relevant fired rules into a single fuzzy output variable. There are several types 

of inference mechanisms, however, the most widely used in control applications is 

Mamdani’s inference [7, 12]. The nature of the problem at hand and its impact on the 

evaluation of the overall output variable dictates the choice of the relevant inference 

mechanism [7, 12]. The details of the inference mechanism are beyond the scope of this 

chapter, however, the method of developing a representative rule-base is further discussed 

in this section with examples from structural control applications. 

It is first important to identify the structure of the rule before building a rule-base. Rules 

could be multi-dimensional depending on the nature of the problem. In other words, rules 

could construct a one-to-one mapping between a single input and a single output, or a 

many-to-one mapping where several input variables are mapped to a single output variable. 

The number of inputs necessary to infer an output is obviously a problem dependant factor. 

In structural control applications it is necessary to include at least two measurable input 

variables in order to infer realistic output values [12]. Usually these two variables are some 

measure of error and rate of change of that error. The interpretation of an error term would 

be different from one application to the next. In case of structural control problems, any 

variable that would measure the movement of the system as a result of dynamic load effects, 

e.g., earthquakes, would qualify as an error measure. Therefore, it is reasonable to employ 
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the velocity of predefined degrees of freedom as the error measure while the acceleration, 

which is the rate of change of the velocity, would be employed as the second input variable 

[12]. Therefore, structural control applications should at least involve two input variables in 

their rules. This setup would be enough for s single degree-of-freedom system, as shown in 

Figure 1, where the movement of a single floor would completely define the deformed 

shape of the system and thus the necessary action to restore the original shape of the system. 

In case of multi-degree-of-freedom systems, such as the system shown in Figure 2, a third 

input variable is necessary in order to provide additional information about the abstract 

deformed shape of the structural system. The need for that additional variable is reflected in 

the enhanced fuzzy processor where a fuzzy pattern identifier is integrated with the 

controller in order to identify the abstract deformed shape of the system [19]. This 

information is crucial in firing relevant actuators with the proper output value and 

sequence. Therefore, rules that would drive the operation of a smart sustainable multi-

degree-of-freedom structural system are expected to employ three input variables and a 

single output variable [19].  

In reference to a single degree of freedom system, as shown in Figure 1, a sample rule 

should include two input variables and a single output variable. The input variables are the 

velocity and acceleration of the floor level, while the output variable is the voltage which is 

communicated to an MR damper in order to restore the system’s un-deformed shape. The 

rule could be defined as follows: 

 ( ) B ( ) NEGATIVE SMALL ( ) SMALLIF D t is IG AND D t is THEN V t is   (4) 

Where,  D t = is the velocity at the floor level at a given point in time (t),  D t = is the 

acceleration at the floor level at a given point in time (t), V(t) = is the command voltage at a 

given point in time (t), and BIG, NEGATIVE SMALL and SMALL are fuzzy variables. On 

the other hand, in reference to the smart system defined in Figure 2, the fuzzy controller 

would accept the velocity and acceleration of a given degree of freedom in addition to an 

abstract deformed pattern, as input and produce a voltage value as output. The voltage 

value is communicated to a specific MR damper, selected based on the abstract deformed 

shape of the system, which would ultimately result in improving the response of the system 

under the effect of earthquake excitation. A sample rule, as defined above, could be written 

as follows: 

 
1 1
( ) B ( ) NEGATIVE SMALL ( ) 2 ( ) SMALL

j
IF D t is IG AND D t is AND P t is THEN V t is  (5) 

Where,  i
D t = is the velocity at ith degree of freedom at a given point in time (t),  i

D t = is 

the acceleration of the ith degree of freedom at a given point in time (t), P(t) = is the abstract 

deformed pattern at a given point in time (t), Vj(t) = is the command voltage to the jth 

damper, at a given point in time (t), BIG, NEGATIVE SMALL and SMALL are fuzzy 

variables and 2 is a pre-defined abstract pattern, as evaluated by a smart pattern identifier 

[17, 19, 20].  
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3.3. Rule-base generation 

The heart of a fuzzy controller is its rule-base. The rule-base houses a collection of IF-THEN 

rules that summarize the knowledge-base that underpins the decisions made by the fuzzy 

controller [7, 11]. Being a non-parametric heuristic algorithm, fuzzy controllers are built to 

simulate a human operator’s reasoning when facing a similar control situation. In an effort 

to design smart sustainable structural systems, that are built to be autonomous systems, the 

developed rule-base should be capable of handling all potential situations that might arise 

during the system’s expected life time. Such controllers should be designed with self 

learning capabilities such that their initial rule-bases could be amended and expanded as 

new experiences and/or situations arise. There are currently several applications and 

toolboxes that allow the automatic extraction of rules of a given problem, knowing the 

input/output data sets of the problem without the pre-existing knowledge of a model for the 

system. This approach might be suitable for ill-defined systems. However, in case of 

structural systems under earthquake excitation, the system behavior is fully defined and 

could be identified using finite element models under several types of conventional analysis 

techniques. 

Therefore, it is important to start the creation of the rule-base with a set of rules that outlines 

the basic features of the problem at hand, if an analytical model of the system could be 

developed. Such rules could be generated using time history analysis results of finite 

element models of the structural systems under consideration [14, 15, 16]. The rule-base 

should be designed to incorporate a self-learning mechanism that is capable of expanding 

the current rule-base with newly generated rules that capture any new situations [11, 12]. 

There are several platforms that are designed to allow the creation of fuzzy controllers. The 

most widely used of these is the MATLAB environment with its fuzzy logic toolbox. This 

toolbox allows the user the ability to design fuzzy inference systems for control applications 

or any other applications, such as pattern classification. The toolbox has a user interface that 

allows the extraction of rules given input/output data sets of the modeled system. As 

mentioned earlier this approach is suitable for systems that are ill-defined and are difficult 

to model analytically. The MATLAB environment allows the creation of a static fuzzy 

inference system. In other words, the created rule base is static and will not expand to 

incorporate newly acquired experiences. Therefore, it is advisable to create an m-file that is 

capable of extracting new experiences and expanding the initial rule-base as the need arises. 

This is usually encountered when the system is faced with a set of input variables that do 

not fire any of the generated rules [11, 12]. The designer should define a mechanism 

whereby an initial rule, that defines the encountered case, is generated and then fine tuned 

later using a performance monitoring scheme [11, 12]. 

4. Reliability assessment of fuzzy controllers 

Engineering, by nature, is not an exact science. Engineering systems encounter several 

sources of uncertainties which render such systems subject to potential failures with certain 

probabilities. It is rather unrealistic to attempt to design a perfect engineering system with a 
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failure probability of zero [21 22, 23]. Yet, it is crucial to be able to evaluate the failure 

probability of any designed system and attempt to design such systems with predefined and 

acceptable probabilities of failure [21, 22, 23]. Such acceptable values would be comparable 

to other failure probabilities humans are accepting and facing in other daily activities [21, 22, 

23]. Non-parametric systems are often heuristic in nature and should be carefully analyzed 

in order to ensure their safe and reliable performance under all expected loading conditions. 

Smart structural systems, as outlined earlier, comprise sets of integrated components which 

provide added functionalities to the system, as opposed to conventional structural systems. 

Despite the fact that some of these components might have been proven reliable, in other 

applications, their reliable performance as an integral component of such a system needs 

validation and confirmation [8, 9].  

In order to develop a comprehensive reliability assessment scheme for smart structural 

systems, a generic reliability assessment framework needs to be defined. The generic 

framework functions as a blueprint that identifies the reliability assessment procedures and 

underlying models, functions and measures that are necessary to perform the reliability 

assessment as per the nature of the problem at hand [8, 9]. 

Furthermore, it is crucial to develop proper reliability measures and assessment procedures, 

at two basic levels. First, individual components shall be investigated, given the appropriate 

failure conditions that are of concern to the application at hand. Second, the overall system, 

where all underlying components are integrated and aggregated within a predefined limit 

state format, shall be investigated in order to evaluate an overall reliability of the resulting 

system. In this chapter, reliability assessment of a fuzzy controller as a component within a 

smart structural system is explored. The evaluation of an overall reliability of the system, as 

a whole, is beyond the scope of this chapter and is addressed in other publications [8, 9].  

4.1. Reliability assessment framework 

The main objective of this task is to outline a generic reliability assessment framework for 

evaluating the reliability of a fuzzy controller, as an integral component of a smart structural 

system. Figure 8 shows the reliability assessment framework for the fuzzy controller, when 

operating within a smart structural system. The framework identifies two main paths which 

are necessary to conduct any reliability assessment. The first identifies the main components 

which are involved in evaluating the commanded output of the controller, while the second 

identifies another set of components which are responsible for evaluating what would be 

the expected output of the fuzzy controller. The output of both paths, i.e., commanded 

output (supply) and expected output (demand), are the basic inputs to any reliability 

assessment procedure [9, 21, 22, 23]. 

The reliability assessment framework, when identifying the components involved in each of 

the referred paths, pinpoints several systems that need to be analytically modeled in order 

to be able to perform the reliability assessment as necessary. Figure 8 recognizes the 

following models; a structural model, i.e., finite element model of the system, fuzzy 
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controller’s model, inverse dynamics model and an inverse actuator’s model. All these 

components need to be defined and their analytical models developed in order to conduct 

the reliability assessment procedure. It should be pointed out that any system definition 

needs to be conducted in a format that lends itself to the reliability assessment calculations 

[8, 9]. Reliability assessments are related to the failure to supply what is initially demanded 

from the system. Potential failure modes, the identification of which is one of the first steps 

in the reliability assessment procedure, define situations where the analyzed system fails to 

supply and/or provide the required and/or demanded output. These potential failure modes 

are usually better expressed in a limit state format since this format lends itself to further 

developments in order to fully conduct the reliability assessment calculations. The following 

sections outline procedures for creating models for relevant components, identifying 

potential failure modes, presenting such failure modes in a limit state formats and finally 

conducting the reliability evaluation of a fuzzy controller. 

 

Figure 8. Fuzzy Controller Reliability Assessment Framework 

4.2. Analytical models 

As indicated earlier, the reliability assessment framework outlines the basic components 

which are involved in the evaluation of the reliability of the modeled system. The framework, 

shown in Figure 8, identifies four main components that should be analytically modeled in 

order to perform the reliability assessment procedure. The first component is a finite element 

model of the structural system which is necessary in order to evaluate the performance 

parameters of the system under the effect of an earthquake forcing function. Finite element 

models of structural systems are very well documented and any structural engineer is 
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capable of creating such models within one of many finite element software packages that are 

currently available for research and design purposes. The dynamic equation of motion, 

shown in Eq. 6 outlines the behavior of a single degree of freedom system under the effect of 

an earthquake forcing function [14, 15, 16]. Given the time history of the applied earthquake, 

i.e., ( )
g

x t , the solution of the equation shown in Eq. 6 results in the structural performance 

parameters of the modeled system, i.e., ( ), ( ) & ( )x t x t x t   [14, 15, 16]. 

 ( ) ( ) ( ) ( )
g

m x t c x t k x t m x t           (6) 

Where, m = floor mass; c = damping constant; k = system stiffness;  ( ), ( ) & ( )x t x t x t  = are 

acceleration, velocity and displacement of the floor level, respectively and ( )
g

x t = is the 

ground acceleration.  

The second component is the fuzzy controller model which was discussed in the previous 

sections. The development of such a model could be performed within a platform that 

supports fuzzy logic such as MATLAB among others. The development of such a model 

requires the full definition of input and output variables, including their relevant 

membership functions, the selection of a suitable inference engine, including inference 

function, inference mechanism and aggregation function. Finally, this also includes the 

generation of the rule-base necessary to perform any inference in order to evaluate the 

output of the controller, given the values of input variables.  

The remaining models are relevant to the inverse performance of the system which would 

start with the controlled structural parameters and back calculate the necessary controller 

output in order to reach that targeted performance [19, 25]. The inverse system comprise 

two main components an inverse dynamics model and an inverse actuator model. The 

inverse dynamics model is simply the dynamic equation of motion which models the 

behavior of a controlled structural system under the effect of an earthquake loading 

function. Eq. 6 models the dynamic response of the uncontrolled structural system. Eq. 7, 

however, includes an additional term that reflects the effect of a control force provided by 

the fuzzy controller [1, 2]. Eq. 7 should start by introducing a set of required structural 

parameters, these could be the result of a predefined deformed position which would 

provide the displacement of the floor level, then by using numerical methods, the 

accompanying velocity and acceleration could be evaluated and substituted in Eq. 7 to 

evaluate the required control force. 

 ( ) ( ) ( ) ( )
required g

F m x t x t c x t k x t            (7) 

Where, m = floor mass; c = damping constant; k = system stiffness;  ( ), ( ) & ( )x t x t x t   =  are 

acceleration, velocity and displacement of the floor level, respectively and ( )
g

x t = is the 

ground acceleration and Frequired = required control force. The identification of such 

predefined deformed shape would be mostly dependent on the nature of the system in 

question, its size and its  level of importance.  



 
Fuzzy Controllers – Recent Advances in Theory and Applications 238 

A second inverse model is necessary in order to translate the required control force into a 

required voltage which is the output of the fuzzy controller. This model should depend on 

the actuator, which is proposed in the application under consideration. For the proposed 

system, an MR damper is employed in applying any required corrective actions to enhance 

the system’s response. MR dampers have very well documented models that outline the 

relationship between the input voltage to the damper and the resulting force, given the 

damper parameters and response parameters of the controlled system [26, 27]. The modified 

Buc-Wen model is the most widely used and accepted within the community of smart 

materials [26, 27]. The outlined model requires input data relating to the response of the 

system, i.e., displacement   (x) and velocity ( x  )  , in addition to the applied voltage (v), in 

order to evaluate the MR damper force that would be applied to the system [26, 27, 28].  

4.3. Potential failure modes 

The evaluation of the supplied and demanded fuzzy controller output values is the first step 

in the reliability assessment calculations. Potential failure modes should be formulated, in 

order to define situations where the supplied output variable might not satisfy the 

demanded requirements and thus constitutes a failure condition for the fuzzy controller [9, 

19]. The failure modes are formulated in a limit state format in order to lend themselves to 

the reliability calculations that follow [9, 19]. In order to demonstrate the development of 

such failure conditions, two potential failure modes are explored for the proposed fuzzy 

controller. The first is a CRASH failure where the controller fails to produce any voltage 

signal, i.e., output value, to the MR Damper. The second is a MALFUNCTION failure where 

the controller produces an inaccurate voltage signal to the MR Damper. The reasons for each 

failure condition should be explored and all potential situations should be considered in 

evaluating a representative estimate of the reliability of the system [9, 19, 28].  

When evaluating failure conditions all potential situations resulting in such a failure shall be 

considered and included in the probability of failure to reflect the level of uncertainties 

involved in the problem [21, 22, 23, 28]. The probability of failure of the controller is, then, 

evaluated using a Monte-Carlo simulation algorithm where the probability of failure for any 

given simulation cycle is calculated through the definition of a corresponding limit state as 

follows [19, 21, 22, 23, 28]; 

  sup

1 1

plied

required

V
LS

V
   (8) 

Where, LS1 = is the limit state equation for the first failure mode, Vsupplied = is the supplied 

voltage command, Vrequired = is the voltage demand as evaluated by the inverse models and 

λ1 = is a cut off limit which defines when the supplied voltage is considered out of range. In 

case of a CRASH failure there is a single cutoff limit that defines when the controller is 

considered to have produced an insignificant output. These ranges are problem dependant 

and should be evaluated based on practical experience and the knowledge of the modeled 
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system’s behavior. For the purposes of demonstration if a value of 0.3 is assumed, this 

means that if the fuzzy controller proposed an output which is less than 30% of the expected 

value, this controller is considered to have crashed and is not functioning as expected. The 

reasons for such failure could be due to the lack of relevant rules that handles the set of 

input values presented to the fuzzy controller. If the rule-base is designed with the ability to 

expand and learn from experiences, this failure should trigger the creation of additional 

rules that are capable of handling such a situation [11, 12]. 

In case of a MALFUNCTION failure, which is defined as an inaccurate controller output, a 

single limit can’t properly define such a failure condition and as a result two limits need to be 

defined. The limits would define an acceptable range within which the output is expected to 

fall. If the controller’s output is below or above that range, the controller is considered to have 

malfunctioned [28]. This type of failure is addressed by fine tuning currently existing rules within 

the rule-base. Therefore, in such a case two limits are necessary in order to fully define the failure 

condition, i.e., a lower limit and an upper limit. Two underlying failure conditions result and two 

limit state equations could be written to express this failure as shown in Eqs. 9 [28]; 

  

sup

21 21

sup

22 22

plied

required

plied

required

V
LS

V

V
LS

V





 

 

  (9) 

Where, LS21 and LS22 = are the limit state equations for scenarios 1 & 2 of the second failure 

mode, Vsupplied = is the supplied voltage command, Vrequired = is the voltage demand as 

evaluated by the inverse models and λ21 and λ22 = are lower and upper cut off limits 

respectively. Such limits are functions of the type of problem and relevant failure modes and 

resulting practical implications [28]. Monte-Carlo simulatin could be employed in 

generating values for all random variables which are involved in the problem at hand. Thus, 

each simulation cycle will result in a value for Vsupplied and Vrequired and a corresponding 

evaluation of LSi. The probability of failure for a given limit state, at any given point in time, 

is then evaluated using the following equation [9, 19, 21, 22, 23]; 

 ( )
fi

N
P t

N
   (10) 

Where, Pfi(t) = is the probability of failure of the ith limit state, at any given point in time, Nλ 

= is the number of simulation cycles where the processor output resulted in a failure 

condition, depending on the failure condition in reference to Eqs. (8) & (9), and N = is the 

total number of simulation cycles. 

The overall probability of failure of the whole processor should be evaluated, taking into 

consideration all potential failure combinations. This is accomplished by applying a union 

operator to evaluate the probability of failure of a single limit state with several underlying 

scenarios, as well as, the overall probability of failure considering all potential limit states. 
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The probability of failure of both limit states described in Eq. 9 could be evaluated as [19, 21, 

22, 23, 24, 28]; 

  

   

21

21

22

22

2 21 22 21 22 21 22

( )

( )

( ) ( ) ( ) ( ) * ( )

f

f

f f f f f

N
P t

N
N

P t
N

P t P LS LS P t P t P t P t









    

 (11) 

Where, Pf2(t) = is the probability of failure of condition (2), LS21 and LS22 = are underlying 

limit states as defined in Eq. (11), Pf21(t) & Pf22(t) = are the probabilities of failure of 

underlying limit states (22 and 21), Nλ21 and Nλ22 = are the number of cycles where the 

processor output resulted in a failure conditions, i.e., < λ21 and > λ22 respectively in reference 

to Eq. 9, and N = is the total number of simulation cycles. In order to evaluate the overall 

probability of failure of the processor, taking into consideration all potential limit states, this 

could be defined as [19, 21, 22, 23, 24, 28]; 

    1 2 1 2 1 2
( ) ( ) ( ) ( ) ( ) * ( ) * * ( )

f i f f fi f f fi
P t P LS LS LS P t P t P t P t P t P t             (12) 

Where, Pf(t) = is the overall probability of failure of the processor, LS1, LS2 and LSi = are 

potential limit states as defined in Eqs. (8 & 9), Pf1(t), Pf2(t) and Pfi(t) = are relevant 

probabilities of failure of limit states, as defined in Eqs. (10 & 11). The above calculations are 

performed at a given point in time Ti, which results in an instantaneous reliability measure 

Pf(t) for the fuzzy controller. Figure 9, shows a block diagram for the instantaneous 

reliability calculation procedure, taking into consideration all potential failure modes. 

 

Figure 9. Instantaneous Reliability Evaluation  
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The resulting probability of failure is an instantaneous probability due to the time 

dependant nature of the problem under consideration. Therefore, a reliability time history 

could be developed to reflect the time variation of the controller reliability during operation 

under the effect of a real earthquake event. Figure 10, shows the step by step calculation 

procedure for evaluating a reliability time history for the fuzzy controller. Figure 11, shows 

a sample reliability time history diagram. The time history diagram is helpful in allowing 

the user to visualize the performance of the controller during a real time event and thus 

identifying events where the performance was unacceptable. The indentified time step 

where the controller failed to satisfy its expected performance could help in pinpointing the 

reasons for such unreliable behavior. 
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Figure 10. Reliability Time History Evaluation 

5. Enhanced fuzzy controllers 

5.1. Introduction 

In reference to Figure 2, a multi-degree-of-freedom system would require an enhanced 

fuzzy controller in order to properly suppress any undesirable response of structural 

systems under earthquake loadings. One of the important enhancements that could be 

integrated with the controller is a fuzzy pattern identifier [17, 20, 24]. Sustainable Structural 

systems, as defined above, are bound by three basic characteristics, i.e., recyclable, optimum 

and reliable. Optimum design of structural systems entails both the minimum amount of 

material to construct the system itself, in addition to the optimum use of energy resources 

and any integral elements that are designed to suppress any undesirable responses. By that 
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it is meant the actuators which are integrated within the system. As defined in Figures 1 and 

2, these are selected as MR dampers. The designed fuzzy controller should comprise a 

scheme whereby an optimum firing procedure for such dampers is employed. Such scheme 

would rely on information relevant to the deformed shape of the system in order to select 

only those dampers which could significantly affect the response and thus the deformed 

shape of the system.  

 

Figure 11. Sample Reliability Time History Diagram 

Figure 2 defines an enhanced fuzzy controller where it accepts three input variables instead 

of only two as discussed earlier. The third variable relates to the abstract deformed shape of 

the system [17, 20, 24]. This additional piece of information would help in the selection of 

the firing sequence of the MR dampers not just how much restoring force they are called 

upon to produce. Thus, the need for an additional smart component, to operate integrally 

with the fuzzy controller, that is capable of classifying the deformed pattern of the system, 

given the sensor data relevant to the actual position of control points, i.e., degrees of 

freedom of the system. 

A fuzzy inference system, comprising the same basic components of fuzzy controllers, could 

be designed in order to perform the required pattern classification task [17, 20, 24]. The fuzzy 

inference system should employ the gathered sensor data in testing the closeness of the 

deformed shape of the system to predefined abstract deformed patterns that are relevant to 

the modeled system. An inference engine built on top of a rule-base that is used to assign the 
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appropriate pattern classification, based on the displacements of individual degrees of 

freedom, i.e., displacements of individual floors, could be created to drive the fuzzy inference 

system. The following section outlines the main design of a fuzzy pattern identifier. 

5.2. Fuzzy abstract deformed shape identifiers 

In order to design a fuzzy inference system that is capable of classifying the deformed 

pattern of any structural system, a set of potential predefined pattern classifications need to 

be developed. Such pattern classifications are dependent on the modeled system, its size 

and its behavior under expected loading conditions. Careful analysis of the modeled system 

could result in creating such pattern classifications. Figure 12, shows a sample of such 

potential deformed patterns for a three-degree-of-freedom system. The figure is, by no 

means, comprehensive, i.e., these are some of the potential deformed patterns a three-

degree-of-freedom system could undergo [17, 20, 24]. 

 

Figure 12. Sample Potential Asbtract Deformed Patterns  

Once such pattern classifications are defined, a fuzzy inference system could be designed in 

order to classify any similar system into one of the predefined patterns. The fuzzy inference 

system would rely on a relevant rule-base that would accept the input of the individual 

floor displacements and assign the appropriate pattern classification accordingly. A sample 

rule could be defined as follows [17, 20, 24]: 

 
   

   
IF LEVEL1 is Positive  AND LEVEL2 is Positive  

AND LEVEL3 is Positive  THEN PATTERN is 1
 (13) 

Where, LEVEL1, LEVEL2 & LEVEL3 = are fuzzy variables that define the sensor data of 

relevant story levels, Positive = is a fuzzy value of positive displacement, PATTERN = is the 

output variable of the fuzzy inference system, 1 = is a fuzzy singleton that defines the 
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assigned pattern, AND = is the logical operator. In order to ensure the generality of the 

developed inference system, the pattern classifier should employ a normalized value of the 

sensor data rather than the actual displacement of the control point. The sensor data is 

normalized with respect to its maximum input value in order to result in input values 

within the interval [-1, 1]. In order to classify the abstract shape of a system it is only 

necessary to identify the relative position of control points with respect to each other rather 

than their absolute actual position. The normalization function could be defined as follows 

[17]: 

    
     

iN

i

1 2 3for all t

L
L

MAX(L t ,L t ,L t )

t
t    (14) 

Where,  N

i
L t  = is a normalized sensor output at ith degree of freedom at a given point in 

time;  i
L t  = is the actual sensor output at ith degree of freedom at a given point of time; 

     1 2 3
L t ,L t ,L t  = are the three actual sensor outputs at floor levels 1, 2 and 3 respectively 

and MAX() = is the maximum operator performed over all time instants of a given 

earthquake record. Therefore, the rule outlined in Eq. 13 should be rewritten to reflect the 

normalization function as follows; 

      N N N

1 2 3
IF L is Positive AND L is Positive AND L  is Positive THEN PATTERN is 1t t t  (15) 

Where,  N

1
L t ,  N

2
L t  and  N

3
L t  = are the three normalized sensor outputs which identify 

the displacement, at each individual story level, at any given point in time; and all other 

variables are as defined above. The integral structure of the enhanced fuzzy controller 

results in a dual fuzzy processor where its performance and thus its reliability are 

dependent on the performance of both components [19]. Referring to Figure 2, it is clear that 

the fuzzy controller accepts inputs from the fuzzy pattern identifier; therefore, new failure 

conditions for the dual processor should be developed taking into consideration the 

possibility of the fuzzy pattern identifier providing inaccurate information to the fuzzy 

controller and thus causing it to fail [19]. Other failure conditions may arise due to the 

failure of the pattern identifier to evaluate a pattern, given the data that was provided. All 

such potential failure conditions should be carefully considered when evaluating the 

reliability of the dual fuzzy processor [19]. 

The performance of the fuzzy pattern identifier, as for similar pattern classification 

algorithms, is usually measured by plotting a linear compliance graph and using its 

geometrical and statistical information in evaluating the system’s performance [17, 20]. 

Figure 13 shows a sample linear compliance graph. The graph is developed using a plot of 

the target classifications against the fuzzy pattern identifier classifications then generating a 

trendline of the plotted data [17]. If the trendline has a zero intercept and has a slope of 

unity, this implies that the fuzzy pattern identifier has perfectly assigned the proper pattern 

at all time instances. Therefore, the actual slope of the trendline and how close is the plotted 

data to that line, both are considered acceptable measures of the performance of the fuzzy 

pattern identifier and could be used in evaluating its reliability [17]. 
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Figure 13. Linear Compliance Graph 

6. Conclusions 

In this chapter sustainable smart structural systems were presented as those which are 

constructed of recyclable materials, are optimally designed and demonstrate a reliable 

performance. As such, systems are equipped with fuzzy controllers that allow the structural 

systems to adjust their response under the effect of highly uncertain loading conditions, i.e., 

earthquakes. If such loads were considered in the design process it would have resulted in 

very heavy designs. Moreover, such earthquakes might not even occur during the expected 

life time of the designed systems. However, if any of these systems is equipped with smart 

features that adjust its response under the effect of any unseen loading conditions, it would 

be much lighter, safe and it should be reliable. In addition, the smart characteristics of such 

systems would minimize, if not eliminate, the amount of damage and destruction and thus 

the amount of waste, if failures did take place due to the occurrence of unseen earthquake 

events. 
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Smart sustainable structural systems were presented as a simple single-degree-of-freedom 

system, then, a more complex system was considered. In case of single-degree-of-freedom 

systems, fuzzy controllers with two input variables and single output variables were 

discussed. However, in case of more complex systems, the notion of a dual fuzzy processor 

where a fuzzy pattern identifier feeds additional information to the fuzzy controller was 

presented. Fuzzy inference systems were discussed in relation to the type of membership 

functions to be employed in similar applications and the method of generating the necessary 

rule-bases.  

The reliability of such non-parametric systems is of major concern and thus a reliability 

assessment framework for evaluating the reliability of fuzzy controllers was presented. 

Potential failure conditions and limit state equations were presented as the basic tool of 

formulating the reliability problem of a fuzzy controller. The reliability evaluations were 

performed instantaneously then a reliability time history was created to suit the time 

dependent nature of the problem at hand. 

Finally, the concept of a fuzzy pattern identifier was presented using a fuzzy inference 

system which would be coupled with the fuzzy controller to form a dual fuzzy processor. 

Such structure is necessary in case of complex structural systems where the basic 

information of the dynamics of control points would not be enough to fully define the 

problem for the controller to formulate proper decisions. 
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