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1. Introduction 

Surface engineering represents the technically attractive and economically viable method 

aimed at improving the superficial layer of materials. Since the material surface controls the 

service life in many applications, the objective is to develop a wide range of functional 

properties that are different from the base substrate including physical, chemical, electrical, 

electronic, magnetic or mechanical. Being a part of surface engineering, the thermochemical 

treatment employs thermal diffusion to incorporate non-metal or metal atoms into a 

material surface to modify its chemistry and microstructure (Fig. 1). The process is 

conducted in solid, liquid or gaseous media with one or several simultaneously active 

chemical elements. For majority of thermochemical treatments the mechanism includes a 

decomposition of solid, liquid or gaseous species, splitting of gaseous molecules to form 

nascent atoms, absorption of atoms, their diffusion into a metallic lattice and reactions 

within the substrate structure to modify existing or form new phases. Since in industrial 

scale processes the entire part is subjected to high temperatures, surface diffusion is 

superimposed on changes within the material volume that for some treatments may involve 

phase transformations and this adds to the complexity. 

Historically, the thermochemical treatment was limited to machined parts, forgings and 

castings with an application in machinery, automotive, tooling, oil drilling, mining and 

defence [1]. The key processes covered nitriding, carburizing and their combinations. 

Similarly, steel was in practice the only material subjected to the modification. To enhance 

the process predictability and repeatability, the conventional gas nitriding was refined and 

the alternative technique of ion (plasma) nitriding was introduced. In quest for the perfect 

process, the plasma technology is still a subject of continuous improvement and developed 

techniques of post discharge nitriding or active screen plasma nitriding may serve as 

examples [2]. In the meantime, the thermochemical modifications included other processes 

such as boronizing, aluminizing, chromizing or thermo-reactive diffusion, exploring 

vanadium, molybdenum and other carbide-forming elements. Although they never 

achieved the application level of nitriding, they successfully serve many niche markets. 
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In recent decades, an application of the thermochemical treatment expanded to alloys with 

exotic chemistries [3], nonferrous metals like aluminum [4] and also refractory metals. 

Numerous hybrid processes were developed where thermochemical diffusion is a part of 

the multi-step treatment involving coating, cladding, laser processing etc. While the 

conventional applications still dominate, it is seen an expansion of the thermochemical 

treatment to novel manufacturing techniques such as micro-scale fabrication, fuel cells [5] or 

electronics [6]. 

 

Figure 1. Principles of thermochemical treatment showing a distribution of the chemical element A 

inside an alloy along with typically modified sub-surface areas 

This chapter covers major aspects of the thermochemical surface treatment of metals and 

alloys. A mixture of engineering fundamentals and recent global scientific developments 

should not only be useful for professionals from metallurgy and materials area but also for 

experts from other fields of engineering.  

2. Nitriding 

Nitriding has been and continues to be the major thermochemical treatment which along 

with ferritic nitrocarburizing represents the dominant volume of industrial surface 

modification technologies. The treatment leads to an incorporation of nitrogen into the 

surface of steel while it is in ferritic state. In commercial applications, the typical modified 

zone is up to 200-300 µm thick, rarely exceeding 600 µm. Its impact on surface hardness 

distribution, in terms of the maximum value and penetration depth, as compared with other 

heat and thermochemical treatments, is shown in Fig. 2. There is no additional heat 

treatment required following nitriding and the component surface experiences an increase 

in hardness, wear resistance, improved corrosion resistance and fatigue life.  
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Figure 2. Hardness depth profiles for selected thermal and thermochemical treatments, emphasizing 

differences in the maximum hardness and penetration depth 

2.1. Nitriding technologies available at present 

To implement nitriding, several technologies, exploring different sources of nitrogen, were 

commercialized. 

2.1.1. Gas nitriding 

Gas nitriding was patented in 1913 and 1921, and is carried out usually at temperatures of 

550-580 oC in a box furnace or fluidized bed in an atmosphere filled with partially 

dissociated ammonia [1]. The advantages of the fluidized bed are the near-ideal temperature 

uniformity through the entire gas-particle volume and fast heating rate [7]. For gas nitriding 

the fundamental reaction is the catalytic decomposition of ammonia to form the nascent 

(elemental) nitrogen:  

 3 2   3 / 2NH N H = +   (1) 

The control parameters include time, temperature and gas dissociation rate. In production 

environment, the latter is periodically measured and adjusted. The inherent feature of 

conventional gas nitriding is that the superficial concentration of nitrogen cannot be 

precisely monitored. As a result the structure of nitrided layer and the entire process are 

often missing predictability and repeatability. 

The controlled gas nitriding Nitreg®, employs a mixed-gas atmosphere, composed of 

ammonia and an additive gas [8]. As opposed to conventional gas nitriding, the process is 

controlled not by the dissociation rate but by a different parameter, called the nitriding 

potential of the furnace atmosphere. The nitriding potential is expressed as the ratio of 

partial pressures of ammonia and hydrogen: 
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௡ܭ  ൌ ௣ேுయඥሺ௣ுమሻయ	 (2) 

where: pNH3 is the partial pressure of ammonia and pH2 is the partial pressure of hydrogen 

An advantage of effective control through the nitriding potential, expressing in more 

uniform nitrided case for complex geometries, is accompanied by general disadvantages of 

the gas process such as masking difficulties to prevent nitriding, requiring copper plating or 

painting with protective pastes and the special surface activation necessary for stainless 

steels or alloys generating a passive oxide films. 

2.1.2. Liquid salt nitriding 

Liquid nitriding, developed in 1940’s, is conducted in the fused salt bath containing either 

cyanides or cyanates. A typical commercial bath is composed of a mixture of 60-70% sodium 

salts {96.5% NaCN, 2.5% Na2CO3, 0.5% NaCNO} and 30-40% potassium salts {96%KCN, 

0.6%K2CO3, 0.75% KCNO, 0.5% KCl} [9]. The commercial equipment for salt nitriding, along 

with gas and plasma technologies is shown in Fig. 3. The major advantage is the short cycle 

time due to intense heating and the high reactivity of the medium. Several methods exist to 

accelerate further the nitriding rate, such as bath additions of sulphur or melt pressurizing. 

Typically, for low-alloy steel the cycle time lasting 1.5 h at the operating temperature of 565 
oC produces a case of 0.3 mm thick. The salt-bath technology has also a number of negative 

features, such as the bath toxicity and poor quality of the nitrided surface. 

 

Figure 3. Commercial technologies of liquid salt bath, gas and plasma nitriding (with permission from 

Rubig GmbH) 
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2.1.3. Plasma (ion) nitriding 

Plasma nitriding, called also ion nitriding, was invented by Wehnheldt and Berghause in 1932 

but became commercially viable as late as in 1970’s. It uses the glow discharge phenomenon 

to introduce nascent nitrogen to the surface of an alloy and its subsequent diffusion into 

subsurface layers [10]. An example of modern installation is shown in Fig. 4. Plasma is 

formed in a vacuum using a high-voltage electrical energy to accelerate nitrogen ions which 

bombard the alloy surface [11] (Fig. 5a). The advantages of ion nitriding include the low 

temperature, short saturation time and simple mechanical masking. The unique advantage 

is surface-activation sputtering. Due to the sputtering effect of positive ions in the glow 

discharge, the protective oxide, inherent for surfaces of stainless steels, aluminum or 

titanium alloys, is removed. Thus, nitrogen atoms can be moved from the plasma to the 

material sub-surface. In the conventional direct-current system the nitrided component is 

subjected to the high cathode potential and plasma forms directly on the component surface. 

This may create disadvantages such as the temperature non-uniformity with a possibility of 

overheating, sensitivity to the part geometry, causing edge effect and a possibility of surface 

damage due to arcing.  

 

Figure 4. Modern line of commercial plasma nitriding (with permission from Rubig GmbH) 

To overcome the latter limitation, different approaches were investigated. The post discharge 

nitriding, where the nitrided part at an electrically floating potential is kept at the nitriding 
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temperature by use of an external heater, was so far not adopted by industry [12]. Another 

technique, called active screen plasma nitriding, was invented in 1999 and has some 

commercial applications [2]. As shown in Fig. 5b, an essence of the new process is in 

applying the high cathodic potential to a screen surrounding the nitrided part which 

becomes the real cathode, replacing in this role the nitrided part. Therefore, plasma forms on 

the active screen, heating it up. Then, a radiation from the screen heats the nitrided part to 

the required temperature [13]. The plasma, forming on the screen, is composed of a mixture 

of ions, electrons and other active nitriding species which are forced to flow over the 

nitrided part by the designed gas circulation. Thus, complex geometries obtain the uniform 

nitrided layer and even blind holes are affected by diffusion and effectively nitrided.  

 

Figure 5. Plasma nitriding: (a) view of components during Ultraglow® process (with permission from 

Advanced Heat Treat Corp.) (b) schematics showing a concept of active screen plasma nitriding 

2.1.4. Laser nitriding  

In the last two decades, laser nitriding has been investigated as an alternative nitriding 

method [14]. As explained in Fig. 6, during a direct laser synthesis a material is placed in the 

reactive gas environment and irradiated with the laser light. Nitrogen is fed through a 

nozzle into the melt pool. On a time scale of hundreds of nanoseconds, the high intensity 

pulse-laser irradiation of I ≈ 108 W/cm2 in ambient nitrogen atmosphere is capable 

generating of 1- 1.5 µm thick thick nitrided layer.  

2.1.5. Beam ion implantation 

At limited scale, beam ion implantation can be used to incorporate nitrogen into a material 

surface. The conventional ion beam implantation, applied at room temperature, is capable to 
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modify chemistry of relatively thin layers of materials. While using a beam of nitrogen ions 

with an energy of up to 1 MeV at room temperature, a continuous nitride layer of the order 

of 1 µm can be synthesized. There are, however, techniques exploring elevated temperatures 

of up to 600 oC or hybrids such as plasma immersion implantation or low voltage plasma 

immersion implantation, allowing generating thicker layers [15]. A comparative test with 

the beam ion implantation, plasma ion implantation, ion nitriding and gas nitriding of AISI 

304 stainless steel created the same microstructure with nitrogen in iron solid solution [16]. 

After treatment, conducted at 400 oC for 0.5 h and 1 h, both the beam ion implantation and 

the plasma ion implantation produced over 1 µm thick layer, enriched in nitrogen to 20-30 

at%, while ion nitriding and gas nitriding produced layers with a thickness below 1 µm and 

the lower nitrogen concentration. 

 

Figure 6. Principles of laser nitriding 

2.2. Process theory 

The Fe-N phase diagram provides essentials for nitriding of iron and low carbon steels. It 

consists of several solid solutions of N in α-Fe and γ-Fe, stable chemical compounds (γ'- 

Fe4N1-z, ζ -Fe2N) and metastable phases (α' – martensite, α'' – Fe16N2) [17]. The bcc lattice of 

α-Fe can dissolve up to 0.4 at% of N without substantial straining with nitrogen atoms 

occupying octahedral interstices in a random matter. After the content of nitrogen dissolved 

in pure iron exceeds 2.4 at%, the γ' nitrogen martensite with a structure similar to the carbon 

martensite, is formed. At that nitrogen level, the bcc lattice experiences tetragonal straining 

and nitrogen atoms occupy 1/3 of the possible octahedral interstices [18] [19]. The nitrogen 

austenite phase can dissolve up to 10.3 at% of nitrogen and its atoms are randomly located 

in octahedral interstices of the fcc Fe lattice. It is considered that the Fe-N solid solution can 

be conceived as composed of two interpenetrating lattices: the sublattice for Fe-atoms and 
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the sublattice for N atoms [20]. When sites in Fe sublattice can be considered as fully 

occupied, sites in N sublattice, which constitutes of octahedral interstices of the Fe 

sublattice, are partly occupied by N atoms and partly by vacancies. The γ'- Fe4N1-z nitride 

has a cubic elementary cell, formed by an fcc sub-lattice of Fe atoms with ordered 

arrangement of nitrogen atoms in central octahedral interstices. It has a narrow range of 

homogeneity within 19.3-20 at% at 590 oC. A schematic of the crystal structure of γ’-Fe4N 

where nitrogen atoms occupy a quarter of the octahedral sites, surrounded by the shadowed 

octahedral, is shown in Fig. 7a [21]. On the other hand, the ε nitride has a variable 

stoichiometry of ε-Fe2N1-z with a structure based on fcc Fe, in which nitrogen atoms stay in 

octahedral sites and form a diamond type sub-lattice. The ε nitride has the largest range of 

homogeneity in Fe-N system, reaching from 15 to 33 at% of nitrogen. For some materials, 

not typical precipitation may occur; nitriding of Fe 2 at% Si alloy led to silicon nitride 

precipitates formed inside the ferrite grains and along grain boundaries [22]. The 

precipitates were amorphous with a stoichiometry of Si3N4. The amorphous nature is 

explained by thermodynamics due to the fact that the precipitation process occurred very 

slowly due to the very large volume misfit between the nitride and matrix. 

 

Figure 7. Schematics of: (a) crystal structure of γ’-Fe4N showing two unit cells [21]; (b) phase 

distribution within a nitrided case on steel and accompanied nitrogen depth concentration. 

During nitriding, a compound layer, composed of iron nitrides ε and/or γ', is formed at the 

steel surface. Beneath the compound layer a diffusion zone extends in the ferrite matrix in 

which nitrogen is dissolved interstitially. The heat effect of slow cooling after nitriding or 

the separate heating cycle lead to formation of the γ'- Fe4N1-z nitride which, in turn, 

increases the nitrogen content in the ε-Fe2N1-z nitride. Morphologically that process can 

change a ratio between sub-layer thicknesses within the compound layer at the expense of 

ε-Fe2N1-z or cause a precipitation of γ'- Fe4N1-z phase within the ε-Fe2N1-z layer, as shown in 

Fig. 7b. The particular depth structure of nitrided layer depends on the substrate 

chemistry and nitriding process, and examples for liquid, gas and plasma technologies are 

shown in Fig. 8. 
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Figure 8. Microstructures of steel after liquid salt, gas and plasma nitriding along with some 

characteristic features aligned in a direction of improvement (with permission from Rubig GmbH) 

2.3. Nitrided layer and its effect on substrate properties 

Nitriding changes primarily the surface related properties. However, the presence of 

nitrided case affects also properties of the material volume beneath the nitrided case and the 

entire component. 

2.3.1. Nitrided case depth 

The quality control after nitriding is performed by (i) measuring the superficial hardness 

and its depth profile (ii) determining the nitrided case depth and (iii) an assessment of the 

cross-sectional microstructure. To provide unambiguous specifications on engineering 

drawings, two terms of nitrided case depths were introduced [23]. The total case depth, 

sometimes called simply as the case depth, is defined as the dark-etching sub-surface zone as 

determined metallographically on the component cross section. For alloys, which do not 

easily respond to etching or do not exhibit the sharp transition between the base material 

and diffusion zone, the total case depth is defined as a depth below the surface at which the 

microhardness is 10% higher than that of the base steel beneath it. The effective case depth is 

defined as the case depth where hardness exceeds certain values, defined either by the 

engineering drawing or standard. For typical nitriding steels, that hardness level is 50 HRC 

as converted from microhardness, which can be directly measured on the cross section [23]. 

As seen in Fig. 9, for the particular nitrided case there may be substantial differences 

between the effective and total case depths.  
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Figure 9. Schematics explaining measurements of total and effective case depths after nitriding 

2.3.2. Role of compound zone 

Within the nitrided case, the compound layer thickness and its integrity are of primary 

importance for component service performance. Due to its chemical stability the compound 

layer improves the corrosion resistance. In case of high nitrogen concentration the 

compound layer may be excessively porous and brittle so often it may also peel from the 

substrate increasing scuffing. After peeling, it may cause damage to tightly fit wear couples 

or contamination to processed products. Thus, it may be undesirable. Of specific 

applications, the compound layer is detrimental to gear life, particularly when gears 

experience misalignment during service [24]. Therefore, depending on nitriding class, 

certain thickness of compound layer is permitted [23]. For example, aerospace applications 

have strict restrictions where only trace amount of the compound zone, below 2 µm, is 

acceptable [25]. In some applications its presence is not permitted at all. Two examples of 

nitrided steels without the compound layer are shown in Fig. 10. 

 

Figure 10. Microstructure of nitrided case on steel with absent or negligible compound layer: (a) fine-

grained steel with a clear interface with the base steel; (b) coarse-grained steel with no clear interface 

with the base steel 
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Although a thickness of the compound zone depends on substrate chemistry, the essential 

control of compound layer formation is through altering the process parameters. In gas 

nitriding, the two-stage process, as developed by Carl Floe in 1953, is used to minimize the 

compound zone thickness [26]. The first stage ensures the rapid formation of the compound 

layer and the second stage arrests a formation of the compound layer without allowing the 

diffusion zone to be de-nitrided. The first stage runs with ammonia gas at a dissociation rate 

of about 30% at 495 oC, followed by increasing temperature to 563 oC and the dissociation 

rate to 75-85%. For plasma nitriding, the role of chamber atmosphere in the compound layer 

formation is critical as detailed in Table 1. The post nitriding removal of the compound layer 

is costly and requires lapping, honing, grinding or polishing. Since mechanical methods 

introduce stress, subsequent stress relieving may be necessary. Another alternative of the 

compound layer removal is by chemical etching in cyanide solutions. 

It is known that small additions of oxidizing species to plasma or gas nitriding have a 

beneficial effect on nitrided layer formation since the presence of oxygen increases the layer 

growth rate and stabilizes the ε-compound layer [27]. When applying a post-oxidation step 

after nitriding the cohesive, homogeneous layer of iron oxide grows which further improves 

the corrosion resistance (Fig. 11) [28]. When the oxide layer is essential for plain carbon 

steels it is also important for Cr-containing stainless steels. An unalloyed steel with 1-2 µm 

thick oxide layer exhibits a wide range of passivation by the corrosion current and high 

breakdown potential. The effect of the oxide layer on the ε-compound layer is often 

compared to the effect of CrO2 passivation film on a surface of stainless steel.  

 

Figure 11. Microstructure after Plusox™ nitriding with major functional zones and their performance 

characteristics (with permission from Rubig GmbH) 
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Compound layer N2 (%) H2 (%) CH4 (%) 

Negligible 8-15 85-92 - 

Thin, continuous 20-35 65-80 - 

Thick, continuous  40-60 40-60 - 

Extra thick 75-79 11-25 1-2 

Source: Rubig GmbH 

Table 1. Compound layer control during plasma nitriding 

2.3.3. Dimensional changes 

Although dimensional changes during nitriding are relatively small, they are definitely 

measureable. Therefore for precision parts, the dimensional change must be considered 

during the manufacturing process to compensate the nitriding related increase (Fig. 12a). 

 

Figure 12. Schematics emphasizing changes of dimensions and surface roughness after nitriding (a) 

and influence of gas and plasma nitriding on roughness parameters of grey and ductile cast irons (b - 

based on data from [30] [29]) 

The volume increase depends on the quantity of the absorbed nitrogen. In some cases, 

changes related to incorporated nitrogen are superimposed on structural transformations 

taking place within steel at nitriding temperatures. For the hardened and inadequately 

tempered steel, a decomposition of still existing austenite can increase a proportion of the 

volume change. In case of martensitic age-hardened steels, some shrinkage takes place and 

reduces the overall dimensional changes. In addition, there are also changes in surface 

topography. As a result of nitrogen absorption an increase in surface roughness occurs. As 

shown for the case of nitriding-nitrocarburizing, surface roughening depends on the process 

type and substrate material. In the case of grey and ductile cast irons, the former was 

especially sensitive to surface roughening with 10 times increase of roughness parameters 

(Fig. 12b). Moreover, plasma process produced generally much smoother surfaces as 

compared to the gas process [29] [30]. Thus, to bring the roughness to its initial value, post-
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nitriding polishing may be required. Also, stress from previous mechanical or thermal 

treatment may lead to part distortion during nitriding. To provide the stress-free 

component, prior to nitriding the stress relief should be conducted at temperature at least 50 
oC higher than the nitriding process. 

2.3.4. Fatigue life and internal stress 

In general, nitriding improves the characteristics of high cycle fatigue. The increase in high 

cycle fatigue strength is caused by a formation of the strong nitrided layer and a generation 

of compressive macro-stress. During failure, the initiation of cracks occurs at the interface 

between the nitrided layer and the matrix. For low cycle fatigue the decrease in durability 

was recorded due to cracking of the stronger nitrided layer at high stress loadings of 

repeated nature [31]. Two different behaviours during fatigue tests with smooth and 

notched samples were distinguished. For nitrided samples with a notch, acting as stress 

riser, faster crack initiation was recorded. No direct correlation was identified between the 

hardness and internal macro-stress. Moreover, an increase in fatigue life is not always 

correlated with the nitrided case thickness. Other factors, such as the nitrided layer structure 

and steel composition exert effect as well. According to Ericsson [32], the contributing 

factors of stresses generation during nitriding are different thermal expansion coefficients 

for the phases present, growth and precipitation stresses for nitrides as well as stresses due 

to the nitrogen composition gradient. In addition, the thermal stress may also be involved. 

There are results obtained by the conventional tilt and grazing incidence X-ray diffraction 

methods, that the residual stress in the compound layer is of tensile nature and changes 

with depth within the first 2 µm of the 10 µm thick compound layer [33]. The constant 

nitrogen concentration within the first 2 µm thickness of the surface layer does not support 

the concentration gradient in stress generation cause as claimed above. 

2.4. Steels applicable to nitriding 

In general, nitriding is applicable to a wide variety of carbon steels, low alloy steels, tool 

steels, stainless steels and cast irons. For optimum properties after nitriding, however, there 

are steels with chemistries, particularly designed for this purpose. They contain strong 

nitride-forming elements such as Al, Cr, Mn, Mo and V. There is a limitation on carbon 

content which should not exceed 0.5%, as most nitride-forming elements also form stable 

carbides which limit binding of nitrogen. When differences in hardness depth profiles for 

carbon and alloyed steels are essential (Fig. 13a), there are also substantial differences 

between individual grades, designed for nitriding (Fig. 13b). The especially high surface 

hardening is achieved with steels containing Al, forming AlN nitrides. However, additions 

of Al, typically in the range of 1%, cause steel brittleness. The nickel nitriding steels 

containing aluminum develop higher core strengths than do nickel-free nitriding grades. 

Nickel also increases the toughness of the nitrided case [34]. The base steel properties are of 

importance to provide the support for nitrided case, especially in applications where 

components carry high compressive and bending stresses. A selection of steels designed for 

nitriding is listed in Table 2. 
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Figure 13. Effect of the steel composition on hardness depth profiles after nitriding: (a) comparison 

between carbon and alloyed grades; (b) comparison between two nitriding grades {(b) based on [41] 

with permission from Schmolz + Bickenbach } 

The deep nitrided steel, 32CrMoV13, has an application for aerospace bearings of main 

shafts or jet engines, operating under high speed, high temperature and limited lubrication. 

This application requires the typical nitrided case of more than 600 µm, achieved after gas 

process in the temperature range of 525-550 oC for up to 100 h [35]. For that case depth, the 

surface hardness ranges from 730 to 830 HV30. The compound layer of approximately 30 

µm thick is removed by grinding from rolling races and working surfaces. Within the 

diffusion layer, two zones may be distinguished. First is the 100 µm thick zone, adjacent to 

the compound layer, depleted of carbides, likely due to their dissolution and precipitation 

more stable nitrides or carbonitrides. The second zone, adjacent to the base steel, is 

precipitates free. It is considered that the good service performance of nitrided layer and its 

superior rolling-contact properties are achieved due to semi-coherent precipitates of nano-

size nitrides and high compressive residual stresses. An example of Al-free steel with V 

used for camshafts is OvaX200 steel [36]. After 20 h of gas nitriding at 490-510 oC, The 

OvaX200 steel reaches the surface hardness of 850 HV1000.  

The key concern during nitriding of stainless steels is to retain their corrosion resistance. The 

low temperature nitriding of austenitic grades leads leads to formation of nitrogen 

expanded austenite. This so-called S-phase exhibits an increased hardness and wear 

resistance combined with excellent corrosion resistance, inherent for stainless steel [37]. It is 

claimed that the active-screen plasma nitriding brings some benefits to nitriding of stainless 

steel. According to that mechanism, the material sputtered from the active screen and re-

deposited on the nitrided surface plays an important role in the nitriding process. Namely, 

the sputtered atoms react with nitrogen containing species in the plasma and deposit on the 

steel surface. Then, the deposited iron nitrides decompose, releasing nitrogen which, in turn, 

diffuses into the sub-surface layer [38].  

Nitriding is also applicable to maraging steels which have very low carbon content, typically 

below 0.03%, and are strengthened by the precipitation of intermetallic compounds, taking 

place at a temperature of approximately 480 oC. The purpose of nitriding the maraging 
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steels is to increase their wear resistance. Since the temperature of conventional gas nitriding 

exceeds the aging temperatures of maraging steels, the plasma nitriding is more suitable. 

The plasma nitriding at a temperature as low as 450 oC for 10 h, in case of the Fe-18Ni-8.8Co-

5Mo-0.4Ti-0.1Al steel, generates the nitrided layer with a thickness of 120 µm and surface 

hardness of 800 HV [39]. At the same time, it does not cause structural changes in the 

substrate, thus preserving the original microstructure. 

The plasma nitriding with its surface sputtering effect, removing the surface oxide layer, is 

suitable for nitriding of high entropy alloys, containing large volumes of oxide-forming 

elements, such as Al, Cr, Si and Ti [3]. For the particular composition of Al0.3CrFe1.5MnNi0.5 a 

dual-phase structure of fcc and bcc develops after homogenisation at 1100 oC [40]. After 

plasma nitriding at 525 oC for 45 h, the 80 µm thick layer, with a peak hardness of 1300 HV, 

is generated. Both the bcc and fcc phases experience uniform nitriding and main nitrides are 

AlN, CrN and (Mn, Fe)4N. The alloy reaches the wear resistance 49-80 times higher than the 

nitrided conventional steels.  

 

Steel C Mn Si Cr Mo Ni V Al 

Nitralloy 135M 

AMS 6470 

0.38-0.45 0.5-0.8 0.2-0.4 1.4-1.8 0.35-0.45 - - 0.85-1.2 

Nitralloy G 0.35 0.55 0.3 1.2 0.2 -  1.0 

Nitralloy N 

AMS 6475 

0.2-0.26 0.5-0.7 0.2-0.4 1.0-1.25 0.2-.3 3.25-3.75 - 1.1-1.4 

Nitralloy EZ 0.35 0.8 0.3 1.25 0.2 0.2Sc - 1.0 

34CrAlNi7 

DIN 1.8550 

0.30-0.37 0.4-0.7 ≤0.4 1.0-1.3 0.15-0.25 - - 0.8-1.2 

41CrAlMo7 

DIN 1.8509 

0.38-0.45 0.4-0.7 ≤0.4 1.5.1.8 0.2-0.35 - - 0.8-1.2 

34CrAlMo5 

DIN 1.8507 

0.30-0.37 0.4-0.7 ≤0.4 1.5-1.8 0.15-0.25 0.85-1.15 - 0.8-1.2 

15CrMoV5-9 

DIN 1.8521 

0.13-0.18 0.8-1.1 ≤0.4 1.2-1.5 0.8-1.1 - 0.2-0.3 - 

31CrMoV9 

DIN 1.8519 

0.27-0.34 0.4-0.7 ≤0.4 2.3-2.7 0.15-0.25 - 0.1-0.2 - 

31CrMo12 

DIN 1.8515 

0.28-0.35 0.4-0.7 ≤0.4 2.8-3.3 0.3-0.5 - - - 

32CrMoV13 

AMS6481 

.29-0.36 0.4-0.7 0.1-0.4 2.8-3.3 0.7-1.2 - 0.15-0.35 - 

OvaX200 0.14-0.17 1.2-1.4 0.15 2.1-2.3 0.45-0.55 0.45-0.55 0.15-0.25 - 

5Ni – 2Al 0.20-0.25 0.25-0.45  0.4-0.6 0.2-0.3 4.75-5.25 0.08-0.15 1.8-2.2 

Table 2. Selection of steels, designed for nitriding (weight %) [41] [36] [34] [26] 
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2.5. Nitriding of titanium alloys 

The competitiveness of titanium alloys is due to their high strength to weight ratio, heat and 

corrosion resistance. At the same time, the low surface hardness and wear resistance along 

with poor high-temperature oxidation resistance are seen as their major disadvantages. 

Nitriding is one of many treatments aimed at improving their tribological characteristics.  

2.5.1. Nitriding techniques applicable to titanium 

In principle, all major nitriding techniques are applicable to titanium. A disadvantage of gas 

nitriding is the high temperature of 650-1000 oC required, long time of up to 100 h and 

reported fatigue life reduction. For Ti-6Al-4V alloy a typical compound layer of 2-15 µm 

forms with a surface hardness between 500 and 1800 HV [42]. The plasma nitriding of 

titanium alloys is conducted at temperatures of 400-950 oC and substantially shorter time 

from 0.5 to 32 h, generating a compound layer with a thickness of approximately 50 µm. A 

reduction in fatigue strength may be eliminated by lowering the nitriding temperature. The 

ion beam nitriding, using nitrogen at temperatures of 500-900 oC for up to 20 h, produces 5-8 

µm thick compound layer with microhardness of 800-1200 HV on Ti-6Al-4V alloy. Also laser 

nitriding is applicable to titanium but surface case has a tendency to cracking. An attempt 

was made to apply the diode laser gas nitriding technique to Ti6Al4V alloy, commonly used 

for rotors and blades of engines in power generation [43]. The laser surface melting of the 

substrate surface in a mixture of nitrogen and argon leads to an increase in surface hardness 

up to 1300 HV0.2 although the outcome depends on process parameters.  

2.5.2. Microstructure development during nitriding 

The formation of the nitrided layer on titanium involves several reactions taking place at the 

gas/metal interface and within the metal. At the nitriding temperature, below the Ti 

polymorphic transformation, the α-Ti phase exists. First, the nitrogen absorbed at the 

surface diffuses inward titanium, forming the interstitial solution of nitrogen in the hcp 

titanium phase α-Ti(N) and building the nitrogen concentration gradient. After exceeding 

the solubility limit, the Ti2N phase is formed. During further increase in the nitrogen 

concentration at the gas/metal interface, TiN is formed as specified below: 

 ( ) 2Ti  Ti N   Ti N  TiNα α− → − → →  (3) 

After slow cooling, the precipitation in the diffusion zone is possible. The simplified 

morphological schematic, emphasizing the growth sequence, is shown in Fig. 14. 

2.5.3. Nitriding of other refractory metals (Zr, Nb, Mo, W, Ta) 

Many refractory metal nitrides offer an attractive combination of high electrical conductivity 

and good corrosion resistance. For Mo-0.5%Ti and pure Mo alloys the inward diffusion of 

nitrogen is the rate controlling step. After gas nitriding at 1100 oC they reach a hardness of 

1800 HV and the surface layer consists of two regions with the outer layer composed of γ-
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Mo2N and the inner layer of β-Mo2N [44]. In Ti containing alloys an internal nitrided layer is 

additionally formed with a hardness of 800 HV which contains the fine 0.4 nm thick plate-

like, coherent particles of TiN.  

 

Figure 14. Schematics of the morphology development during nitriding of titanium 

The nitrided niobium has a potential application in particle accelerators [6]. The niobium-

made cavity of the superconducting radio-frequency accelerator operates at very low 

temperature of 1.9K to achieve the sufficient performance. After nitriding of niobium, its 

surface is transformed to δ-NbN with the critical temperature of 17K as opposed to 9K for 

pure Nb. Such a change shows a promise to raise the accelerator operating temperature. The 

laser nitriding was found to be effective for niobium. 

The refractory alloy composed of Nb, 30%Ti and 20%W, called Tribocor 532N, and 

produced by conventional melting techniques, benefits from nitriding as well [45]. Since 

titanium has the highest affinity to nitrogen of all elements in the alloy, TiN forms 

preferentially on the nitrided surface. During the next step, as the alloy becomes depleted in 

Ti, the Nb nitride starts growing. As shown in Fig. 15, its surface microstructure changes 

completely. The nitrided surface achieves high hardness with superior corrosion resistance 

(Fig. 16). Among many applications, including an environment of molten magnesium and 

aluminum alloys [46], the nitrided Nb-30Ti10W alloy was considered in proton exchange 

membrane fuel cells for the bipolar plate. The plate serves to electrically connect the 

individual cells in a stack and to separate and distribute the reactant and product stream [5]. 

The nitrided zirconium has application potentials for cathodes in arc heaters, mainly due to 

its high erosion resistance under those service conditions [47]. After nitriding in a 
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microwave plasma generator, the golden color zirconium nitride forms on its surface. In 

addition to metals, also ceramics of yttria-stabilized zirconia benefit from nitriding [48]. As a 

result of high temperature plasma nitriding, the complex layer, composed of tetragonal 

cubic zirconia, zirconium nitride and oxynitride, is created. 

 

Figure 15. Microstructure of Tribocor 532N alloy before and after nitriding. Approximate magnification 

500x [45] (with permission from Elsevier Science) 

 

Figure 16. Hardness versus depth profile for three levels of nitrogen absorption in Tribocor 532N alloy 

[45] (with permission from Elsevier Science) 

2.6. Nitriding of aluminum 

One of the key limitations in the application of aluminum alloys is their low wear resistance. 

Therefore, the purpose of aluminum nitriding is similar as in the case of titanium, i.e. to 
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increase the surface wear resistance. At present, Al-Si alloys are used for wear applications 

or a hard surface layer must be created. The latter is most often achieved by Al2O3 alumina 

coatings. 

The conventional plasma nitriding of aluminum alloys is conducted at temperature of 500 
oC for 20 h to form 1-2 µm thick layers. Since nitrogen is virtually insoluble in aluminum, 

during nitriding only the compound layer of AlN is formed. AlN is known for its high 

hardness of 1400 HV, high thermal conductivity and high electrical resistivity. In addition to 

nitriding, AlN can be formed on Al surface by several other techniques including 

evaporation or ball milling [49] [50]. The process of Al nitriding is slow since the diffusion of 

N in Al is the rate controlling step. To increase the nitriding rate, the grain size of Al should 

be refined. It suggests that the growth of AlN is controlled by grain boundary diffusion, 

hence increasing grain boundary density increases a number of fast diffusion paths. Another 

way of speeding up the AlN growth is by alloying additions and a presence of 1wt% of Ti is 

effective. Under the same nitriding conditions of temperature 500oC and time of 20 h the 3 

µm thick layer with co-precipitates of TiN grows as compared to 1-2 µm thick AlN in case of 

Ti absence [49].  

An alternative technique used for Al nitriding is the electron beam excited plasma (EBEP) 

[51]. The technology is sustained by the electron impact ionization with an energetic electron 

beam being a source of low pressure plasma. When employing this method it is possible to 

create on AA5052 alloy after 45 min at 570 oC the AlN layer with a thickness of 5 µm and 

pillar shape grains. At the interface with the substrate a spinel MgAl2O4 grows, affecting the 

adhesion of major AlN layer. Also inductively coupled RF plasma reactor is effective for 

nitriding of Al-Cu alloy 2011 [52]. At temperature of 400 oC the time of 36 h is needed to 

create a protective layer. During plasma nitriding of Al-Cu alloys, Al2Cu precipitates 

increase the nucleation rate and growth of the nitrided case [53]. The crystallographic 

coherence between AlN and Al2Cu enhances the formation of AlN nodules and islands. The 

layer formation is also accelerated by the solid-state interaction between Al2Cu and 

penetrating nitrogen to form interfacial boundaries, acting as nitrogen diffusion paths. The 

plasma nitriding is relatively effective way to increase the corrosion resistance of aluminum. 

There are data pointing out that a treatment at 500 oC for 20 h leads to improvement during 

both the immersion test in 3.5% NaCl and the polarization test [54]. 

In addition to an improvement in surface characteristics, the presence of AlN layer affects 

the bulk properties of aluminum. According to [55], the plasma nitriding of Al-Si-Mg alloy 

causes decrease in yield, ultimate tensile strength, elongation and stress relaxation rate. It 

was explained that stress created at the interface between the AlN and Al substrate 

contributed to the premature failure. Other failure contributors are argued to be defects 

created by diffusion of nitrogen into the lattice. 

A deficiency of AlN films, formed by plasma nitriding, is their tendency to cracking and de-

lamination due to large compressive stresses and the property difference between the AlN 

layer and the Al substrate. As a possible solution of increasing the AlN adhesion, a 

combination of barrel nitriding and plasma nitriding is proposed [4]. The barrel nitriding is 



 
Heat Treatment – Conventional and Novel Applications 92 

performed as a pre-treatment before the plasma nitriding. In addition to Al2O3 and Al-

50wt%Mg powders, nitrogen gas is introduced and the content is heated to 630 oC. 

3. Nitrocarburizing (ferritic nitrocarburizing) 

During nitrocarburizing, nitrogen and carbon are supplied to the surface of steel in ferritic 

state at temperatures usually between 500 and 580 oC. The general classification of 

thermochemical treatments involving nitrogen and/or carbon is shown in Fig.17. According 

to some terminology, the high temperature equivalent of ferritic nitrocarburizing is called as 

austenitic nitrocarburizing. There is also a term of ferritic carburizing, describing the 

carburizing process at temperatures of the ferritic state. 

 

Figure 17. Classification of basic thermochemical treatments involving nitrogen and carbon 

3.1. Process technology 

The salt bath nitrocarburizing by Tufftride® is performed in a mixture of alkali cyanate and 

alkali carbonate in the temperature range of 480-630 oC [56]. The gas nitrocarburizing has 

been developed as a cleaner alternative to the salt bath technology. Besides ammonia, 

required to supply the nascent nitrogen, the nitrocarburizing atmospheres contain carbon-

bearing additives like exothermic and endothermic gases CO2, CO and H2 as products of the 

dissociation of methanol. There is also a hybrid treatment, integrating the low temperature 

plasma nitriding and additions of carburizing species to the plasma media to cause the 

simultaneous incorporation of nitrogen and carbon. However, using the glow discharge of 

plasma containing nitrogen and carbon species it is difficult to produce a single ε-Fe2-3(N,C) 

phase compound layer on engineering steels [57]. Instead, the plasma nitrocarburizing 

generates a compound layer with mixed phases of ε-Fe2-3(N,C) and γ’-Fe4(N,C), known to be 

detrimental in tribological applications, especially under impact loads. According to [58], 

excluding for low-carbon steel or to some extent for medium carbon unalloyed steel, gas 

nitrocarburizing does not produce compound or diffusion layers faster than gas nitriding. 

Moreover, the properties of nitrocarburized parts are not always superior to those obtained 

by nitriding and the nitrocarburizing process is more difficult to control.  
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There is a substantial difference between gas and plasma nitrocarburizing when considering 

an environmental aspect. As shown in Table 3, in addition to drastic reduction of CO, CO2 

and NOx emission, reaching 500-5000 times by plasma technology, the total gas 

consumption is at least 10 times lower than in the gas process [57].  

 

 

Emissions 

 

Unit 

 

Plasma  

 

Gas  

Amount of gas used m3/h 0.6 6.0 

Total carbon emission via CO/CO2 mg/m3 504 137253 

Total amount of NOx gas mg/m3 1.2 664 

Output of residual carbon bearing gas mg/h 302 823518 

Output of residual NOx gas mg/h 54 3984 

Table 3. Emission data for plasma and gas nitrocarburizing [57] 

Among different nitrocarburizing techniques, a special attention is paid to low pressure 

processes, performed in a mixture of NH3 and CO2. Since CO2 containing gas has a high 

oxygen potential, especially under low pressure conditions, oxygen atoms accelerate the 

formation of Fe3(N,C) and contributes to the growth of adherent nitrocarburized layers [59]. 

The process named Nitreg-ONC® is based on Nitreg® technology but generates a modified 

complex compound layer which contains an increased concentration of carbon, oxygen and 

sulphur [60]. As a result, surface retains its high wear resistance, anti-scuffing and anti-seizing 

properties. Another advantage is the substantially increased corrosion resistance which for 

carbon steels reaches a level comparable with stainless grades. The increased corrosion 

resistance is associated with the superficial oxide structure which is not penetrable by 

corrosive fluids. In general, the treatment is considered a superior alternative to chrome 

plating. 

3.2. Surface layer structure 

During nitrocarburizing of iron, the microstructural evolution of the compound layer starts 

with the formation of carbon-rich cementite and develops into the direction of nitrogen-

richer and carbon-poorer phases of ε and γ’ [61]. Both steps are a consequence of higher 

solubility of nitrogen in α-Fe than carbon and lower rate of nitrogen transfer from the gas 

into the solid phase. The compound layer is typically composed of carbonitrides of iron ε-

Fe3(N,C)1+x and γ’-Fe4(N,C)1-z along with θ-Fe3C cementite (Table 4) [62] [63]. As during 

nitriding, beneath the compound layer the diffusion zone forms with carbon and nitrogen 

being dissolved in the ferritic matrix. It is well documented that the best properties are 

achieved when the compound layer contains predominantly the single ε phase (Fig. 18a). 

The compound layer, typically in the range of 20 µm, leads to significant improvements in 

hardness, wear and corrosion resistance. A presence of ammonia in gas nitrocarburizing 

atmosphere affects the compound layer structure and a presence of cementite Fe3C. During 

ferritic carburizing of iron at a temperature of 550 oC in gas atmospheres containing a certain 
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amount of NH3, massive layers of cementite Fe3C can be grown [64]. In order to generate 

thicker layers, the nitrocarburizing process is conducted at temperatures exceeding the Fe-N 

eutectoid point of 590 oC. After austenitic plasma nitrocarburizing at 700 oC for 3 h of 0.45% 

C steel the layer contains mainly the ε-Fe2-3(N,C) phase but unlike after ferritic 

nitrocarburizing process, the austenite layer forms between the ε phase and diffusion zone 

(Fig. 18b) [57].  

 

Figure 18. Microstructure differences after low temperature and high temperature plasma 

nitrocarburizing in atmosphere of 87% N2 + 8% H2 + 5% CO2: (a) Armco iron, 570oC for 3h; (b) 0.45% C 

steel, 700oC for 3 h [57] (with permission from Elsevier Science) 

There are benefits to surface corrosion resistance after combining the plasma 

nitrocarburizing and oxidizing [65]. The carbonitrided SKD61 steel with a 10 µm thick 

compound layer (predominantly ε-Fe2-3(N,C) and small proportions of γ’- Fe4(N,C)) and 

200 µm thick diffusion layer subjected to plasma oxidation at 500 oC for 1 h creates 1-2 µm 

thick magnetite Fe3O4 layer on top of the compound layer [66]. According to the anodic 

polarization test, a significant improvement in the steel corrosion resistance is achieved. 

 

 
Phase N (at. %) C (at. %) Crystallography Atom 

arrangement 

Reference 

α-Fe 0-37 0-0.02 Fe bcc, N, C in 

octahedral sites

[17] 

θ-Fe3C 0 25 Fe complicated 

orthorhombic 

C in bicapped 

trigonal prisms

[64] [67] 

γ’-Fe4N1-z 19.4-20 <0.7 Fe fcc, N ordered in 

central 

octahedral sites

[61] [68] [69] 

ε-Fe3(N,C)1+x 15-33 0-8 Fe hcp, N ordered in 

octahedral sites

[61] [68] [69] 

Table 4. Characteristics of phases in Fe-N-C system at 580-590 oC  
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3.3. Applications 

In addition to application of nitrocarburizing to carbon and nitriding steels to increase their 

surface hardness and tribological performance it is also used to stainless steels and special 

alloys. After low-temperature plasma nitrocarburizing at 450 oC of austenitic stainless steel 

AISI 304, the dual layer structure grows with a nitrogen-enriched layer on top of a carbon 

enriched layer. Both layers are free of nitride and carbide precipitates [70]. In addition to 

increased surface hardness up to 1500 HV and improved wear resistance, the corrosion 

resistance is also positively altered. There is a difference in corrosion resistance between 

processes conducted at various temperatures below 450 oC. When treatments conducted at 

380oC and 415oC lead to similar properties, increasing temperature to 430 oC causes slightly 

higher corrosion resistance. The latter is attributed to the formation of a small amount of 

chromium nitride in the nitrogen-enriched surface layer. The overall improvement in 

corrosion resistance after nitrocarburizing of AISI 304 stainless steel is thought to be due to 

the extremely large supersaturation of an upper part of the nitrogen-enriched layer with 

both nitrogen and carbon. Also sintered Astaloy CrM® + 0.3% C, nitrocarburized in a salt 

bath at 580 oC for at least 2 h, experiences an increased corrosion resistance [71]. Its surface 

layer after the treatment is dominated by the ε-iron carbonitride Fe2-3(CN). 

4. Carburizing 

The objective of carburizing is to enrich surface layers of steel or other alloys with carbon. 

To achieve the sufficient carbon solubility and penetration depth the treatment is carried out 

at relatively high temperatures of 900-950 oC. As a result, steels, which do not have the 

sufficient carbon content within their volume, obtain the hard surface. The reduced carbon 

content is deliberately selected to retain the core toughness.  

The endothermic carburizing atmospheres consist of a mixture of carburizing ingredients 

such as CO and CH4 and decarburizing ones such as CO2 and H2O. To control the process, 

the carburizing potential of the furnace atmosphere requires the measurement of all the gas 

constituents CO, CO2, CH4 and H2O. The driving force for carburizing is determined by the 

gradient between potentials of carbon in the furnace atmosphere and carbon at the steel 

surface. The key reactions of carburizing involve [72]: 

 (g Fe) 22CO  C  CO−→ +  (3) 

 4 (g Fe) 2CH  C 2H−→ +  (4) 

 2 (g Fe) 2CO  H  C  H O−+ ↔ +  (5) 

A variety of applications of steel carburizing were explored for decades with typical 

examples of automotive gears. This includes also stainless steels, in particular the ferritic 

and austenitic stainless grades. Recently, the carburizing process creates a growing attention 

in area of martensitic stainless steels. A comparison of hardness depth profiles for all three 
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families of stainless steels is shown in Fig. 19. A relatively novel, low temperature gas 

carburizing at 470oC increases the surface hardness of AISI 316 austenitic stainless steel from 

200 HV to 1000 HV through extreme supersaturation of up to 12 at.% carbon in the solid 

solution [73] [74]. After treatment, two types of carbides M5C2 and M7C3 form with long 

needles or laths morphology, exhibiting the special orientation relationship with the 

austenitic matrix (Fig. 20). It is claimed that the carburizing technique which combines the 

superplastic deformation and the carbon diffusion generates a thicker layer and 

substantially higher hardness [75]. For duplex stainless steel JIS US329J1 the surface 

hardness of 1648 HV is achieved as compared to 1300 HV for conventional carburizing. The 

plasma carburizing of AISI 410 stainless steel in a gas mixture of 80% H2 + 20% Ar with 0.5-

1% of CH4 by volume, leads to surface hardness of 600-800 HV with no evidence of reduced 

corrosion resistance [76]. 

 

Figure 19. Hardness depth profiles for carburized stainless steel of different grades: A – AISI 420 

martensitic stainless steel, carburized in low temperature plasma at 450 oC for 4 h in 1% CH4 [76]; B – as 

A but CH4 concentration of 0.5%; C – AISI 316 austenitic stainless steel, gas carburized at 470 oC for 246 

h [74]; D –JIS SUS329J1 duplex stainless steel, superplastically deformed and carburized in powder at 

950 oC for 8 h [75] (with permission from Elsevier Science) 

In the area of non-ferrous alloys, carburizing is used to increase the wear resistance of some 

titanium alloys. As a result of double-glow plasma carburizing of the Ti2AlNb orthorhombic 

alloy, the layer of 40 µm with a hardness of 1051 HV and decreasing carbon content 

develops [77]. Also plasma carburizing of pure titanium in hydrogen free atmosphere is 

capable of creating the superficial carburized layer with special characteristics [78]. Of novel 

applications, carburizing of silicon is portrayed as an inexpensive in situ method of forming 

graphene on silicon wafer [79]. The process is seen as an alternative to the silicon technology. 
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During carburizing of silicon with carbon, pre-deposited from a carbon source a 3C-SiC(111) 

film forms because it is well lattice-matched with Si(110). The buffer layer of 3C-SiC(111) 

consists of hexagonal arrays that act as templates for graphene nucleation and growth. 

 

Figure 20. Optical microstructure of AISI 316 austenitic stainless steel after carburizing at 470 oC for 246 

h (a) [74] and TEM image with selected area electron diffraction pattern showing carbide morphology 

(b, c) [73] (with permission from Elsevier Science) 

5. Carbonitriding 

Carbonitriding is a process similar to carburizing whereby a source of nitrogen is added to 

the carburizing atmosphere which results in simultaneous incorporation of carbon and 

nitrogen into alloy surface. Sometimes carbonitriding is confused with nitrocarburizing. It is 

usually a two-step treatment, conducted at temperatures of 800-940 oC in an environment 

containing both carbon and nitrogen and is followed by quenching. At carbonitriding 

temperatures, which are substantially higher than that used during nitriding or 

nitrocarburizing, steel is in the austenitic state, having high solubility of carbon. To improve 

toughness, quenching is followed by the second step of low-temperature tempering or stress 

relieving. At the processing stage, nitrogen inhibits diffusion of carbon, resulting in thinner 

case, improves hardenability and forms nitrides. After treatment, a presence of nitrogen in 

carburized steel increases hardness, wear resistance and delays tempering. The latter is of 

importance for elevated temperature applications. Carbonitriding is widely accepted for 

surface improvement of plain carbon steels, having low hardenability. According to the 

comparative study of both processes, carbonitriding and nitrocarburizing develop the 

compressive stress and are associated with the size and shape distortion [80]. However, 

nitrocarburizing causes lower compressive stress and size/shape distortion, as is the case for 

SAE 1010 steel. 

Since carbon and nitrogen form with titanium the hard carbides and nitrides, carbonitriding 

is applicable to titanium and its alloys. In case of laser gas assisted carbonitriding of Ti-6Al-

4V alloy, the 55 µm thick layer composed of TiCxN1-x, TiN and TiC phases grow [81]. In case 

of pure titanium, carbonitriding at 850 oC for 5 h forms the near-surface layer of 

carbonitrides and thick layer of α-stabilized solid solution of titanium with nitrogen and 

oxygen [82]. As the partial nitrogen pressure changes from 105 Pa to 100 Pa and to 10 Pa the 

surface hardness decreases and composition alters to TiC0.25N0.75 to TiC0.50N0.50 and 

TiC0.52N0.48, respectively. 
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6. Boronizing 

During boronizing, called also boriding, the surface layer of material is saturated with 

boron. The process is performed in solid, liquid or gaseous medium and is applicable to any 

ferrous material as well as to alloys of Ni, Co or Ti. In case of steel it is carried out at 

temperatures between 840 and 1050 oC for up to 10 h creating borides FeB and Fe2B, which 

have a needle-like structure and hardness reaching 2000 HV. In addition to improving wear 

resistance, boronizing enhances also the corrosion resistance and oxidation resistance at 

temperatures of up to 850 oC. The main disadvantage of boronizing is the brittleness of the 

compound layer, especially the FeB phase.  

6.1. Application range 

For high-carbon-bearing steel AISI 5100, boronizing in solid medium of B4C, SiC and KBF4 at 

temperatures 800-950 oC for up to 8 h creates the single phase layer of Fe2B with a saw tooth 

morphology and hardness reaching 1800 HV [83]. The growth rate of boride layer is 

controlled by boron diffusion in the Fe2B layer with the boronizing activation energy of 106 

kJ/mol. For M2 high speed cutting steel, boronizing at 850-950 oC for up to 8 h, produces the 

smooth and compact layer with a thickness of up to 130 µm and hardness of 1600-1900 HV 

[84]. For tool steels the high hardness associated with a presence of borides causes a 

substantial reduction in toughness [85]. When applied to AISI 304L stainless steel by laser 

technology, boronizing develops the FeB, Fe2B, Cr2B, Cr23C6, Fe3C and B4C phases with 

surface hardness reaching 1490-1900 HV [86].  

Boronizing is applicable to titanium alloys and a pack process at 950oC creates a compact, 

uniform layer composed of TiB2 and TiB compounds [87]. Also, boronizing of pure nickel in 

powder-pack at 850-950 oC for up to 8 h creates the 237 µm thick surface layer composed of 

Ni2B, Ni5Si2 and N2Si phases with a hardness exceeding 980 HV [88]. The laser boronizing of 

nodular iron increases hardness five times and produces the fine-crystalline, homogeneous 

structure of iron borides [89]. The commercial boronizing Titancote™B generates a diffusion 

layer of complex borides with a thickness of 10-200 µm and hardness of 1600-1800 HV with 

applications in tooling, oil, gas or general components [90]. In addition to titanium, also 

other refractory metals such as tantalum, niobium, tungsten and also cobalt-chromium 

alloys benefit from boronizing. One of many advantages is increasing the surface strength 

without negatively affecting a biocompatibility.  

6.2. Treatments with a boronizing step 

The two stage treatment called borochromizing consists of chromium plating followed by 

diffusion boronizing and heat treatment. After powder boronizing of the 20 µm thick 

chromium coating on C45 carbon steel at 950 oC for 4h, the microstructure, thickness and 

microhardness are similar to the boride layer [91]. An additional treatment with laser, 

creates a solid solution or boride eutectics with martensite, reducing maximum hardness to 

850 HV. An example of the boride layer grown on pure chromium after boriding in a solid 

medium at 940 oC for 8h, is shown in Fig. 21a [92]. The process of borochromizing can also 
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be conducted, exploring exclusively thermodiffusion and the duplex salt bath immersion. 

During such a treatment, chromizing at 1050 oC is followed by boronizing at 950-1050 oC 

[93]. For DIN 1.2714 steel the treatment leads to a variety of phases such as CrB, Cr2B, FeB 

and Fe2B with the boron diffusion in the pre-chromized layer being the rate controlling step. 

The single-stage boroaluminizing is practiced in the gas phase at temperatures of 850-900 oC 

with controlled ratios of BF3 and AlF3 [94]. 

Borocarburizing is another two-step process where carburizing is followed by boronizing to 

generate boronitrides. It was proven that carburizing preceding boronizig reduces 

brittleness of boronized layers since the hardness gradient between iron borides and the 

carburized substrate becomes shallower. For 17CrNi6-6 steel, heat treated with laser after 

borocarburizing, three zones are distinguished, iron borides FeB+Fe2B of the modified 

morphology the hardened carburized zone (heat affected zone) and the carburized layer 

without heat effect [95]. The laser heat-treated borocarburized layer is characterized by 

higher hardness than the carburized layer, which is attributed to the presence of FeB and 

Fe2B phases. For low carbon steels containing Cr and Ni, the borocarburized layer of FeB 

and Fe2B with a microstructure shown in Fig. 21b, reached a hardness of 1500-1800 HV with 

a sub-layer zone being in the range of 700-950 HV [96]. An advantage of the borocarburized 

layer is in the higher frictional resistance as compared with the single treatment of either 

boronizing or carburizing. As an extension of borocarburizing, carbonitrided surfaces may 

be subjected to boronizing hence creating complex (B+C+N) diffusion layers [97]. Although 

borocarbonitriding shows a tendency to reduce the depth of iron borides zone and the 

microhardness gradient across the surface the resultant wear resistance is higher than that 

after individual processes. Another benefit of borocarbonitriding is borocarbonitriding is the 

lower lower temperature and shorter time in comparison with borocarburizing. 

 

Figure 21. Cross-sectional microstructure after boronizing: (a) pure chromium, solid medium, 940 oC, 8 

h [92]; steel 0.15%C, 1.69%Cr and 1.53%Ni, 930 oC, 20 h [96] (with permission from Elsevier Science) 

7. Chromizing 

The purpose of diffusion chromizing is to enrich surface layers of an alloy with chromium. 

As other diffusion processes it may be carried out by powder pack, salt bath or fluidized 

bed. The compound surface layer is formed by a reaction between the carbide former, such 
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as Cr deposited on the surface and carbon in the substrate. The outcome shows similar 

properties to coatings produced by CVD and PVD. In some sources, the process is divided 

into soft chromizing, when carbon content in a substrate is below 0.1% and hard chromizing 

for the carbon content in a substrate exceeding 0.3%. As negative features of chromizing, the 

shallow penetration depth and the distinct interface with the substrate are often quoted. 

Both features are caused by the diffusion kinetics of chromium in steel.  

7.1. Process and applications 

The typical chemistry of chromizing powder consists of 30% of ferrochromium (71%Cr, 

0.03%C and Fe as a balance), 2.5% ammonium chloride activator and 67.5% of alumina 

powder filler [98]. The diffusion depth depends on the temperature and substrate chemistry. 

It obeys the parabolic rate law and increases with chromizing time and carbon content in the 

matrix. For temperature of 950 oC and reaction time of 9 h, the diffusion layer thickness 

reaches 13.2, 22.5 and 27.0 for AISI 1020, 1045 and 1095 steels, respectively. The growth 

mechanism of chromium diffusion coatings on ferrous alloys was intensively studied in 

1980s [99] along with the role of pack geometry, substrate composition, type of halide 

activator, inner filler, time temperature and chromium source. 

Chromizing kinetics can be improved by a combination of conventional thermochemical 

process with recently developed surface mechanical attrition treatment. The latter aims at 

refining grains of surface layers into a nanometer range by the repeated plastic deformation 

such as high velocity ball impacting or mechanical grinding [100]. When a 20 µm thick 

surface layer with grain size of 10 nm was formed on AISI H13 tool steel, it provided a 

substantial enhancement of chromium diffusion. The two-step thermochemical treatment of 

chromizing, with the first step conducted within the stability limit of nano-structures at 600 
oC for 2 h, followed by the second-step treatment at 1050 oC for 4 h, created the 30 µm thick 

layer with a gradient of chromium concentration. The layer contained (Cr,Fe)23C6 and 

(Cr,Fe)2N1-x particles with a size below 200 nm. 

7.2. Treatments with a chromizing step 

Chromizing is often combined into a two-step treatment with nitriding, nitrocarburizing or 

boronizing. For AISI 1010 steel, nitrocarburized at 572 oC for 2 h, and subsequently 

chromized by the pack method in a powder of ferrochromium, ammonium chloride and 

alumina at 1000oC for up to 4h, the layer thickness reaches up to 13 µm with a hardness of 

1800 HV [101]. The layer consists of Cr2N and (Cr,Fe)2N(1-x) phases. In another example, AISI 

1045 steel was first nitrided with 2 µm thick compound layer and hardness of 740 HV and 

then chromized in powder mixtures consisting of ferrochromium, ammonium chloride and 

alumina at 1000oC for 2 h [102]. Chromizing of nitrided layer resulted in formation of Cr2N 

chromium nitride and Fe3N iron nitrides. Although an increase in hardness was observed, it 

did not lead to an improvement in wear resistance. When combining chromizing with 

boronizing, pack chromium treatment of previously boronized bearing steel provides high 

wear resistance, particularly in sliding applications [103]. 
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8. Thermo-reactive diffusion  

The thermal diffusion (TD), thermo-reactive deposition/diffusion (TRD) or TD-Toyota diffusion 

process is a high temperature treatment which generates a surface layer of carbides on steel 

as well as other carbon-containing materials such as nickel or cobalt alloys. In the treatment, 

carbon in the steel substrate diffuses into the deposited layer with a carbide-forming 

element such as vanadium, niobium, tantalum, chromium, molybdenum or tungsten. Then, 

the diffused carbon reacts, forming a compact, metallurgically-bonded coating with a 

thickness of up to 20 µm. The process is carried out at temperatures from 800 to 1250 oC for 

up to several hours. Due to the high temperature, steel requires bulk hardening either 

directly from the TD temperature or after the separate re-heating cycle. The typical hardness 

of vanadium carbide coatings, obtained using the salt bath TD process, reaches 3200-3800 V 

[104]. Also, niobium carbide NbC coatings exhibit the high hardness, wear resistance and 

low friction coefficient along with the high melting point. Coatings are produced by the steel 

immersion in the molten bath consisting of borax (Na2B4O7), boric acid (B2O3) and ferro-

niobium at 900-1100 oC for up to 10 h [105]. The diffusion of elements from niobium carbide 

coating to the steel and from the substrate to the coating was found to control the process 

kinetics for a bath containing more than 10% of ferro-niobium.  

9. Hybrid thermochemical treatments 

There are a number of surface modification technologies where thermochemical process is a 

single step in the multi-step treatment. An example of such hybrid is a concept of creating 

functionally graded materials, exploring a combination of coating and thermochemical 

treatment (Fig. 22). The single step process of deposition of thick coating with the high 

hardness is often difficult since they develop microcracks due to a generation of high 

internal stress [106]. Functionally graded materials offer new strategies for the 

implementation of high-performance structures in engineering components. They are 

comprised of continuous or discontinuous varying composition and/or microstructure over 

definable geometric orientations or distances. As a result they exhibit some unique 

properties which are beneficial for specific engineering applications. For example, the use of 

functionally graded systems in high-temperature components can enhance the adhesion and 

thermo-mechanical response of ceramic coatings deposited on metallic substrates [107].  

The difference in phase transformation temperatures between the steel substrate and the Fe-

10%Ni electrolytic deposit is an important factor of the thermal treatment proposed [108] 

[109]. At temperatures below 727 oC, the steel containing 0.9% C is composed essentially of 

pearlite, i.e. α + Fe3C. At the same time, the temperature of the α - γ transformation of the 

coating is approximately 680 oC. By selecting the temperature between 680 and 727 oC, the 

thermal diffusion treatment can be conducted at the coexistence of α (substrate) - γ (coating) 

diffusion couple. By contrast, during annealing at a temperature above 727 oC, both the steel 

substrate and the coating are composed exclusively of austenite (γ). The co-existence of the α 

- γ or the γ - γ diffusion couples leads to the essentially different redistribution of carbon 

across the coating thickness and the surface region of the steel substrate. 
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Figure 22. Concept of thermochemical treatment of a coating, exploring simultaneous diffusion from an 

environment and from the substrate 

9.1. Carburizing and diffusion annealing at a coexistence of the α - γ diffusion 

couple 

During annealing at temperatures below α-γ transformation of the steel substrate, the 

coating already contains a significant amount of the γ phase, which is the solid solution of 

Ni in γFe (fcc). At the same time, the substrate during annealing remained fully pearlitic. 

Thus, at the annealing temperature, cementite coagulated, dissolved and acted as a source of 

carbon, diffusing towards coating. Due to a relatively low temperature, the transport of 

large amounts of carbon for long distances within coating was difficult. After 30 min of 

annealing at 710 oC, the mean square root displacement of the carbon in austenite is as low 

as 32 µm. However, the carbon concentration gradient within the coating caused substantial 

modifications of the microstructure formed after cooling from annealing temperatures.  

An example of cross-sectional image of the microstructure formed after cooling from the 

two-phase (α-γ) range of coating, is shown in Fig. 23a. The coating cooled from the one-

phase region γ comprises continuously graded microstructures caused primarily by 

differences in carbon content at the coating-gas and coating substrate interface. Since the 

substrate was not transformed, the decarburization is seen as a thin ferritic layer, adjacent to 

fully pearlitic microstructure. The hardness depth profile for the treatment performed at 710 
oC, is represented by the lower curve in Fig. 24. An increase in hardness is seen in the region 

adjacent to the substrate and to the outer surface, due to diffusion of carbon from these two 

directions. 
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9.2. Carburizing and diffusion annealing at a coexistence of the γ - γ diffusion 

couple 

Significantly different changes in coating microstructure are observed after annealing at 

temperatures higher than the α-γ transformation of the steel substrate [109]. For example, at 

1000 oC the diffusion coefficient of carbon in austenite DC
γ is equal to 2.5×10-11 m2s-1 which 

corresponds to the mean root square displacement of almost 270 µm after 30 min. This 

means that carbon is capable penetrating the entire coating thickness. 

At temperatures above 727 oC, diffusion of carbon within the substrate, towards the 

substrate-coating interface, takes place in the austenite. As a result, the distribution of 

carbon in the substrate after cooling has a significantly different character than that 

described for α-γ diffusion couple. In general, the substrate does not show a ferritic layer 

but a continuously graded microstructure composed of ferrite and pearlite with an 

increasing contribution of pearlite, while moving inward from the substrate-coating 

interface. After 30 min annealing at 1000 oC, the ferritic and pearlitic region is approximately 

400 µm thick. 

Carburizing at 920 oC allows a higher enrichment of the coating in carbon and the higher 

hardness after cooling as showed by two upper curves in Fig. 24. The lower hardness in the 

regions close to the substrate and the outer surface can be explained on the basis of 

microstructural observations (Fig. 23b). While the coating carburized at 710 oC has a 

microstructure of acicular ferrite and bainite, the coating carburized at 920 oC is composed 

of martensite and retained austenite [109]. The high volume fraction of retained austenite in 

the regions close to the substrate and the outer surface caused the lower hardness.  

 

Figure 23. Microstructure of Fe-10%Ni coating on steel substrate after carburizing at temperatures of 

670 oC (a) and 920 oC (b) [109] (with permission from Springer Verlag) 
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Figure 24. Hardness depth profile within Fe-10%Ni coating on steel substrate after carburizing [109] 

(with permission from Springer Verlag) 

9.3. Carbonitriding and diffusion annealing at a coexistence of the α-γ diffusion 

couple 

This hybrid treatment explores simultaneous carbonitriding at the coating gas interface and 

carburizing at the coating-substrate interface. At carbonitriding temperatures the substrate 

also acts as a source of carbon and, in fact, during these processes the flux of the element 

causing hardening (C,N) is moving from two interfaces the substrate/coating and 

gas/coating [109]. The resultant microstructure is shown in Fig. 25. 

 

Figure 25. Microstructure of Fe-10%Ni coating after nitrocarburizing at 670 oC for 1.5 h in solid 

medium [109] (with permission from Springer Verlag) 
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The microhardness profile across the coating exhibits the maximum located in the sub-

surface region (Fig. 26). A comparison with the corresponding microstructure indicates that 

the hardness peak is caused by a layer of carbonitrides, typically situated in the near-surface 

region. It should be emphasized that during carbonitriding, the microstructural changes in 

the coating are accompanied by the changes in the substrate. The extent of those changes is 

essentially the same as that described previously for diffusion annealing. 

 

Figure 26. Hardness depth profile within Fe-10%Ni coating on steel substrate after nitrocarburizing 

[109] (with permission from Springer Verlag) 

10. Summary 

This chapter shows a variety of surface modification technologies, exploring the 

phenomenon of thermochemical diffusion. Although an idea of the thermochemical 

treatment originated at the beginning of the 20th century, it is still a subject of scientific 

research. At the commercial level, there is a continuous improvement of existing 

technologies, expansion to novel treatments and a search for unique applications. Of 

particular interests are hybrids which explore a combination of conventional 

thermochemical processes with new techniques of surface engineering, including surface 

deformations, cladding, coatings or laser modifications. In practice, a selection of the 

optimum technique depends on the component size, geometry, material chemistry, service 

requirements and the process economy. In recent years, also an environmental aspect is 

getting a growing attention. The key to benefit from opportunities created by 

thermochemical treatments is knowledge of capabilities of each technology for a particular 

substrate material under specific service conditions and its implementation at the stage of a 

component design. 
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