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1. Introduction 

Digital Hilbert transformers are a special class of digital filter whose characteristic is to 

introduce a π/2 radians phase shift of the input signal. In the ideal Hilbert transformer all 

the positive frequency components are shifted by –π/2 radians and all the negative 

frequency components are shifted by π/2 radians. However, these ideal systems cannot be 

realized since the impulse response is non-causal. Nevertheless, Hilbert transformers can be 

designed either as Finite Impulse Response (FIR) or as Infinite Impulse Response (IIR) 

digital filters [1], [2], and they are used in a wide number of Digital Signal Processing (DSP) 

applications, such as digital communication systems, radar systems, medical imaging and 

mechanical vibration analysis, among others [3]-[5]. 

IIR Hilbert transformers perform a phase approximation. This means that the phase 

response of the system is approximated to the desired values in a given range of 

frequencies. The magnitude response allows passing all the frequencies, with the magnitude 

obtained around the desired value within a given tolerance [6], [7]. On the other hand, FIR 

Hilbert transformers perform a magnitude approximation. In this case the system 

magnitude response is approximated to the desired values in a given range of frequencies. 

The advantage is that their phase response is always maintained in the desired value over 

the complete range of frequencies [8].  

Whereas IIR Hilbert transformers can present instability and they are sensitive to the 

rounding in their coefficients, FIR filters can have exact linear phase and their stability is 

guaranteed. Moreover, FIR filters are less sensitive to the coefficients rounding and their 

phase response is not affected by this rounding. Because of this, FIR Hilbert transformers are 

often preferred [8]-[15]. Nevertheless, the main drawback of FIR filters is a higher 

complexity compared with the corresponding IIR filters. Multipliers, the most costly 
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elements in DSP implementations, are required in an amount linearly related with the 

length of the filter. A linear phase FIR Hilbert transformer, which has an anti-symmetrical 

impulse response, can be designed with either an odd length (Type III symmetry) or an even 

length (Type IV symmetry). The number of multipliers m is given in terms of the filter 

length L as  m C L , where C = 0.25 for a filter with Type III symmetry or C = 0.5 for a filter 

with Type IV symmetry.  

The design of optimum equiripple FIR Hilbert transformers is usually performed by Parks-

McClellan algorithm. Using the MATLAB Signal Processing Toolbox, this becomes a 

straightforward procedure through the function firpm. However, for small transition 

bandwidth and small ripples the resulting filter requires a very high length. This complexity 

increases with more stringent specifications, i.e., narrower transition bandwidths and also 

smaller pass-band ripples. Therefore, different techniques have been developed in the last 2 

decades for efficient design of Hilbert transformers, where the highly stringent 

specifications are met with an as low as possible required complexity. The most 

representative methods are [9]-[15], which are based in very efficient schemes to reduce 

complexity in FIR filters. 

Methods [9] and [10] are based on the Frequency Response Masking (FRM) technique 

proposed in [16]. In [9], the design is based on reducing the complexity of a half-band filter. 

Then, the Hilbert transformer is derived from this half-band filter. In [10], a frequency 

response corrector subfilter is introduced, and all subfilters are designed simultaneously 

under the same framework. The method [11] is based on wide bandwidth and linear phase 

FIR filters with Piecewise Polynomial-Sinusoidal (PPS) impulse response. These methods 

offer a very high reduction in the required number of multiplier coefficients compared to 

the direct design based on Parks-McClellan algorithm. An important characteristic is that 

they are fully parallel approaches, which have the disadvantage of being area consuming 

since they do not directly take advantage of hardware multiplexing.  

The Frequency Transformation (FT) method, proposed first in [17] and extended in [18], was 

modified to design FIR Hilbert transformers in [12] based on a tapped cascaded 

interconnection of repeated simple basic building blocks constituted by two identical 

subfilters. Taking advantage of the repetitive use of identical subfilters, the recent proposal 

[13] gives a simple and efficient method to design multiplierless Hilbert transformers, where 

a combination of the FT method with the Pipelining-Interleaving (PI) technique of [19] 

allows getting a time-multiplexed architecture which only requires three subfilters. In [14], 

an optimized design was developed to minimize the overall number of filter coefficients in a 

modified FT-PI-based structure derived from the one of [13], where only two subfilters are 

needed. Based on methods [13] and [14], a different architecture which just requires one 

subfilter was developed in [15].  

In this chapter, fundamentals on digital FIR Hilbert transformers will be covered by 

reviewing the characteristics of analytic signals. The main connection existing between 
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Hilbert transformers and half-band filters will be highlighted but, at the same time, the 

complete introductory explanation will be kept as simple as possible. The methods to design 

low-complexity FIR filters, namely FRM [16], FT [17] and PPS [11], as well as the PI 

architecture [19], which are the cornerstone of the efficient techniques to design Hilbert 

transformers presented in [9]-[15], will be introduced in a simplified and concise way. With 

such background we will provide an extensive revision of the methods [9]-[15] to design 

low-complexity efficient FIR Hilbert transformers, including MATLAB routines for these 

methods.  

2. Complex signals, analytic signals and Hilbert transformers 

A real signal is a one-dimensional variation of real values over time. A complex signal is a 

two-dimensional signal whose value at some instant in time can be specified by a single 

complex number. The variation of the two parts of the complex numbers, namely the real 

part and the imaginary part, is the reason for referring to it as two-dimensional signal [20]. 

A real signal can be represented in a two-dimensional plot by presenting its variations 

against time. Similarly, a complex signal can be represented in a three-dimensional plot by 

considering time as a third dimension.  

Real signals always have positive and negative frequency spectral components, and these 

components are generally real and imaginary. For any real signal, the positive and 

negative parts of its real spectral component always have even symmetry around the 

zero-frequency point, i.e., they are mirror images of each other. Conversely, the positive 

and negative parts of its imaginary spectral component are always anti-symmetric, i.e., 

they are always negatives of each other [1]. This conjugate symmetry is the invariant 

nature of real signals.  

Complex signals, on the other hand, are not restricted to these spectral conjugate symmetry 

conditions. The special case of complex signals which do not have a negative part neither in 

their real nor in their imaginary spectral components are known as analytic signalsor also as 

quadrature signals [2]. An example of analytic signal is the complex exponential signalxc(t), 

presented in Figure 1, and described by 

       0
0 0( ) ( ) ( ) cos( ) sin( ).j t

c r ix t e x t jx t t j t  (1)  

The real part and the imaginary part of the analytic signal are related trough the Hilbert 

transform. In simple words, given an analytic signal, its imaginary part is the Hilbert 

transform of its real part. Figure 1 shows the complex signal xc(t), its real part xr(t) and its 

imaginary part, xi(t). Figure 2 presents the frequency spectral components of these 

signals. It can be seen that the real part xr(t) and the imaginary part xi(t), both real 

signals, preserve the spectral conjugate symmetry. The complex signal xc(t) does not 

have negative parts neither in its real spectral component nor in its imaginary spectral 

component. For this reason, analytic signals are also referred as one-side spectrum 
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signals. Finally, Figure 3 shows the Hilbert transform relation between the real and 

imaginary parts of xc(t).   

 

 

Figure 1. The Hilbert transform and the analytic signal of xr(t) = cos(ω0t), ω0= 2π. 

 

 

Figure 2. From left to right, frequency spectrum of xr(t), xi(t) and xc(t). 

 

 

Figure 3. Hilbert transform relations between xr(t) and xi(t) to generate xc(t). 
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The motivation for creating analytic signals, or in other words, for eliminating the negative 

parts of the real and imaginary spectral components of real signals, is that these negative 

parts have in essence the same information than the positive parts due to the conjugate 

symmetry previously mentioned. The elimination of these negative parts reduces the 

required bandwidth for the processing. For the case of DSP applications, it is possible to 

form a complex sequence xc(n) given as follows,  

  ( ) ( ) ( ),c r ix n x n jx n  (2)  

with the special property that its frequency spectrum Xc(ejω) is equal to that of a given real 

sequence x(n) for the positive Nyquist interval and zero for the negative Nyquist interval, 

i.e.,  

 
   

  


  

 
( )  for  0 ,

( )
    0         for 0.

j
j

c

X e
X e  (3) 

Although analyticity has no formal meaning for sequences [2], the same terminology, i.e., 

analytic sequence, will be applied for complex sequences whose frequency spectrum is one-

sided, like in (3). 

If Xr(ejω) and Xi(ejω) respectively denote the frequency spectrums of xr(n) and xi(n), then 

    ( ) ( ) ( ).j j j
c r iX e X e jX e  (4) 

The spectrums of xr(n) and xi(n) can be readily deduced as 

 
   *1

2
( ) [ ( ) ( )],j j j

r c cX e X e X e  (5) 

 
   *1

2
( ) [ ( ) ( )],j j j

i c cjX e X e X e  (6) 

where Xc*(ejω) is the complex conjugate of Xc(ejω). Note that (6) gives an expression for jXi(ejω), 

which is the frequency spectrum of the imaginary signal jxi(n). Also, note that Xr(ejω) and 

Xi(ejω) are both complex-valued functions in general. However, Xr(ejω) is conjugate 

symmetric, i.e., Xr(ejω) = Xr*(e–jω). Similarly, jXi(ejω) is conjugate anti-symmetric, i.e., jXi(ejω) =   

–jXi*(e–jω). These relations are illustrated in Figure 4. 

From (5) and (6) we obtain  

    *( ) 2 ( ) ( ),j j j
c r cX e X e X e  (7) 

    *( ) 2 ( ) ( ),j j j
c i cX e jX e X e  (8) 

and since Xc*(e–jω) = 0 for 0 <ω<π (see Figure 4b), eqs. (3), (7) and (8) give 
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Figure 4. Decomposition of an unilateral spectrum. Solid and dashed lines are, respectively, the real 

and imaginary parts. 
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   

  


  

 
2 ( )  for  0 ,

( )
    0         for 0.

j
j r

c

X e
X e      (9) 

 
   

  


  

 
2 ( )  for  0 ,

( )
    0         for 0.

j
j i

c

jX e
X e  (10) 

Thus  

       ( ) ( )   for 0 .j j
i rX e jX e  (11) 

On the other hand, from (4), and since Xc(ejω) = 0 for –π  ω< 0, we have 

       ( ) ( )    for 0.j j
i rX e jX e  (12) 

Therefore, (11) and (12) can be expressed as 

 
    

  






 

 

( )  for  0 ,
( )

  ( )    for 0,

j
j r

i j
r

jX e
X e

jX e
 (13) 

or 

   ( ) ( ) ( ),j j j
i rX e H e X e  (14) 

where 

 
       

  
 

 for  0 ,
( )

      for 0.
j j

H e
j

 (15) 

According to (14), xi(n) can be obtained by processing xr(n) with a linear time-invariant 

discrete-time system whose frequency response H(ejω) is given in (15). This frequency 

response has unity magnitude, a phase angle of –π/2 radians for 0 <ω<π, and a phase angle 

of π/2 radians for –π<ω< 0. A system of this type is commonly referred to as Hilbert 

transformer or sometimes as 90-degree phase shifter. 

The impulse response h(n) of a Hilbert transformer is [2]  

 

  
     

 




22
sin   for  0,

( ) 2

   0                for 0.

n
n

h n n

n

 (16) 

This impulse response is not absolutely summable and thus the frequency response of (15) is 

ideal. However, approximations to the ideal Hilbert transformer can be obtained with IIR or 

FIR systems. Thus, Hilbert transformers are considered a special class of filter.  

IIR Hilbert transformers have phase error as well as magnitude error in approximating the 

ideal frequency response. Basically, these filters can be designed by using two all-pass 



 
MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 452 

systems whose phase responses differ by approximately π/2 over some well-defined portion 

of the band 0 < |ω|<π. By taking the outputs of the two all-pass filters as the real and 

imaginary parts of a complex signal it can be found that the spectrum of such signal nearly 

vanishes over much of the negative frequency interval. As such, the outputs of the two all-

pass filters are quite nearly a Hilbert transformer. 

FIR Hilbert transformers with constant group delay can be easily designed. The π/2 phase 

shift is realized exactly, with an additional linear phase component required for a causal FIR 

system. By evaluating (16) over some positive and negative values of n, it can be seen that the 

impulse response is anti-symmetric. Therefore, FIR Hilbert transformers are based on either 

Type III (i.e., anti-symmetric impulse response with odd length L) or Type IV (i.e., anti-

symmetric impulse response with even length L) symmetry. Filters with Type III symmetry 

have amplitude equal to zero in ω = 0 and ω = π and filters with Type IV symmetry have 

amplitude equal to zero only in ω = 0. Thus, the FIR approximation is acceptable over a given 

range of frequencies (a pass-band region) which does not include these extremes.  

The exactness of the phase of Type III and Type IV FIR systems is a compelling motivation 

for their use in approximating Hilbert transformers. Additionally, whereas IIR Hilbert 

transformers can present instability and they are sensitive to rounding error in their 

coefficients, FIR filters have guaranteed stability, are less sensitive to the coefficients 

rounding and their phase response is not affected by this rounding. Because of this, FIR 

Hilbert transformers are often preferred [8]-[15]. The rest of this chapter will be focused on 

the design of FIR Hilbert transformers. 

2.1. Basic design of FIR Hilbert transformers with MATLAB 

Since the phase requirement in FIR Hilbert transformers is accomplished, the design of a FIR 

Hilbert transformer consists on finding the impulse response h(n), for n = 0 to L–1, which 

satisfies the following magnitude response specification, 

          (1 ) ( ) (1 )       for  ,j
L HH e  (17) 

where δ is the allowed pass-band ripple, ωL is the lower pass-band edge and ωH is given as 

ωH =π– ωL if the desired Hilbert transformer is a Type III filter or ωH =π if it is Type IV. The 

values ωL and ωH can be made to approach 0 and π, respectively, as closely as desired by 

increasing the length L of the filter. For Hilbert transformers, the value ωL/2π is considered 

the transition band.  

The design of optimum equiripple Type III and Type IV FIR linear phase Hilbert 

transformers is usually performed by Parks-McClellan algorithm. With the MATLAB Signal 

Processing Toolbox this becomes a straightforward procedure through the function firpm. 

The order of the filter, L–1, must be estimated in advance. A useful formula to estimate L, 

presented in [10], is 
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      

 



    



3 2

10 10

10 2

( ,  ) 0.002655 log ( ) 0.031843 log ( ) ...

                          0.554993log ( ) 0.049788 / ( ) 1.L

LL
 (18) 

Example 1. The following code example illustrates the design of a Type III Hilbert 

transformer with δ= 0.01, ωL= 0.1π and ωH= π– ωL= 0.9π using the MATLAB Signal 

Processing Toolbox. From (18), L is estimated as L  24.3266. For convenience, we use L = 

4k+3 with k integer and the closest value for L, higher than the estimated value, is chosen. In 

this case we use L = 4*6+3 = 27. 

 

d = 0.01; w_L = 0.1*pi; w_H = 0.9*pi; L = 27; 

h = firpm(L-1,[w_L/pi w_H/pi],[1 1],'hilbert'); 

[H w] = freqz(h,1); 

figure; stem(0:length(h)-1, h,'fill') 

figure; plot(w/pi, abs(H)) 

Figure 5a shows the impulse response and Figure 5b shows the magnitude response of the 

obtained Hilbert transformer.  

As we mentioned earlier, the most expensive elements in digital filters are multipliers. For a 

Type III Hilbert transformer, the number of multipliers, m, is (L+1)/4 if L = 4k+3, or (L–1)/4 if L = 

4k+1, with k integer. In this last case the impulse response values h(0) and h(L–1) are zero. For a 

Type IV Hilbert transformer, the number of multipliers is L/2. This number can be simplified as  

   ,m C L  (19) 

where C = 0.25 for a Type III Hilbert transformer or C = 0.5 for a Type IV Hilbert 

transformer. 

 

Figure 5. (a) Impulse response and (b) Magnitude response of a digital FIR Hilbert transformer. 
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It is worth highlighting the following point. A Type III Hilbert transformer can be derived 

from a Type IV Hilbert transformer by adding one zero-valued impulse response sample 

between each two impulse response samples of the Type IV Hilbert transformer. This is 

equivalent to replacing each z–1 in the transfer function of this filter by z–2. The opposite 

procedure can be straightforwardly followed to derive a Type IV Hilbert transformer from a 

Type III Hilbert transformer. 

From (18), it can be seen that the length L increases inversely proportional with the 

transition band ωL/2π. Hence, for cases with narrow transition band and small ripple the 

implementation cost becomes very high. As a simple example, the estimated length for a 

Hilbert transformer withδ= 0.001 and ωL= 0.001π is L  3661.2. It implies approximately 915.3 

multipliers, which is impractical. Therefore, the design of FIR Hilbert transformers with 

strict specifications requires specialized techniques to reduce the number of multipliers and 

the computational complexity of the filter. Before of the revision of these techniques, in the 

next section we will highlight the relation between Hilbert transformers and half-band 

filters because this relation is crucial for developing the specialized techniques to design 

low-complexity FIR Hilbert transformers.  

3. The Hilbert transformer and its relation with the half-band filter 

Half-band filters have their transfer function given by 

 





2

0

( ) ( ) ,
M

n
Hb Hb

n

H z h n z  (20) 

where hHb(n) is the impulse response, M is an odd integer and 2Misthe filter order [21]. The 

coefficients are symmetric with respect to the central coefficient hHb(M), namely, they 

accomplish the following relation, 

   (2 ) ( )     for    0,1,...,2 .Hb Hbh M n h n n M  (21) 

The length of the filter, L, is an odd number given as L = 2M + 1 with M = 1, 3, 5… etc. In a 

lineal phase half-band filter, almost a half of the coefficients are zero. Figure 6 shows the 

procedure to design a half-band filter. It starts with the transfer function of a Type II lineal 

phase filter, i.e., a filter with symmetric impulse response whose length is even. For this 

filter we have, 

 



  

0

( ) ( )    for   ( ) ( ).
M

n

n

Q z q n z q M n q n  (22) 

First, samples with value zero are introduced between the q(n) impulse samples (see Figure 

6a and 6c). This generates a transfer function with Type I symmetry, whose order is 2M, 

given by 
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Figure 6. Low-pass half-band filter design. (a) Impulse response of a Type II filter with order M, q(n). 

(b) Zero-phase frequency response of the Type II filter with order M, Q(ω). (c) Impulse response of a 

Type I filter with order 2M, f(n). (d) Zero-phase frequency response of the Type I filter with order 2M, 

F(ω). (e) Impulse response of a half-band filter, hHb(n). (f) Zero-phase frequency response of the half-

band filter, HHb(ω). 

 

  

 
   

2
2 2

0 0

( ) ( ) ( ) ( ) .
M M

n n

n n

F z f n z Q z q n z  (23) 

Then, the zero-valued sample with index n = M is replaced by the value 1/2 (See Figure 6e). 

Thus we obtain 

   


    2

0

1 1
( ) ( ) ( ) .

2 2

M
M M n

Hb
n

H z z F z z q n z  (24) 

(a) 

hHb(n) 

0 0

2M
nM

½ 

f(n) 

0 
0 

2

M

n M

½ 

(c) 

(b) 

½ + δ 

½ - δ 

-½ - δ 
-½  

-½ + δ 

½  

F(ω)=Q(2ω) 

ω 

π/2    π  π- ωpωp

0  

HHb(ω)=1/2 + F(ω) 

ω 

1 + δ

1 - δ

  - δ
 0 

1 

½  

  + δ

π/2   π π- ωpωp

ω 

(d) 

(e) (f) 

½ + δ 

½ - δ 

-½ - δ 
-½  

-½ + δ 

½  

π   2π 2π-2ωp 2ωp

0  

Q(ω)

q(n) 

0 
0 

M
n

½ 



 
MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 456 

The coefficients of the half-band filter are obtained from (20) and (24) as 

  
   

 

1
( ) ,    ( )   for    even,

2 2Hb Hb

n
h M h n q n  (25) 

  ( ) 0,  for    odd  and  ,Hbh n n n M  (26) 

and the zero-phase frequency response of HHb(z) is 

      1 1
( ) (2 ) ( ).

2 2HbH Q F  (27) 

Based on the previous relations, the design of a half-band low-pass filter with pass-band 

frequency ωp and pass-band ripple δ can be carried out by designing the Q(z) filter, such that 

its zero-phase frequency response, Q(ω), oscillates within 1/2 ± δ over the range of 

frequencies [0, 2ωp] (See Figure 6b). Since Q(z) has a Type II transfer function, it presents a 

fixed zero in z = –1 (ω = π). Note from Figure 6b that Q(ω) oscillates within –1/2 ± δ over the 

range of frequencies [2π – 2ωp, 2π]. The corresponding zero-phase frequency response of the 

filter F(z), given as F(ω) = Q(2ω), remains within 1/2 ± δ over the range of frequencies [0, ωp] 

and within –1/2 ± δ over the range of frequencies [π – ωp, π] (See Figure 6d). Finally, HHb(ω) 

oscillates around 1 over the range of frequencies [0, ωp] with tolerance δ and around 0 over 

the range of frequencies [π – ωp, π] with the same tolerance δ (See Figure 6f). Note that, as a 

low-pass filter, the half-band filter has the relations ωs = π–ωp and δp = δs. 

Example 2. The following code example illustrates the design of a half-band filter with 

δp=δs= 0.005, ωp= 0.4π and ωs= π– ωp= 0.5π using the MATLAB Filter Design Toolbox. Eq. (18) 

can be applied to estimate the filter length L, by substituting ωL = (π/2) – ωp and δ= 2δp. The 

length L is estimated as L  24.3266. Since L must be represented as L = 2M+1 with M odd to 

avoid zero-valued impulse response samples in the left and right extremes of the impulse 

response, we use L =2*13 + 1 = 27. 

 

dp = 0.005;w_p = 0.4*pi;w_s = 0.5*pi; L = 27; 

h_half = firhalfband(L-1, w_p/pi); 

[H_half w] = freqz(h_half,1); 

figure; stem(0:length(h_half)-1, h_half,'fill') 

figure; plot(w/pi, abs(H_half)) 

3.1. Hilbert transformer derived from a half-band filter 

A Hilbert transformer filter can be designed from a half-band filter. First,the sample with 

value 1/2, located in the index n = M, is replaced by the value 0 (See Figures 7a and 7d). Thus 

we obtain 

   1
( ) ( )

2
M

HbH z H z z . (28) 
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The subtraction of this coefficient, drawn in Figure 7d, causes the zero-phase frequency 

response of the half-band filter to be shifted downwardly, as illustrated in Figure 7c. The 

filter  ( )H must be shifted by π/2 on the horizontal direction in the frequency domain. This 

is accomplished by multiplying the remaining coefficients, ( )h n , by (j)–n. The effect of this 

action produces a Hilbert transformer with odd length and a pass-band gain equal to 0.5. 

Therefore, a Hilbert transformer with unitary gain will be obtained by scaling all the 

coefficients by 2. This is illustrated in Figure 8. The transfer function of the Hilbert 

transformer given in terms of the transfer function of a half-band filter is  

  




 
   

 

2

0

1
( ) 2 ( ) ( ) 2 ( )( )

2

M
M n

Hb Hb
n
n M

H z H jz jz h n jz . (29) 

The impulse response of the Hilbert transformer is related with the impulse response of the 

half-band filter through the following expression, 

 


  
  

1

0;        2 1,             
( )

2( 1) ( );     2      with     0,1,2,..., .k
Hb

n k
h n

h n n k k M
 

(30) 

It was mentioned earlier that the useful bandwidth in a Hilbert transformer is restricted to 

some range given as 0 < ωL ≤ ω ≤ ωH < π, where ωH= π – ωL. The relation of the low-pass edge 

frequency ωL with the band-edge frequencies of the half-band filter, ωp and ωs, is given by 

    ( / 2)L p ,  (31) 

    ( / 2)L s ,  (32) 

where ωs = π – ωp. 

 

Figure 7. (a) Ideal zero-phase frequency response of the half-band filter HHb(ω). (b) Impulse response of 

the half-band filter hHb(n). (c) Ideal zero-phase frequency response resulting of the subtraction of the 

central coefficient, located at n = M,     1
2

( ) ( )
Hb

H H . (d) Impulse response, ( )h n . 
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Hilbert transformers designed from half-band filters have odd length. In these cases, there is 

a coefficient of value zero between each coefficient of its impulse response. Thus, a Hilbert 

transformer with even length can be obtained by eliminating these zero-valued coefficients. 

 

Figure 8. Hilbert transformer design, (a) Ideal zero-phase frequency response of the Hilbert transformer 

obtained from HHb(ω). (b) Impulse response h(n). 

Example 3. The following code example illustrates a simple way to obtain the impulse 

response of a Hilbert transformer from the impulse response of a half-band filter. If we 

consider that the code of Example 2 has been previously run, it can be assumed that h_half 

and L are already defined. The resulting Hilbert transformer coefficients in h are the same as 

the ones obtained in Example 1, since the half-band filter generated in Example 2 

accomplish the relations ωL = (π/2) – ωp and δ= 2δpwith regard to the specifications in 

Example 1.   

 

index = [1:L]; 

middle_sample = [zeros(1,(L-1)/2) 1/2 zeros(1,(L-1)/2)]; 

m = (ones(1,L)*i).^(-(index-1)); 

h = 2*(h_half.*m - middle_sample.*m); 

4. Efficient methods to design FIR filters 

It is known that the complexity of FIR digital filters increases in an inverse proportion with 

the transition bandwidth. A simple example in Sub-section 2.1 was given for the case of a 

Hilbert transformer with small ripple and bandwidth. Several efficient techniques have been 

developed to efficiently design FIR filters with strict specifications, such that the resulting 

filter accomplishes the desired specification with a lower complexity than the direct design 

obtained with the Parks-McClellan algorithm. For Hilbert transformers, however, these 

methods have been specially adapted, since Hilbert transform filtering has special 

characteristics as we saw in Section 2. Prior to starting the review of the special methods to 

design FIR Hilbert transformers with low complexity, we will briefly introduce in this 

section the general techniques which are the origin of these methods. These techniques are 

Frequency-Response Masking (FRM), Frequency Transformation (FT) and Piecewise 

Polynomial Sinusoidal (PPS).  

M 2M 
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4.1. Frequency-Response Masking technique 

The FRM technique, introduced in [16], uses the so-called expanded-by-M filters as basic 

building blocks, where the transfer functions have the form G(zM). In general, a filter G(z) 

becomes expanded-by-M by replacing every of its elements z–1 by z–M or, in other words, by 

inserting M–1 zero-valued impulse response samples between two of its original impulse 

response samples. The periodic frequency response of these filters has M periods in the 

frequency range [0, 2π].  

Figures 6a to 6d show how a filter F(z) = Q(z2) has a compressed-by-two frequency response 

in comparison with the original filter Q(z), whose impulse response is depicted in Figure 6a. 

The zero-phase frequency response of Q(z), presented in Figure 6b, shows a period that 

covers the frequency range [0, 2π]. On the other hand, the filter F(z) has a very similar zero-

phase frequency response, with the only difference that its period covers the frequency 

range [0, π]. The transition bandwidth of this expanded-by-2 filter F(z) is a half of the 

transition bandwidth of the filter Q(z). However, now this expanded filter has a replica of 

the frequency response of Q(z) (which covers the range of frequency [2π, 4π]) over the range 

[π,2π]. The number of multipliers of F(z) is the same as the one of Q(z). This can be seen in 

Figure 6c, where several impulse response samples are zero-valued.  

The main idea of the FRM technique is using an expanded filter G(zM) and its complementary 

filter, Gc(zM), to form the transition band of a desired filter H(z). Because of that, these filters 

are so-called band-edge shaping filters. The complementary filter is given as 

   ( 1)/2( ) ( ),GL
cG z z G z  (33) 

where LG is the length of the filter G(z). Since the frequency response of these filters is 

periodical, two non-periodic masking filters, HMa(z) and HMc(z), are respectively cascaded 

with G(zK) and Gc(zK) to eliminate the unwanted periodic replicas of frequency response. The 

overall filter formed with the FRM technique is given as 

 
   ( 1)/2( ) ( ) ( ) [ ( )] ( )GM LM M

Ma McH z G z H z z G z H z . (34) 

Extensive information about the basic FRM method can be found in [16] and [23]. 

4.2. Frequency Transformation technique 

The FT technique, first studied in [22] and then generalized in [17], is based on the repetitive 

use of an identical simple subfilter G(z). Let us consider G(ω) as the zero-phase frequency 

response of G(z) and an amplitude change function Q(x) given as 

 



0

( ) ( )
M

k

k

Q x q k x .  (35) 

The function Q(x) allows changing the values x = G(ω)to new values y = Q(x). Basically, the 

new amplitude values y = Q(x) must approximate the desired values d = D(x) for xXp  Xs, 
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where Xp is the range of values [xp,l, xp,u] and Xs is the range of values [xs,l, xs,u], such that the 

zero-phase frequency response of the overall filter H(z) achieves the desired values d with a 

maximum absolute pass-band deviation δp over the pass-band region Ωp, as well as a 

maximum absolute stop-band deviation δs over the stop-band region Ωs. This characteristic 

is reached if the following conditions are simultaneously met, 

 
, ,( ) ( ) ( ) , for ,p p p l p uD x Q x D x x x x        (36) 

 
, ,( ) ( ) ( ) , for ,s s s l s uD x Q x D x x x x        (37) 

 
, ,( ) , for ,p l p u px G x     (38) 

 
, ,( ) , fors l s u sx G x     (39) 

Usually, D(x) = 1 for xXp and D(x) = 0 for xXs. Basically, two problems can be solved 

from this approach: 

Problem 1. Given M, the number of subfilters, find the optimal coefficients of Q(x) and the 

optimal coefficients of G(z) to meet the conditions (36) to (39) with the minimum length LG 

(which must be odd). 

Problem 2. Given the subfilter G(z), find the optimal coefficients of Q(x) to meet the 

conditions (36) to (39) with the minimum value M. 

The overall filter formed with the FT technique is given as 

    


 ( )( 1) / 2

0

( ) ( ) ( )G

M
kM k L

k

H z q k z G z .  (40) 

Detailed information about the FT method can be found in [16] and [23].   

4.3. Piecewise Polynomial Sinusoidal technique 

In the PPS technique, introduced in [24] for wide-band Type I filters, extended in [25] for 

Hilbert transformers and detailed in [11] for both cases, the idea is to divide the impulse 

response of a wideband filter into sub-responses and to generate each sub-response with 

polynomials with a given degree. For wideband linear-phase filters, the impulse response 

has a narrow main lobe and the side lobes have very rapid change in sign. Therefore, it is 

taken advantage of sinusoids in such a way that the polynomial pieces follow the 

polynomial-sinusoidal shapes to decrease the number of polynomial pieces and, as a 

consequence, to reduce the number of coefficients. 

The overall transfer function H(z) for a desired Type I filter with length 2N+1 is constructed 

with M parallel branches connected and delayed with z–Nm in order to keep the center of 

symmetry at the same location for all the sub-impulse responses. These sub-responses are 

modulated with a sinusoidal function and finally an arbitrary number of separately 

generated filter coefficients is added as follows, 
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H z z H z z H z ,  (41) 

where,  
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    


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( ) (2( ) )

0
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n

H z h N N z h n z z .  (42) 

The integers Nm in the delay terms z–Nm satisfy N1 = 0 and Nm+1>Nm for m = 1, 2, …, M – 1, and 

the order of Hm(z) is 2(N – Nm). The impulse response is given as  

 


    ( )

0

( ) ( ) sin[ ( ( ))]
L

L r
m m c m

r

h n a r n n N N . (43) 

In addition,  ˆ ˆ ( )Nz H z is a conventional direct-form transfer function with non-zero impulse 

response coefficients ˆ( )h n , with n = N–c+1, N–c+2, …, N–c+T, where c =   / 2T  and T is the 

number of additional coefficients at the center of the filter. Given the values Nm for m = 1, 2, 

…, M – 1, M and L, the objective is finding the polynomial coefficients such that the error 

with respect to a desired amplitude characteristic is minimized. An extensive explanation on 

this method can be reviewed in [11].    

4.4. Pipelining-Interleaving architecture 

The Pipelining-Interleaving (PI) technique developed in [19] provides efficient structures of 

FIR digital filters to avoid the repetitive use of an identical filter. Suppose that we have two 

sequences of independent signals, x1(n) and x2(n), that are filtered by two identical filters 

H(z). Thus, two corresponding sequences of independent outputs, y1(n) and y2(n), are 

obtained. An alternative form for this purpose is the multirate implementation using H(z2) 

as shown in Figure 9. This structure uses a single filter to implement two identical filters. 

The clock rate for this implementation must be twice the data rate [19]. If only one sequence 

of input signal is filtered, it is possible to connect the first output sequence y1(n) to the 

second input x2(n). In this way, H(z2) is used to implement H2(z). 

 

Figure 9. Filtering of two independent sequences using one filter.  

The PI structure of the Figure 9 can be extended to implement the filtering of K different 

signals, each one filtered by an identical filter H(z), with K being an arbitrary positive 

integer. From this, it is possible to implement the filtering of one signal with K identical 

filters in cascade. Figure 10a presents the general structure to filter a signal using one filter 

H(zK). Figure 10b shows the equivalent structure, which consists of the filtering of a signal 

by a cascade of K identical filters H(z) [19]. 

1z
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In the structure shown in Figure 10a, the clock rate of H(zK) must be K times the data rate. 

Clearly, for high data rate applications, K must be chosen as a relatively small integer, 

otherwise a very high clock rate will be required. More details on this time-multiplexed 

architecture can be found in [19]. 

5. Efficient Methods to design FIR Hilbert transformers 

It has been mentioned earlier that the design of low-complexity FIR Hilbert transformers 

with stringent specifications requires special efficient methods. In the following we will 

review the most representative and useful methods, which are based on the techniques 

revised in the previous section.  

 

Figure 10. Filtering of a sequence with K identical cascaded filters, (a) PI architecture with only one 

filter, (b) equivalent single-rate structure. 

5.1. Hilbert transformer design based on Frequency Response Masking 

This method, proposed in [9], relies on the special case of FRM for the synthesis of a half-

band filter HHb(z) [26]. Consider a half-band filter Ha(z) as a band-edge shaping filter whose 

transfer function is given by 

 2 11
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aH z z A z     (44) 
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        (45) 

where La= 4K – 1 is the length of Ha(z), with K being an integer greater than zero, and a(n) is 

the impulse response of Ha(z). Replacing G(z) by Ha(z) in (34) we have 
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We can express the transfer function of the overall half-band filter as 

 
            

(2 1) (2 1)1 1
2 2

( ) ( ) ( ) ( ) ( )M K M M K M
Hb Ma McH z z A z H z z A z H z .  (47) 

If M is odd, then either [   (2 1)1
2

( )M K Mz A z ] or[   (2 1)1
2

( )M K Mz A z ] has a transition band 

centered at π/2, just as desired for a half-band filter.  

If M is given by the form 

   4 1,    with  {0,1,2,...}M k k , (48) 

then the pass-band of HMa(z) is greater than the pass-band of HMc(z). With ωp and ωs denoting 

the band-edge frequencies of HHb(z), these values can be express as [26] 

 
2 2

, ,p s

m m

M M

     
    (49) 

where m is an integer less than M. The values m, θ and ϕ can be calculated as 
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  

  (50) 

where   x represents the integer part of x, whereas θ and ϕ are the pass-band and stop-

band edges of Ha(z). The pass-band and stop-band edge frequencies of the masking filter 

HMa(z), θMa and ϕMa, as well as the pass-band and stop-band edge frequencies of the masking 

filter HMc(z), θMc and ϕMc, are given by 

 

2 2 ( 1) 2 2
, , ,Ma p Ma Mc Mc s

m m m m
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                
       (51) 

If M is given by the form 

   4 3,    con {0,1,2,...}M k k .   (52) 

then the passband of HMc(z) is greater than the pass-band of HMa(z). In this case the 

frequencies ωp and ωs are given by 
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m m

M M

     
    (53) 

To calculate m, θ and ϕ we use the following relations, 
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where   x represents the rounding operation to the closest integer greater than x. The 

values, θMa, ϕMa, θMc and ϕMc, are given by 

 

2 ( 1) 2 2 2
, , , .Ma Ma s Mc p Mc

m m m m

M M M M

                
       (55)

 

If HMa(z) is a Type I filter with length LMa = 4k + 1, where k is an integer, we can write 
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Now we define the transfer functions B(z) and C(z) as  
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 (58) 

with hMa(n) as coefficients of the filter HMa(z). Replacing (57) and (58) in (56), we have 

  ( ) ( ) ( )MaH z B z C z .   (59) 

In the half-band filter design, the masking filters are related by 

    ( 1)/2( ) ( )MaL
Mc MaH z z H z .    (60) 

From (59) and (60), and noting that B(–z) = –B(z) and that C(–z) = C(z), we have 

    ( 1)/2( ) ( ) ( )MaL
McH z z B z C z .    (61) 

Once known the transfer function of the masking filters from (59) and (61), the overall 

transfer function of the half-band filter can be obtained by substituting (59) and (61) in (47). 

Finally, we obtain 

          [ (2 1) ( 1)/2] ( 1)/2(2 1)1
2

( ) ( ) ( )[2 ( ) ]Ma MaM K L LM K M
HbH z z z B z A z C z z .  (62) 

The half-band filter with desired deviation δ and pass-band edge frequency ωp can be 

designed with the FRM technique by applying the following steps: 

1. Get the optimal value of M, using the following approximation, 

 


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1 2

2opt
s p

M .  (63) 
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Note that the obtained value must be rounded to an odd integer. 

2. Find if M can be expressed either as in (48) or (52). Then obtain the pass-band and stop-

band edge frequencies of the band-edge shaping filter Ha(z), θ and ϕ, as well as the ones 

of the masking filter HMa(z), θMa and ϕMa, using (50) and (51) if M is expressed as in (48), 

or (54) and (55) if M is expressed as in (52).Design these filters with a ripple approx. 

15% less than the desired ripple. 

3. Obtain A(z) from Ha(z) using (44) and (45). Then obtain B(z) and C(z) from HMa(z) using 

(56), (57) and (58). 

4. Synthesize the overall structure of (62) in terms of A(zM), B(z) and C(z). 

A Hilbert transformer can be derived from a unity gain half-band filter by subtracting the 

constant ½ from its transfer function and then modulating the remaining coefficients by    e–

jπn/2 (see section 3.1). The transfer function of the Hilbert transformer H(z) is given by [9] 

        ( 1)/2(2 1)( ) 2( ) ( ) 2 ( ) [2 ( ) ( ) ]MaLM K MH z jz B jz A jz C jz jz . (64) 

It is worth highlighting that the filter in (64) does not need complex-number arithmetic 

processing because of the following reasons. First, note that the filter A(jMzM) has only real 

coefficients since the imaginary unit generated by (jz)–n with n odd is eliminated by zero-

valued coefficients in these indexes n. Second, note that all the coefficients in [2C(jz) – (jz)–

(LMa–1)/2] are real and all the coefficients in B(jz) are imaginary when LMa is expressed as 4k+1, 

with k integer. Third, the term (jz)–M(2K–1) is always imaginary, since its exponent is always 

odd. From these reasons, we have that if B(jz) has imaginary coefficients, the term (jz)–M(2K–1) 

makes them real and the overall filter has real coefficients.  

The Hilbert transformer from (64) can be seen as a parallel connection of two branches. In 

the first branch we have Hb(z) = 2(jz)–M(2K–1)B(jz) and in the second branch we have the 

cascade of H1(zM) and HM(z), where H1(zM) = 2A(jMzM) and HM(z) = [2C(jz) – (jz)–(LMa–1)/2]. This 

structure is presented in Figure 11. Let us review a different point of view of the FRM 

technique, presented in [10].  

The filter Hb(z) can be seen as a low-order Hilbert transformer, the filter H1(zM) as a band-

edge shaping filter and HM(z) as a masking filter. The basic filter Hb(z) provides a low order 

approximation (with wide transition bandwidth) to the desired specification. The cascaded 

connection of H1(zM) and HM(z) produces a correction term to the transfer function that 

decreases the transition bandwidth. The transfer function for the overall filter is given by 

  1( ) ( ) ( ) ( )M
M bH z H z H z H z .   (65) 

Let the lengths of Hb(z), H1(z) and HM(z) be Lb, L1 and LM, respectively. The length of 

H1(zM)HM(z) is ML1 + LM – M. The delay introduced by Hb(z) and the delay introduced by 

H1(zM)HM(z) must be the same; otherwise, pure delays must be introduced into the shorter-

delay branch to equalize them.  
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Figure 11. Structure for the synthesis of a Hilbert transformer using the FRM technique. 

In order to avoid inserting half-sample delay in the implementation, the parities of Lb and of 

(ML1 + LM – M) must be the same. Furthermore, H1(zM)HM(z)must have anti-symmetrical 

impulse response. 

Consider the magnitude response of Hb(z) as |Hb(ejω)|, as shown in Figure 12a, where Lb is 

even. The computational complexity of Hb(z) is low since its transition band is wide. Now 

consider the magnitude response of a transition band correction filter, |He(ejω)|, as shown in 

Figure 12b. The Hilbert transformer with sharp transition bandwidth, as shown in Figure 

12c, is obtained from the parallel connection of the correction filter with Hb(z). 

The objective is designing a correction filter with very low complexity using FRM technique. 

Consider the band-edge shaping filter H1(z) with magnitude response |H1(ejω)|, as shown in 

Figure 12d. The complexity of H1(z) is low because it has a wide transition band. Replacing 

each delay of H1(z) by M delays, a magnitude response |H1(ejMω)| is obtained, as shown in 

Figure 12e. A masking filter HM(z), with magnitude response |HM(ejω)| shown in Figure 12f, 

is used to mask the unwanted pass-band of |H1(ejMω)|. With this masking, the magnitude 

response |He(ejω)|, shown in Figure 12b, is produced. HM(z) has low complexity because its 

magnitude response has a wide transition band. 

Since the length of Hb(z) is even, the length of H1(zM) HM(z), i.e.,MN1 + NM – M, must also be 

even. If M is odd, N1andNMmust have different parities. By considering the gain of |HM(ejω)| 

in the vicinity of ω = 0, it is clear that HM(z) has symmetrical impulse response. Thus, H1(z) 

must have anti-symmetrical impulse response to satisfy the condition that H1(zM) HM(z) must 

have anti-symmetrical impulse response. 

The band-edges of Hb(z) and HM(z) are the same. Let the band-edge of Hb(z) be θb and let the 

band-edge of H1(z) be θ1. It can be seen from Figure 12 that the value θb satisfies θb ≤ (2π – 

θ1)/M. For an arbitrary value θ1, it is possible to obtain θb if the appropriate value of M is 

known, which is obtained with the objective of minimizing the overall number of 

coefficients. Finally, the overall filter is designed with a joint simultaneous optimization of 

H1(zM), Hb(z) and HM(z). For the examples in [10], the algorithm in [27] was used.  

In the following we present a simple example to design an efficient FIR Hilbert transformer 

with stringent specifications based on the FRM technique. The approach presented in this 

example follows the procedure based on the four steps to design a half-band filter in terms 

of filter A(z), B(z) and C(z). 

The Hilbert transformer is derived using (64). Since this approach does not require a 

simultaneous optimization for all the filters, it is simple and straightforward. Additionally, 

the sensitivity to the rounded coefficients is less since every filter is designed separately [28].   

( )bH z

1( )MH z ( )MH z

( )Y z( )X z
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Figure 12. Magnitude responses of the subfilters for even length Hb(z). Note that ωL/2π is the desired 

transition bandwidth. 

Example 4. The following code example illustrates the design of a Type III Hilbert 

transformer with δ= 0.0001, ωL= 0.00125π and ωH= π– ωL= 0.99875π using the MATLAB 

Signal Processing Toolbox and the Filter Design Toolbox to generate the half-band filter. The 

conversion of filters with argument z into filters with argument jz is performed with the 

same principle illustrated in the code of example 3. 

wL=0.00125*pi; wH=0.99875*pi; d=0.0001; % Hilbert transformer specification 

wp=pi/2 - wL;  ws=pi/2 + wL;  %find the half-band band-edge frequencies 

dp=d/2;        ds=d/2; %find the half-band ripple specification 

%--------STEP 1. Optimum M---------- 

M = (1/2)*round(sqrt(2*pi/(ws-wp))); if mod(M,2)==0; M = M+1; end 

%----------------------------------- 

%-------STEP 2. Band-edge-Shaping and Masking Filters-------------- 

if mod((M-1)/4,1)==0;  

    m=floor(wp*M/(2*pi));  theta=(wp*M)-(2*pi*m);   phi=(ws*M)-(2*pi*m);   

    theta_Ma=wp; phi_Ma=(2*pi*(m+1)-phi)/M; theta_Mc=((2*pi*m)-theta)/M; 

    phi_Mc=ws;   

else 

    m=ceil(ws*M/(2*pi));  theta=(2*pi*m)-(ws*M);   phi=(2*pi*m)-(wp*M);   

    theta_Ma=(2*pi*(m-1)+phi)/M;  phi_Ma=ws;  theta_Mc=wp; 

    phi_Mc=((2*pi*m)+theta)/M; 
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end 

La=firpmord([theta/pi  phi/pi],[1 0], [0.85*dp 0.85*ds]);  

if mod(La,2)==0; La=La+1; end 

if mod((La+1)/4,1)~=0; La=La+2; end 

K=(La+1)/4; 

[L_Ma,fo,ao,W]=firpmord([theta_Ma/pi  phi_Ma/pi],[1 0], [0.85*dp 0.85*ds]); 

if mod(L_Ma,2)==0; L_Ma=L_Ma+1; end 

if mod((L_Ma-1)/4,1)~=0; L_Ma=L_Ma+2; end 

ha = firhalfband(La-1,theta/pi); 

h_Ma = firpm(L_Ma-1,fo,ao,W); 

%---------------------------------------------------------------- 

%--------STEP 3. Filters A(z), B(z) and C(z)--------------------- 

a = ha - [zeros(1,2*K-1) 1/2 zeros(1,2*K-1)];  

for i=1:L_Ma; if mod(i-1,2)==0; b(i)=0; c(i)=h_Ma(i); else b(i)=h_Ma(i); 

c(i)=0; end 

end 

delay_b = [zeros(1,M*(2*K-1)) 1 zeros(1,M*(2*K-1))];  

delay_c = [zeros(1,(L_Ma-1)/2) 1 zeros(1,(L_Ma-1)/2)]; 

%--------------------------------------------------------------- 

%--------STEP 4. Form the Hilbert transformer (or half-band filter)------- 

a_M = upsample(a,M); a_M = a_M(1:end-(M-1)); 

index_a_M = [1:length(a_M)]; 

m_a_M = (ones(1,length(a_M))*j).^(-(index_a_M-1)); 

index_b = [1:length(b)]; 

m_b = (ones(1,length(b))*j).^(-(index_b-1)); 

index_c = [1:length(c)]; 

m_c = (ones(1,length(c))*j).^(-(index_c-1)); 

index_delay_b = [1:length(delay_b)]; 

m_delay_b = (ones(1,length(delay_b))*j).^(-(index_delay_b-1)); 

index_delay_c = [1:length(delay_c)]; 

m_delay_c = (ones(1,length(delay_c))*j).^(-(index_delay_c-1)); 

h = 2*conv(delay_b.*m_delay_b, b.*m_b) +... 

    2*conv(a_M.*m_a_M,(2*c.*m_c - delay_c.*m_delay_c)); 

[H w] = freqz(h,1,10000); 

figure; plot(w/pi, abs(H)) 

%---------------------------------------------------------- 
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Figure 13 shows the magnitude response of the obtained Hilbert transformer. The overall 

structure requires 148 coefficients in total, i.e., 69 for A(jMzM), 39 for B(jz) and 40 for C(jz). 

Clearly, the FRM-based design is a very efficient method comparing to a direct design, like 

the one presented in example 1, where the estimated length is 4017 and which would 

require approximately 1005 coefficients.   

5.2. Hilbert transformer Design based on Frequency Transformation 

The Frequency Transformation (FT) method, developed in [12] to design FIR Hilbert 

transformers, allows designing FIR Hilbert transformers using a tapped cascaded 

interconnection of repeated simple basic building blocks constituted by two identical 

subfilters. To this end, two simple filters are required, namely, a prototype filter and a 

subfilter. The number of times that the subfilter is used, as well as the coefficients used 

between each cascaded subfilter, depends on the prototype filter. Both, the prototype filter 

and the subfilter are Hilbert transformers. The former is always a Type IV filter whereas the 

latter can be a Type III or Type IV filter according to the type of the desired Hilbert 

transformer [12]. 

The prototype filter must be a Type IV FIR filter, i.e., with even length given as LP = 2N and 

anti-symmetric impulse response of the form p(2N – 1 – n) = –p(n). Its frequency response is 

expressed as 

       (2 1) /2  /2
( ) ( )

j NjP e e P ,  (66) 

where P(Ω), the zero-phase term, is given by 

    






    
1

2
0

( ) sin ( )cos
N

n

P j d n n ,   (67) 

and Ω denotes the frequency domain of the prototype filter. The coefficients ( )d n can be 

obtained directly from the impulse response p(n) [1]. 

Using the equivalence cos(Ωn) = Tn{cos(Ω)} [17], where Tn{x}is the nth-degree Chebyshev 

polynomial defined with the following recursive formulas, 

 

Figure 13. Magnitude responses of the FRM-based Hilbert transformer. From left to right: overall 

magnitude response, transition bandwidth detail and passband ripple detail. 
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 0 1 1 2{ } 1, { } and { } 2 { } { },n n nT x T x x T x xT x T x       (68) 

the zero-phase term can be rewritten as 

    






     
1

2
0

( ) sin ( ) cos
N n

n

P j n ,  (69) 

where α(n) are obtained from ( )d n using the coefficients of the Chebyshev polynomials. 

Based on the equivalence given as 

          
22cos 2 1 2sin 1 2 sinx x j x ,    (70) 

the zero-phase term can be expressed by 

     


 



 
     

 


1 2

2 2
0

( ) sin ( ) 1 2 sin
nN

n

P j n j .  (71) 

Consider the case of a Type III subfilter with odd length given as LG= 2M + 1 and anti-

symmetric impulse response of the form g(2M – n) = –g(n). Its frequency response is 

expressed as 

    2 /2
( ) ( )

j MjG e e G ,  (72) 

where G(ω) is the zero-phase term, given by 

 


  
1

( ) ( )sin( )
M

n

G j c n n .  (73) 

The coefficients c(n) can be obtained directly from g(n) [1]. Note that the term G(ω) can be 

put in (71) by using the following expression, 

  



   
2

1

sin ( )sin( )
M

n

j j c n n ,   (74) 

resulting in 

 


  

           
     

2
1

1 0 1

( ) ( )sin( ) ( ) 1 2 ( )sin( )

n
M N M

n n n

H j c n n n j c n n ,   (75) 

where H(ω) is the zero-phase term of the overall filter. Therefore, the frequency 

transformation is obtained from (74) and is given by 

 



 
   

  
 1

1

2sin ( )sin( )
M

n

c n n .     (76) 
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Equation (76) implies that the magnitude response of the prototype filter is preserved, but 

its frequency domain is changed by the subfilter. 

The transfer function of the overall Hilbert transformer is given as 

 

1
2 ( 1 ) 2 2

1 1
0

( ) ( ) ( ) ( ) , ( ) 2 ( )
N

nM N n M

n

H z G z z n H z H z z G z


   



      (77) 

with G(z) being the transfer function of the subfilter. 

For a desired Hilbert transformer specification expressed as in (17), the magnitude response 

|P(Ω)| of the prototype filter must satisfy the following condition, 

           (1 ) ( ) (1 ),      for LP , (78) 

with ΩL being the lower band-edge frequency of the prototype filter. The magnitude 

response of the subfilter, |G(ω)|, must fulfill simultaneously 

           0( ) 1,      for d G L Lv G ,   (79) 

    1 1 1 1
2 2 2 2 2 2

sin , sin .L L

d Gv        (80) 

The design procedure proposed in [12] starts with an arbitrary prototype filter, and then the 

subfilter is designed accordingly.  

Note that the complexity of the subfilter depends almost exclusively on its transition 

bandwidth, since its ripple specification is considerably relaxed. Similarly, the prototype 

filter is a low-complexity filter because, even though its ripple specification is strict, its 

transition bandwidth is relaxed. The relaxed ripple specification of the subfilter makes it 

suitable to be implemented as a simple, multiplierless system with rounded coefficients [13]. 

Additionally, it was observed in [13] that the repeated use of identical subfilters can be 

avoided by taking advantage of the PI technique, which has been introduced in sub-section 

4.4. Therefore, a time-multiplexed design with lower area can be obtained.  

Figure 14 presents the PI-based architecture proposed in [13]. This structure was 

straightforwardly derived from [19], where a similar example is given for the sharpening 

technique of [22]. Additionally, the design of the Hilbert transformer was made multiplierless 

by applying rounding to the coefficients of the prototype filter and the subfilter.  

Instead of choosing an arbitrary prototype filter as in [12], a heuristic search was employed 

to select the prototype filter and the subfilter, such that the proposed architecture uses a 

number of coefficients less or equal to 0.25 times the estimated number of multipliers 

required in a direct design using the Parks-McClellan algorithm. 
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Figure 14. PI-based structure with three subfilters [13]. 

 

Figure 15. PI-based structure with two subfilters [14]. 

In [14] the authors observed that the cascaded interconnection of the two subfilters G(z) 

required to build H1(z) can be decoupled and also implemented with the PI technique. Thus, 

the PI-based architecture shown in Figure 15, which only requires two subfilters, was 

obtained. The approach of PI-based architectures for FT designs was further developed in 
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[15], and a simple procedure to derive a PI-based structure from a FT-based design with 

identical subfilters was proposed. With this procedure, the architecture presented in Figure 

16 was proposed for Hilbert transformers, where only a simple subfilter is required.  

 

Figure 16. PI-based structure with one subfilter [15]. 

An important insight proposed in [14] was avoiding the arbitrary selection of the prototype 

filter as in [12] through the optimized search of the adequate prototype filter, such that a 

cost metric is minimized. Since multipliers are the most expensive elements in digital filters, 

reducing the overall number of coefficients is the goal. In general terms, this is equivalent to 

improve the original heuristic search proposed in [13]. From (78), (79) and (80) it can be 

observed that the prototype filter and the subfilter can be designed if the frequency ΩL is 

known. The problem consists on finding the optimal frequency ΩL. 

Consider a function φ(δ, ωL), which can estimate with an acceptable exactitude the length of 

a HT in terms of its ripple δ and its lower passband edge ωL, such as the one presented in 

(18). We have, for the prototype filter and the subfilter,  
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where LG and LP are the respective approximations to the lengths of the subfilter, LG, and the 

prototype filter, LP, whereas vd and δG are given in (80). Clearly, LG and LP are given as 

functions of the ripple and transition band of the subfilter and of the prototype filter, 

respectively. 
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For the previously revised PI-based structures, it is always possible to express the overall 

number of multipliers m in terms of the numbers of multipliers of the prototype filter and 

the subfilter as, 

  ( ,   )G Pm f m m , (83) 

  G Gm C L , (84) 

  / 2P Pm L , (85) 

where mP and mG are taken from (19). 

Substituting vd and δG from (80) in (81), and using the approximations (81) and (82) 

respectively in (84) and (85) we have 

        
     1 sin( / 2) 1

21 sin( / 2)
( ,  ,  ) ( ,  ),   ( ,  )L

L
L L L Lm f C . (86) 

Note that, even though m(δ, ωL, ΩL) is a function of δ, ωL and ΩL, the values δ and ωL are 

known a priori because they are given by the problem at hand (see (17)). Therefore, since the 

unique unknown is ΩL, the approach consists in finding the optimum value Ω*L for ΩL, with 

0 < ΩL<π, such that m(δ, ωL, ΩL) is minimized. This optimization problem is given as 

  


  


 



min ( ,  ,  )

such that  0 ,
L

L L

L

m
 (87) 

where m(δ, ωL, ΩL) is given in (86). The result obtained from (86) is an estimation which 

depends on the exactitude of the function φ(δ, ωL).  

Equation (18) was utilized in [17] as the function φ(δ, ωL). However, this function does not 

give good length estimation for filters with a huge ripple (like the subfilters in the FT 

method). Using the proposal from [29] as starting point, we have recently derived the 

following more accurate formula, 
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 (88) 

Thus, the FT method consists on finding the optimum value ΩL by solving (87). With this 

value, the prototype filter and the subfilter are designed as given in (78) and (79). Finally, 

the coefficients α(n) are found from the prototype filter coefficients by relating (67) and (69) 

and the overall filter is synthesized by using any of the structures existing in literature [13]-

[15] or [17].  
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Example 5. The following code example illustrates the design of a Type III Hilbert 

transformer with δ= 0.004, ωL= 0.01π and ωH= π– ωL= 0.99π using the MATLAB Signal 

Processing Toolbox. The optimized value for ΩL is Ω*L = 0.2237π and the lengths for the 

prototype filter and the subfilter are, respectively, LP = 14 and LG = 31. The value Ω*L has been 

optimized to minimize the number of coefficients in the structure of Figure 16. This code 

makes use of the MATLAB function ChebyshevPoly.m, which is available online [30]. 

%*********** INITIAL DATA **************** 

L_g=31;  wl=0.01*pi;  L_p=14;   Om_L=0.2237*pi; 

%************** SUBFILTER********************** 

wH=pi-wl;    dG = (1/2) - (1/2)*sin(Om_L/2);  

vd = (( 1 - sin(Om_L/2) )/2) + sin(Om_L/2); 

g = firpm(L_g-1,[wl/pi wH/pi],[vd vd],'hilbert'); 

%*************PROTOTYPE FILTER***************** 

[p]=firpm(L_p-1,[Om_L/pi 1],[1 1],'hilbert'); 

%***************BASIC BUILDING BLOCK H1******************** 

r1=2*conv(g,g); 

delay=[zeros(1,L_g-1) 1 zeros(1,L_g-1)]; 

h1=r1+delay; 

%**************ALPHA COEFFICIENTS FROM CHEBYSHEV POLYNOMIAL ************** 

N = L_p/2 

for mm=1:N;  d(mm)=2*(p((N+1)-mm)); end 

D(N)=2*d(N);   

for Mm=fliplr([3:N]);  D(Mm-1)=(2*d(Mm-1))+(D(Mm));  D(1)=d(1)+((1/2)*D(2)); 
end 

tt=0; 

for nn=fliplr([0:N-1]); tk=ChebyshevPoly(nn); T(nn+1,:)=[zeros(1,tt) tk'] ;  

  tt=tt+1; 

end 

ll=sum((D'*[ones(1,N)]).*T); 

alpha=fliplr(ll); 

%**************OVERALL FILTER ************** 

upper_branch = g;   lower_branch = g*alpha(1);  h = lower_branch; 

for ii=1:N-1; 

upper_branch = conv(upper_branch,h1); 

lower_branch = conv(h, [zeros(1,L_g-1) 1 zeros(1,L_g-1)]); 

h=lower_branch + alpha(ii+1)*upper_branch;%Overall Hilbert transformer 

end 

[H w]=freqz(h,1,1000); 

figure 

plot(w/pi,abs(H)) 
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Figure 17 shows the magnitude response of the obtained Hilbert transformer. The overall 

structure requires only 15 coefficients in total, i.e., 7 structural coefficients, α(0) to α(6), and 8 

coefficients for the subfilter G(z). Compared to a direct design, where the estimated length is 

287 and which would require approximately 72 coefficients, The FT-based design achieves 

almost a 75% of reduction in the number of distinct required coefficients.   

 

Figure 17. Magnitude responses of FT-based Hilbert transformer. From left to right: overall magnitude 

response, transition bandwidth detail and passband ripple detail. 

5.3. Hilbert transformer design based on Piecewise Polynomial Sinusoidal 

technique 

This method to synthesize Hilbert transformers, first proposed in [25] and then detailed in 

[11], is based on the previous method [31] and on a modification to the method [32]-[33]. The 

method stems from a windowing technique for Type III and Type IV FIR filters of order 2N 

and 2N-1, respectively. The basic windowing technique for Type III filters is expressed as 

  0( ) ( ) ( )h n w n h n ,   (89) 

where 
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is an ideal impulse response, w(n) is the window function and N is odd. Similarly, an ideal 

odd-order impulse response can be expressed as 
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The overall transfer function can be expressed in the following way, 
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W(n) is an impulse response satisfying W(2N − n) = −W(n) for n = 0, 1, . . .,N − 1, W(N) = 0, 

and W(2N − 1 − n) = −W(n) for n = 0, 1, . . .,N, for Types III and IV respectively. Additionally, 

w(n) is a positive and symmetric window function for all n. 

A way to generate the piecewise-polynomial-sinusoidal transfer function F(z) is to consider 

the following transfer function: 
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where Ns is 2N or 2N − 1 for Types III and IV, respectively. From (92) it follows that F(z) can 

be expressed as 
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In [32] a wideband FIR filter is obtained by first generating the envelope filter with W(n) for 

n =0, 1, . . . , 2N [2N − 1] as the impulse-response coefficients. This impulse response is 

designed to become piecewise polynomial. The coefficient values of this envelope filter are 

modified by multiplying them with [1−cos(n−N)π] for Type III, which gives F(z). From (92) it 

can be seen that for Type IV the piecewise-polynomial-sinusoidal impulse response 

coincides with the piecewise-polynomial impulse response, i.e., the constant part of the real 

part in (95). 

Let us consider the simpler case Type IV filter. The overall transfer function, denoted by 

H(z), is constructed as presented previously in sub-section 4.3. We will repeat the equation 

here for convenience,  
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Recall that the integers Nm in the delay terms z–Nm satisfy N1 = 0 and Nm+1>Nm for m = 1, 2, …, 

M – 1, and the order of Hm(z) is 2(N – Nm) – 1. The impulse response is given for n = 0, 1, 2, … 

,N − Nm–1by Lth order polynomials as follows 
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Additionally,  ˆ ˆ ( )Nz H z is a conventional [2N − 1]th-order Type IV direct-form transfer 

function with the additional impulse response coefficients at n = N −c, . . . , N −1, where c =
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  / 2T  and T is the number of additional coefficients at the center of the filter. The delay 

terms in (96) are used to shift the center of the symmetry at the desired location, which 

occurs at n = (2N − 1)/2. 

In order to indicate that the overall filter has a piecewise-polynomial impulse response the 

time interval [0,N − 1] is divided into the following M subintervals: 

    1[ , 1]  for 1,2,..., 1M m mX N N m M   (98) 

and 

  [ , ]M MX N N . (99) 

First, we have thatX1 =[0,N2− 1] because N1 = 0, Secondly, the overall impulse response can 

be studied up to n = N − 1 because of the odd symmetry. The impulse response on Xm can be 

expressed as 
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where 
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for m = 1, 2, …, M – 1 and 
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which equals the overall impulse response and where h’(n)is a conventional direct-form 

Type IV filter with nonzero coefficients for n = N − c, . . . , N − 1, in which c =   / 2T and T is 

the number of separately generated additional center coefficients. The slices Nms should be 

chosen so that |N2−N1| ≠|N3−N2| ≠ …≠|NM −NM−1|,where N1 = 0 and M is the number of 

subintervals in the overall impulse response. 

Based on the above equations, in each Xm for m =1, 2, . . ., M, a separate piecewise-

polynomial impulse response can be generated. In addition, in the XM, there are additional 

center coefficients, which are of great importance for fine-tuning the overall filter to meet the 

given criteria. 

Given the filter criteria as well as the design parameters M,N, L, Nm’s, and the number of 

center coefficients included in ˆ ( )H z , the overall problem is solvable by using linear 

programming. 
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6. Conclusion 

In this chapter we have studied the Hilbert transform relations existing among the real part 

and the imaginary part of complex analytic signals. The importance of these signals has 

been highlighted in terms of spectral efficiency, i.e., the analytic signals do not have spectral 

components in their negative-frequency side. For discrete-time sequences, this characteristic 

holds for the negative-frequency side in every Nyquist period.  

The Hilbert transformer has been introduced as a special type of FIR filter which is the key 

processing system to generate analytic signals. The design of such important filter is, of 

course, straightforward with the aid of an important filter design tool: the MATLAB Signal 

Processing Toolbox. However, this direct design method, shown as a very simple and 

convenient MATLAB code, cannot be efficiently applied for more stringent and realistic 

specifications. We have presented a concise explanation of the relation of Hilbert 

transformers and half-band filters because this relation, as has been observed from 

literature, is one of the most important characteristics to overcome this problem. 

The efficient methods to design low-complexity FIR Hilbert transformers with strict 

specifications have been detailed. Three methods have been analyzed, namely, Frequency-

Response Masking (FRM), Frequency Transformation (FT) and Piecewise-Polynomial 

Sinusoidal (PPS). These schemes are based on three different approaches to design efficient 

FIR filtering. FRM is a periodical subfilter based method, FT is an identical subfilter based 

method and PPS is a piecewise-polynomial based method. Additionally, it has been 

observed that FRM and PPS are fully parallel approaches and do not take direct advantage 

of hardware multiplexing. On the other hand, we have shown that FT allows area-efficient 

architectures by multiplexing a simple subfilter. 

Finally, the FRM and the time-multiplexed FT approach have been illustrated in 

MATLAB, with the aid of the Signal Processing Toolbox. Even though the underlying 

theory on the efficient techniques to design FIR Hilbert transformers is specialized, the 

MATLAB codes have been preserved in a simple and as clear as possible presentation. 

The presented codes allow a clearer understanding on such specialized techniques and, at 

the same time, can serve as a basis for more elaborated algorithms and further research on 

this fertile area. 
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