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1. Introduction 

Fretting defines a condition in which mechanical contacts are subjected to alternating 

tangential displacements, small compared to dimensions of contact area, due to oscillating 

loading conditions. Fretting wear and fretting fatigue are between the most important 

factors responsible for contact failure, especially when high loads are transmitted through 

non-conforming contacts, leading to highly localized stress concentrators in the vicinity of 

the contact region. Prediction of life span of machine elements working in such conditions 

requires assessment of stress and strain in the contacting bodies, which is the main subject of 

Contact Mechanics. Although fretting is intrinsically a multidisciplinary process, involving 

adhesion, oxidation, abrasion and pitting, modern approach suggests that contact stresses 

play a chief role.  

While analytic solutions in this research field lead to complex mathematical models, many 

without closed-form solution, numerical approach reveals itself as a useful engineering tool, 

capable of extending the few existing analytical results to technologically important contact 

scenarios. A numerical study may advance the understanding of fretting contact and 

provide assistance to the design of contacts with improved load-carrying capacity. 

Elastic contact analysis considering interfacial friction and slip-stick behaviour originated in 

the works of Cattaneo (Cattaneo, 1938) and Mindlin (Mindlin, 1949). They proved 

independently that, even when the contacting bodies are globally sticking, a peripheral 

region of slip is to be assumed in order to remain in the frame of Linear Theory of Elasticity 

and to obey the Coulomb’s law of friction. Based on these results, Johnson (Johnson, 1985) 

advanced the closed-form solution for the contact between similarly elastic materials 

undergoing a fretting loop.  

In case of dissimilarly elastic materials, when the effects of normal and tangential tractions 

are coupled, an iterative solution has been achieved (Hills et al., 1993) only for the plane (i.e. 

cylindrical) contact. Many authors employ the so-called Goodman approximation 
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(Goodman, 1962) when dealing with this type of contact, which neglects the influence of 

shear tractions on pressure, but retains that of pressure on tangential tractions. As proved in 

(Hills et al., 1993), this approximation is satisfactory in case of plane (cylindrical) contacts if 

Poisson’s ratio is large enough, but the inaccuracy introduced in the simulation of the three 

dimensional contact between dissimilarly elastic materials cannot be a priori assessed. 

In order to overcome this obstacle, recent works aimed to solve the problem numerically, 

using a method derived from the boundary element method, also referred to as semi-

analytical (SAM) in a review paper by Renauf et al. (Renauf et al., 2011). The strong point of 

this technique is that only a small region of the boundary of the contacting bodies, enclosing 

the contact area, is to be meshed, leading to a dramatic decrease in computational 

complexity compared to finite element method, in which discretization of the entire bulk is 

required.  

Chen and Wang (Chen & Wang, 2008) advanced an algorithm for the non-conforming 

contact of dissimilarly elastic materials, and predicted the additional effect of an increasing 

tangential loading. Wang, Meng, Xiao, and Wang (Wang et al., 2011) investigated 

numerically the supplementary effect of a torsional moment, while Wang et al. (Wang et al., 

2010) applied the algorithm advanced in (Chen & Wang, 2008) to contact of elastic layered 

half-spaces. However, the loading history was not accounted for in these studies, i.e. the full 

load was applied in one step.  

Gallego, Nélias, and Deyber (Gallego et al., 2010) applied numerical analysis in an 

incremental approach to study different fretting modes, and concluded that assumptions 

adopted in existing analytical models lead to arguably inaccurate results. It is asserted in 

(Gallego et al., 2010) that, due to irreversibility of friction, which is a dissipative process, 

loading history should be considered although a purely elastic contact analysis is intended.  

An incremental iterative algorithm for the fully coupled elastic contact with slip and stick is 

advanced in this work. Existing algorithms for the uncoupled normal or tangential contact 

problems are adapted for modeling of transient contact, and combined in an iterative 

approach based on the mutual adjustment between contact tractions, resulting in a three 

level nested loop algorithm. The use of modern numerical methods allows for a fine 

discretization in both spatial and temporal domain, leading to well converged numerical 

solutions. 

2. Formulation of continuous slip-stick elastic contact problem 

In contact problem formulation, it is convenient to describe the initial geometries ( )
1 2( , )ihi x x  

of the two contacting bodies 1,2i   in a Cartezian coordinate systems having its 1x  and 2x  

axes contained in the common plane of contact (i.e. the plane passing through the first point 

of contact, chosen as to separate best the bounding surfaces). The direction of 3x -axis will be 

referred to as the normal direction, while the other two are tangential. In the three 

dimensional case, forces and moments transmitted through the contact have components 

along all three axes, namely the normal force W , the tangential force 1 2( , )T TT , the bending 
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(or flexing) moments 1 2,M M  and the torsional moment 3M . Superscripts denote the 

contacting body, and subscripts are used for the direction of the referred quantity. Under 

load, the bodies deform unless assumed rigid, leading to elastic displacements ( )j
iu , and 

move as rigid-bodies with translations ( )j
i  and rotations ( )j

i , with 1,2,3, 1,2i j  .  

In Contact Mechanics, it is also assumed that contact area dimensions are small compared to 

extents of the contacting bodies, and therefore stresses in the contact region are independent 

of other boundary conditions. This assumption is well verified in case of non-conforming 

contacts, when stresses induced by the contact process are highly localized in the vicinity of 

the contact region.  

Once a contact area is established, the imposed forces and moments lead to contact tractions, 

i.e. pressure ( )jp  in the normal direction and shear traction ( )
1 2( , )j q qq  in the tangential 

direction. The latter appears only if interfacial friction is assumed, leading to three possible 

cases, in relation to the magnitude of the tangential load: full stick, partial slip (or slip-stick), 

or gross slip. The latter case is trivial, as shear tractions are related to pressure through 

Coulomb’s law on all contact area. On the other hand, the works of Cattaneo (Cattaneo, 

1938) and Mindlin (Mindlin, 1949) prove that the full-sticking contact cannot be solved in 

the Frame of Linear Theory of Elasticity, as it leads to infinite stresses at the boundary of the 

contact area. The study of the partial slip contact, which is found in fretting contact 

processes, concluding with assessment of contact tractions, is the main goal of this work. 

2.1. The contact model in the normal direction 

Based on the works developed in (Johnson, 1985; Polonsky & Keer, 1999), the model for the 

contact in the normal direction consists in the following equations and inequalities: 

1. The static force equilibrium: 

 1 2 1 2

( )

( ) ( , , ) ;

C t

W t p x x t dx dx


   (1) 

 1 1 2 2 1 2

( )

( ) ( , , ) ;

C t

M t p x x t x dx dx


  2 1 2 1 1 2

( )

( ) ( , , ) .

C t

M t p x x t x dx dx


   (2) 

2. The geometrical condition of deformation: 

 1 2 1 2 3 1 2 3 1 2 2 1 1 2( , , ) ( , ) ( , , ) ( ) ( ) ( ) , ( , ) ( ).Ch x x t hi x x u x x t t t x t x x x t         (3) 

3. The contact complementarity conditions: 

 1 2 1 2 1 2

1 2 1 2 1 2

( , , ) 0 ( , , ) 0, ( , ) ( );

( , , ) 0 ( , , ) 0,  ( , ) ( ).
C

C

p x x t h x x t x x t

p x x t h x x t x x t

    
    

 (4) 

The temporal dimension t  is included in this model along the spatial dimensions 1 2,x x  to 

provide basis for reproduction of the loading history. Consequently, ( )C t  denotes the 
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contact area, and 1 2( , , )h x x t  the surface separation, both established at a specified point t  on 

the loading curve. When 0t  , (1) (2)
1 2 1 2 1 2 1 2( , ,0) ( , ) ( , ) ( , )h x x hi x x hi x x hi x x   . The other 

relative (composite) quantities, lacking the superscript indicating the contacting body, are 

defined in a similar way: (1) (2)
3 3 3( ) ( ) ( )t t t    , and (1) (2)( ) ( ) ( ), 1,2i i it t t i     . 

Computation of the relative normal displacement 3 1 2( , , )u x x t  will be discussed in Section 

3.2.  

The complementarity conditions in Eq. (4) show that only compressive normal traction (i.e. 

pressure) is allowed on the contact area, meaning adhesion is not accounted for. While 

adhesion cannot be ruled out in case of rubber, the metallic materials are found to show 

little adhesion effects, as the actual contact area, established between the peaks of the 

inherent surface microtopography (i.e. roughness), is much smaller than the theoretical one. 

Therefore, study of adhesion effects is beyond the point of this study.  

The framework leading to Eq. (3), discussed in detail in (Johnson, 1985), is depicted in Fig. 1. 

The tilting angles, resulting from application of flexing moments, are omitted for brevity. The 

dashed lines show the initial (i.e. at 0t  , in undeformed state) profile of the contacting 

bodies, but in positions (relative to the initial point of contact O ) corresponding to rigid-

body translations (1)
3 ( )t  and (2)

3 ( )t , which have opposite signs due to the fact that the 

contacting bodies are compressed. In order to accommodate the interpenetration distance 

3( )t  (it should be remembered that the bodies are assumed impenetrable in the frame of 

Linear Theory of Elasticity), the bodies deform elastically, resulting in normal displacements 
(1)
3 ( )u t  and (2)

3 ( )u t  pointing inward the corresponding body, as both normal contact tractions 

are compressive. Superposition of these processes yield the profiles on the contacting bodies 

in deformed state (at a specified time t ), depicted using continuous lines in Fig. 1.  

 

Figure 1. Geometrical condition of deformation in the normal direction 
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2.2. The contact model in the tangential direction 

An analogous model can be established for the contact in the tangential direction, when a 

slip-stick regime is assumed. The model for this contact process, also developed in (Johnson, 

1985; Chen & Wang, 2008), consists in the following equations and inequalities:  

1. The static force equilibrium (at any time t ): 

 1 2 1 2

( )

( ) ( , , ) , 1,2;

C

i i
t

T t q x x t dx dx i


   (5) 

 3 2 1 2 1 1 1 2 2 1 2

( )

( ) ( , , ) ( , , ) .

C t

M t q x x t x q x x t x dx dx


     (6) 

2. The geometrical condition of deformation in the time frame 1 2[ , ]t t , in which the 

tangential load is not allowed to change sign: 

 

 

1 1 2 2 1 1 2 1 1 1 2 2 1 1 2 1

2 1 2 2 2 1 2 1 2 1 2 2 2 1 2 1

1 2 1 1 2
3 2 3 1 1 2 2

2 2 2 1 1

( , , ) ( , , ) ( , , ) ( , , )
...

( , , ) ( , , ) ( , , ) ( , , )

( ) ( )
( ) ( ) , ( , ) ( ).

( ) ( ) C

s x x t s x x t u x x t u x x t

s x x t s x x t u x x t u x x t

t t x
t t x x t

t t x

 
 

 

    
        

   
        

 (7) 

3. The contact complementarity conditions: 

 1 2 2 1 2 2 1 2 2 1 2 1 2

1 2 2 1 2 2 1 2 2 1 2 1 2 2

( , , ) ( , , ) ( , , ) ( , , ) 0 , ( , ) ( );

( , , ) ( , , ) ( , , ) ( , , ) 0, ( , ) ( ) ( ).

S

C S

x x t p x x t x x t x x t i j t

x x t p x x t x x t x x t i j t t





     


      

q s s

q s s
 (8) 

Here, S  is the stick area, C S    the slip region,   the frictional coefficient and 1 2( , )s ss  

the relative slip distances. The base for Eq. (7) is presented in Fig. 2, which depicts the slip-

stick contact process in the direction of 1x


. Rigid-body motion and elastic deformation due 

to torsion are omitted for brevity. The time parameter is also omitted, meaning all quantities 

are bound to the considered time frame 1 2[ , ]t t . Let us consider two points 1P  and 2P  on the 

contacting bodies (1) and (2), respectively, located at 1t  on the same axis normal to the 

common plane of contact. The depths of these points are large enough as to assume that the 

corresponding tangential deformations can be neglected. The axis intersects the bounding 

surfaces in the points 1A  and 2A , respectively, where the bodies deform due shear 

tractions.  

Firstly, the above mentioned axis is assumed to pass through the initial point of contact, 

therefore 1 1 2 1( ) ( )A t A t O  . In the considered time frame, all points in the contacting 

bodies undergo rigid-body translations (1)
1  and (2)

1  along the direction of 1x


, and points 

1A  and 2A  also undergo tangential displacements. If for these points the composite 

parameters cancel each other, i.e. 1 2 1 2( ) ( )t u t  , with (1) (2)
1 1 1     and (2) (1)

1 1 1u u u  ; 

therefore, 1 2 2 2( ) ( )A t A t O   and consequently a stick regime is established in O .  
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Secondly, the 1 2P P  axis intersects the contact area in the peripheral region, where, although

1 1 2 1( ) ( )A t A t , 1 2( )A t  diverge from 2 2( )A t  with a relative (composite) slip distance 
(1) (2)

1 1 1s s s  . This position corresponds to a region in relative slip (also referred to as micro-

slip). It should be noted that any point in the current contact area is either in stick, where the 

norm of the shear traction is smaller than the limiting friction, or in slip, where the shear traction 

norm equals the limiting friction. The existence of slip is intrinsically conditioned by an increase 

or decrease in the level of tangential load, and therefore a purely static model is not appropriate. 

 

Figure 2. Geometrical condition of deformation in the tangential direction 

3. Formulation of discrete slip-stick elastic contact problem 

The main obstacles in solving the continuous contact problem consist in the fact that neither 

the contact and stick area, nor the tractions distributions are known in advance. A trial-and- 

error approach is therefore necessary, but this infer integration of arbitrary functions 

(contact tractions distributions) over irregular domains (contact or stick area) in 

displacements computation. As this cannot generally be performed analytically, numerical 
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integration, although computationally intensive, is preferred. The basic principles of contact 

problem discretization are discussed in this section, and the advantages of this approach are 

outlined. Computation of displacements fields using fast numerical methods derived from 

the theory of Digital Signal Processing (DSP) is also discussed. 

3.1. Principles of problem discretization 

Numerical resolution of elastic contact problem relies on considering continuous distributions 

as piecewise constant on the elementary cells of a mesh established in the common plane of 

contact, enclosing the contact area at any point on the loading path. In case of non-conforming 

contacts, the Hertz contact parameters (Hertz, 1895) provide a good guess value for the 

estimated domain. If during application of additional loading increments the current contact 

area reaches the boundaries of the initial mesh, the contact simulation has to be restarted with 

a larger domain. However, only a small surface domain P  of the contacting bodies needs to 

be considered, which constitutes an important advantage of SAM over other numerical 

techniques. In P , contact geometry should be known, or can be extrapolated from existing 

data. The directions of the grid sides are aligned with those of the Cartesian coordinate system 

in the continuous problem formulation. The elementary cell area 1 2     depends on the 

grid steps i  in the direction of ix


, 1,2i  . The grid control points (centroids of rectangular 

elementary patches) are identified by a pair of indices ( , )i j , with 11 i N  , 21 i N  . Any 

continuous distribution 1 2( , )f x x  is assumed to be constant over each patch, and equal to value 

computed in the control point. A simplified notation can thus be used, assuming that 
* *
1 2( , ) ( , )f i j f x x , where * *

1 2,x x  are the coordinates of the control point of cell ( , )i j .  

The limiting surfaces of the contacting bodies are sampled in two height arrays 

corresponding to grid control points. Such data can be obtained from an optical profilometer 

or can be generated numerically. The sum of the two heights at node ( , )i j  yields the 

composite initial surface height ( , )hi i j . For the half-space approximation to remain valid, 

the slope of the initial separation should be small everywhere over P . 

To simulate the loading history, additional discretization is performed in the temporal 

domain, meaning the load is imposed in small steps 1,k N  . Consequently, ( , , )p i j k  

denotes the nodal (elementary) pressure at the intersection of the line i  with the column j  

of the rectangular grid, achieved after application of k  loading increments. When only two 

indexes are employed, the referred quantity does not vary with the loading level, e.g. 

coordinates of grid nodes; one index is used for parameters varying with the loading level 

only, e.g. rigid-body translations; when no index is present, the denoted quantity is a 

constant in the numerical program, e.g. the grid steps. 

Digitization of Eqs. (1) - (4) lead to the following numerical model, which will be referred 

from now on as the NC: 

 
( , ) ( )

( ) ( , , );

Ci j A k

W k p i j k


    (9) 
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 1 2
( , ) ( )

( ) ( , , ) ( , );

Ci j A k

M k p i j k x i j


     2 1
( , ) ( )

( ) ( , , ) ( , );

Ci j A k

M k p i j k x i j


    (10) 

 3 3 1 2 2 1( , , ) ( , ) ( , , ) ( ) ( ) ( , ) ( ) ( , ), ( , ) ;Ph i j k hi i j u i j k k k x i j k x i j i j A         (11) 

 
( , , ) 0 ( , , ) 0, ( , ) ( );

( , , ) 0 ( , , ) 0, ( , ) ( ).
C

P C

p i j k h i j k i j A k

p i j k h i j k i j A A k

    
     

 (12) 

In a similar way, the continuous model consisting in Eqs. (5) - (8) has its discrete 

counterpart, referred to as the TC: 

 
( , ) ( )

( ) ( , , ), 1,2;

C

n n
i j A k

T k q i j k n


    (13) 

 3 2 1 1 2
( , ) ( )

( ) ( , , ) ( , ) ( , , ) ( , ) ;

Ci j A k

M k q i j k x i j q i j k x i j


      (14) 

 

 

1 1 1 1 1 1

2 2 2 2 2 2

2
3 3

1

( , , ) ( , , 1) ( , , ) ( , , 1) ( ) ( 1)
...

( , , ) ( , , 1) ( , , ) ( , , 1) ( ) ( 1)

( , )
                                  ( ) ( 1)

( , )

s i j k s i j k u i j k u i j k k k

s i j k s i j k u i j k u i j k k k

x i j
k k

x i j

 
 

 

          
                 

 
  

 
, ( , ) ( );Ci j A k

 (15) 

 
( , , ) ( , , ) ( , , ) ( , , 1) 0,( , ) ( );

( , , ) ( , , ) ( , , ) ( , , 1) 0,( , ) ( ) ( ).

S

C S

i j k p i j k i j k i j k i j A k

i j k p i j k i j k i j k i j A k A k





      


      

q s s

q s s
 (16) 

In these equations, ,P CA A  and SA  are the discrete counterparts of P , C  and S , 

respectively, consisting in sets of elementary patches. Consequently, in the numerical 

formulation, the contact or the stick area can only vary in equal increments  . A fine mesh 

is thus required for accurate estimation of contact domains.  

3.2. Numerical computation of displacement fields 

In Contact Mechanics, it is common practice to assimilate the contacting bodies with elastic 

half-spaces. This assumption holds if the dimensions of contact area are small compared to 

significant dimensions of contacting bodies, and allows expressing displacements according 

to superposition principle applied to Green functions for the elastic half-space: 

  ( ) ( ) ( )
1 2 1 2 1 1 2 2 1 2( , ) ( , ) , ; , 1,2,3; 1,2,

C

k k k
ij j iju x x p x x G x x x x dx dx i j k



            (17) 

where  ( )
1 2,k

ijG x x  denotes displacement of a point in body ( k ), in the direction of ix


, 

induced by a unit point force applied in origin along direction of jx


. The functions G  for 

the elastic half-space, also referred to as fundamental solutions or Green functions, were 

derived by Boussinesq, (Boussinesq, 1969) and Cerruti (Cerruti, 1882). Integral in Eq. (17) 
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cannot be performed analytically except for a few cases; however, its discrete counterpart 

can be computed numerically for any contact area and any distribution of tractions: 

 ( ) ( ) ( )

( , )

( , ) ( , ) ( , ),

C

n n n

k A

u i j K i k j p k  


   


   (18) 

where ( )( , )nK i k j     is the influence coefficient, expressing the displacement in the 

direction of x


, induced in the cell ( , )i j  of the body ( )n  by a unit contact traction, 

uniformly distributed in the cell ( , )k  , acting along direction of x


. The influence 

coefficients yield from integration of Green functions over rectangular elementary patches: 

  
2 2 1 1

2 2 1 1

( ) 2 ( ) 2
( ) ( )

1 1 2 2 1 2
( ) 2 ( ) 2

( , ) ( ) , ( ) .

x x k
n n

x x k

K i k j G x i x x j x dx dx 

 

 

        




  (19) 

Eq. (18) is in fact a two-dimensional convolution product, and can be written in an 

equivalent manner using the symbol “ ” to denote discrete cyclic convolution: 

 ( ) ( ) ( )n n nu K p    . (20) 

The assembly of contributions of all contact tractions to displacements can be expressed as: 

 

(2) (1) (2) (2) (2) (2) (1) (1) (1)
1 1 11 12 13 1 11 12 131
(2) (1) (2) (2) (2) (2) (1) (1) (1)

2 2 2 21 22 23 2 21 22 23

(2) (1) (2) (2) (2) (2) (1)
3 3 3 31 32 33 31

u u K K K q K K Ku

u u u K K K q K K K

u u u K K K p K

                                             

(1)
1

(1)
2

(1) (1) (1)
32 33

(2) (1) (2) (1) (2) (1)
11 11 12 12 13 13 1
(2) (1) (2) (1) (2) (1)
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q
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K K p

K K K K K K q
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   
   
    
   

       
                        

.

 (21) 

When the second subscript is omitted, the referred displacement is the sum of all contributions. 

The positive sign in computation of 3u  is related to the fact that normal displacements are 

computed in coordinate systems linked to each body, having the 3x  axes pointing inward. It 

should also be noted that from pressure definition (2) (1)p p p  , but (2) (1) , 1,2i i iq q q i    , as 

the mutual actions of two bodies upon each other are equal, but directed to contrary parts. The 

influence coefficients ( )n
mK   can be computed using the following relations: 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2
1 2 1 2

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2
1 2 1 2

( , , , )

( , , ( , ) , ( , ) ) ( , , ( , ) , ( , ) ) ...
2 2 2 2

( , , ( , ) , ( , ) ) ( , , ( , ) , ( , ) );
2 2 2 2

n n n
m

n n n n n n
m m

n n n n n n
m m

K E i j

k E x i j x i j k E x i j x i j

k E x i j x i j k E x i j x i j



 

 


   

     

   
    



 

 

 (22) 

        
2

( )

( ) ( ) ( ) 2 2 2 2
33 1 2 1 2 1 2 2 1 1 2( )

1
, , , ln ln ;

n

n n n

n
k E x x x x x x x x x x

E






         
 (23) 
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    
2 2( ) ( )
1 2 2( ) ( ) ( ) 1 2 2

13 1 2 1 2 1 2( )
1

(1 )(1 2 )
, , , 2 tan ln ;

2

n n
n n n

n

x x x
k E x x x x x x

xE

 



         
  
   

 (24) 

      ( )
( ) ( ) ( ) 2 2 ( ) 2 2
11 1 2 2 1 1 2 2 1 2 1 2( )

1
, , , ln (1 ) ln ;

n
n n n n

n
k E x x x x x x x x x x x

E

 

           

(25) 

  
( ) ( )

( ) ( ) ( ) 2 2
21 1 2 1 2( )

(1 )
, , , ;

n n
n n n

n
k E x x x x

E

 



    (26) 

    ( ) ( ) ( ) ( ) ( ) ( )
23 1 2 13 2 1, , , , , , ;n n n n n nk E x x k E x x   (27) 

    ( ) ( ) ( ) ( ) ( ) ( )
31 1 2 13 1 2, , , , , , ;n n n n n nk E x x k E x x    (28) 

    ( ) ( ) ( ) ( ) ( ) ( )
12 1 2 21 1 2, , , , , , ;n n n n n nk E x x k E x x   (29) 

    ( ) ( ) ( ) ( ) ( ) ( )
22 1 2 11 2 1, , , , , , ;n n n n n nk E x x k E x x   (30) 

    ( ) ( ) ( ) ( ) ( ) ( )
32 1 2 23 2 1, , , , , , ,n n n n n nk E x x k E x x    (31) 

where ( )nE  and ( )n  are the elastic constants (Young modulus and Poisson’s ratio, 

respectively) of materials of the two contacting bodies. If (1) (2)E E E   and (1) (2)    , 

then (1) (2) , , 1,2,3,ij ij ijK K K i j    and Eq. (21) takes a simplified form: 

 
1 11 12 1

2 21 22 2

3 33

0

2 0 .

0 0

u K K q

u K K q

u K p

     
           
          

 (32) 

The most efficient way to compute the two-dimensional convolution products in Eqs. (21) or 

(32) is by using spectral methods. According to convolution theorem, the convolution of two 

signals, each having N  samples, requires 2( )O N  operations in time/space domain, but only 
( log )O N N  operations in the frequency domain, where it reduces to element-wise product.  

However, when transferring to frequency domain via fast Fourier transform (FFT), 

presumption of signal periodicity is automatically assumed, which leads to contamination of 

convolution result due to spurious neighbouring periods. Liu & al. (Liu & al., 2000) advanced 

a fast and robust algorithm to circumvent the periodicity error, which is also applied here. This 

algorithm is able to assess linear convolution by computing the discrete cyclic convolution of 

the two terms on an extended domain, with a special, “warp-around” arrangement of 

influence coefficients. The base for this approach is discussed in detail in (Press et al., 1992). 

4. Algorithm description 

Considering the similarity between NC and TC, the same type of algorithm could be used to 

solve either model considered independently. Indeed, in both cases, a linear system arising  
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from Eqs. (11) and (15) respectively, is to be solved, having as unknowns the normal or the 

tangential tractions. The main difficulties consist in the fact that the systems are essentially 

non-linear, due to presence of terms containing rigid-body motions, and their size, related to 

the number of cells in CA  and SA  respectively, is not known in advance. Moreover, 

resolution of a linear system with N  unknowns has an order of computation of 3( )O N  

when direct methods like Gaussian elimination are used. In contact problems, grids with 
310N   nodes on the contact area are usually considered for nominal contact surfaces, in 

order to get an accurate estimation of contact area extents and to minimize the discretization 

error (i.e. the error introduced by digitization of problem parameters). When deterministic 

rough surfaces are studied, a minimum of 610N  points is required to reproduce the 

detailed features of rough contact behaviour. Consequently, only fast numerical methods, 

based on iterative approaches, are suitable for this type of problem. According to a review 

paper by Allwood (Allwood, 2005), the Conjugate Gradient Method (CGM) has the fastest 

convergence. Implementation of CGM to this type of problem is authorised by the fact that 

the influence coefficients matrix is symmetrical and positive definite, therefore convergence 

is assured.  

The algorithm used in this study is based on the modified CGM advanced by Polonsky and 

Keer (Polonsky & Keer, 1999) for the study of frictionless rough contact problems under 

normal loading. Existence and uniqueness of the solution is discussed by Kalker and van 

Randen (Kalker & van Randen, 1972). This algorithm was later enhanced by Spinu and 

Diaconescu (Spinu & Diaconescu, 2008) to allow for a bending moment on the contact area, 

and it was recently applied by Spinu and Frunza (Spinu & Frunza, 2011a) to solve 

numerically the Cattaneo-Mindlin problem.  

4.1. Numerical solution of uncoupled contact problems 

Eq. (21) suggests that, in case of dissimilarly elastic materials (i.e. (1) (2)E E and / or 
(1) (2)  ), computation of displacements in either direction require the knowledge of 

contact tractions on every direction. From this yields the coupling between the NC and the 

TC. However, in case of similarly elastic materials, Eq. (32) proves that normal 

displacements are independent of shear tractions, and tangential displacements are 

independent of pressure. In the latter case, solution of NC is decoupled from that of TC; 

however, pressure distribution is still needed in the TC for assessment of shear tractions in 

the slip zone, according to Coulomb’s law. In the framework developed herein, we refer to 

the solution of uncoupled NC or TC as being the solution of NC when shear tractions are 

known, but otherwise arbitrarily distributed, as well as the solution of TC when pressure is 

known, but otherwise arbitrarily distributed. 

It should be noted that in some cases, matching names will be used for variables having the 

same role in the algorithm structure, although their content might be different in the NC 

from that in the TC. Let us assume that a new loading increment k  is applied. In both NC 

and TC, all parameters are specific to the achieved loading level; therefore, the third formal 

parameter, related to the loading history, will be omitted for brevity. An additional symbol 
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“ ” is used to denote the increment of the referred quantity after application of the k-th 

loading increment, i.e. 1 1 1( , ) ( , , ) ( , , 1)u i j u i j k u i j k    .  

The contact tractions corresponding to the new loading level ( )p k  or ( )kq  can be assessed 

using the same type of algorithm, consisting in the sequences described in the following 

paragraphs.  

1. Initialize auxiliary variables: 

 
3

1 2

: 0; 1; ( , ) 0, ( , ) 0,( , ) ;

: 0; 1; ( , ) 0, ( , ) 0, ( , ) ,( , ) .
old old P

old old P

NC R d i j p i j i j A

TC R d i j d i j i j i j A




    

     q 0
 (33) 

Here, , 1,2,3id i   is the initial descend direction in the CGM. The role of the other variables 

will be discussed later. 

2. Adopt the initial guess for contact tractions, using the static force equilibrium. In a first 

approximation, it will be considered in the NC that all cells are in contact, i.e. C PA A , 

and in the TC that all cells in the contact area are in stick, i.e. S CA A . The contact 

tractions are sought in the following form: 

 

3 1 2 2 1

1 3 2 1

2 3 1 2

: ( , ) ( , ) ( , ), ( , ) ;

( , ) ( , ) ;
: ( , ) ,

( , ) ( , ) ;

P

C

NC p i j a a x i j a x i j i j A

q i j a x i j a
TC i j A

q i j a x i j a

   

     

 (34) 

where the unknown coefficients ( ), 1,2,3ia k i   are computed by plugging Eq. (34) into 

Eqs. (9), (10) and (13) , (14), respectively, yielding: 

 

1
3 1 2 1 2

1
1 2 3 1 2 3

: ;

: ;

T T

T T

NC a a a W M M

TC a a a T T M





        

        

Μ

Μ
 (35) 
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: ( , ) ( , ) ( , ) ( , ) ;

( , ) ( , ) ( , ) ( , )

1 0

:

C C C

C C C

C C C

S
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i j A i j A i j A
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x i j x i j

NC x i j x i j x i j x i j

x i j x i j x i j x i j
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  
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  


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 
 
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  
 
 
 
  
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  

  
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M

2
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( , ) ( , ) ( , )
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0 1 ( , ) .

( , ) ( , ) ( , ) ( , )

S S
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S S S

A i j A

i j A i j A i j A

i j A i j A i j A

x i j

x i j

x i j x i j x i j x i j
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  

  

 
 
 
 
 
 
 

     

 

  

  

 (36) 
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3. Compute the relative displacement field over the grid domain using Eq. (21). It should 

be remembered that in the NC, pressure was adopted in step 2 and shear tractions are 

assumed as known, but arbitrarily distributed, while in the TC, shear tractions were 

adopted in step 2, and pressure is assumed known but arbitrarily distributed. It should 

also be noted that in case of TC, the increment of displacement field, 1 2( , ), ( , )u i j u i j  , is 

needed.  

4. Estimate the rigid-body motions in order to linearize Eqs. (11) and (15). According to 

complementarity conditions in Eqs. (12) and (16), the following relations hold: 

 

3 3 1 2 2 1

1 1 2
3

2 2 1

: ( , ) ( , ) ( , ) ( , ) 0, ( , ) ;

( , ) ( , ) 0
: , ( , ) ,

( , ) ( , ) 0

C

S

NC hi i j u i j x i j x i j i j A

u i j x i j
TC i j A

u i j x i j

  
 


 

     

       
          

      

 (37) 

resulting in linear systems having a number of equations equal the number of cells in 

the contact and in the stick area, respectively. When convergence is reached, the 

equations in every of these two systems are not all independent; however, during 

iterations, they appear to be independent. To get the best possible estimates of rigid-

body motions, the systems are treated as over-determined and the best fit is sought 

using least square minimization. The functional   is defined as the square sum of the 

residuals: 

 

    

2

3 1 2 3 3 1 2 2 1
( , )

2 2

1 2 3 1 1 3 2 2 2 3 1
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: ( , , ) ( , ) ( , ) ( , ) ( , ) ;
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     

        





     

      




 (38) 

The rigid-body motions that minimize the goal function in Eq. (38) are found by setting 

the partial derivatives of   to zero, leading to the following solution: 
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With this approximation, Eqs. (11) and (15) finally reduce to linear systems having the nodal 

contact tractions as unknowns. The systems sizes are given by the extents of the contact and 

of the stick area, respectively, both a priori unknown. A trial-and-error approach is used, in 

which the systems are solved on successive contact and stick areas, until static equilibrium 

equations and complementarity conditions are fully satisfied for every cell in the grid. 

5. Start the conjugate gradient loop by computing the residuals ( , ), 1,2,3r i j   : 

 

3 3 3 1 2 2 1

1 1 1 2
3
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: ( , ) ( , ) ( , ) ( , ) ( , ), ( , ) ;

( , ) ( , ) ( , )
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       
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 (40) 

and the square sum of the residuals on the indicated domains: 
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
 (41) 

6. Compute the descend direction , 1,2,3id i   in the CGM algorithm. In the 

multidimensional space of contact tractions, every new descend direction is constructed 

from the residual to be K - orthogonal (Shewchuk, 1994) to all previous residuals and 

search directions: 
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 (42) 

and overwrite the content of oldR : oldR R . 

7. Assess the length of the step to be made in the computed descend direction: 
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 (43) 

where , 1,2,3ic i   denotes the convolution of the influence coefficients matrix with the 

descend direction: 
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(2) (1)
3 33 33 3

(2) (1) (2) (1)
1 11 11 12 12 1

(2) (1) (2) (1)
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: ;

: .

NC c K K d

c K K K K d
TC

c dK K K K

    
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     
      

 (44) 

8. Memorize the current contact tractions in a new variable for subsequent error 

computation: ,oldp p old q q . 

9. Update the system solution by making a step of length  , computed using Eq. (43), 

along direction , 1,2,3id i  , derived in Eq. (42): 
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( , ) ( , ) ( , )
: ,( , ) .
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     

 (45) 

10. Impose complementarity conditions to adjust the size of the system. In the NC, the 

contact or non-contact status of every cell in the contact domain is to be determined, 

while in the TC, the stick or slip regime of every cell in the contact area must be assessed.  

In the NC, cells having negative pressure are removed from the current contact area, and the 

corresponding nodal pressures are set to zero. It should be remembered that the current 

model cannot incorporate adhesion; therefore, normal contact tractions can only be 

compressive, not tensile. This assumption leads to specific cells passing from the contact 

zone to the non-contact area, in order to obey the non-adhesion hypothesis.  

On the other hand, as bodies are considered impenetrable in the frame of Linear Theory of 

Elasticity, specific cells having vanishing pressure but negative gap ( , )h i j  (which equals the 

residual), are reinstated in the current contact area. To this end, the corresponding nodal 

pressures are adjusted with a quantity proven (Polonsky & Keer, 1999) to be positive at all 

times, i.e. ( , )r i j .  

 
   
   

( , ) , ( , ) 0,( , ) ( , ) : ( , ) 0 ;

( , ) , ( , ) ( , ) ( , ),( , ) ( , ) : ( , ) 0 ( , ) 0 .

C C

C C

A A i j p i j i j i j p i j

A A i j p i j p i j h i j i j i j p i j h i j

     


       
 (46) 

In the TC, cells for which Coulomb’s friction law is not verified are removed from the stick 

region, and the corresponding shear tractions are set to the value of limiting friction. Also, 

cells having micro-slip ( , )i js  not opposite to shear tractions ( , )i jq  pass from the slip to the 

stick region, yielding an adjusted stick area: 

 
   
 

( , )
( , ) , ( , ) ( , ) , ( , ) ( , ) : ( , ) ( , ) ;

( , )

( , ) : ( , ) ( , ) 0 .

S S

S S

i j
A A i j i j p i j i j i j i j p i j

i j

A A i j i j i j

 


    

    

q
q q

q

q s

 (47) 

In either the NC or the TC, if any cell is removed from or re-enters the contact or the stick 

area, auxiliary variable   is set to zero, otherwise it is set to unity. This variable allows 

resetting the conjugate directions id  once new cells enter or leave the system. Indeed, these 
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new cells have no precedent in the minimization process and therefore a new search for the 

optimal path in the CGM algorithm must be conducted. 

11. Adjust contact tractions (i.e. system solution) according to the static equilibrium 

equations. The correction is sought in the same form as in step 1 of the algorithm:  

 
3 1 2 2 1

3 2 11 1

3 1 22 2

: ( , ) ( , ) ( , ) ( , ), ( , ) ;

( , )( , ) ( , )
: ; ( , ) ,

( , )( , ) ( , )

P

S

NC p i j p i j a a x i j a x i j i j A

a x i j aq i j q i j
TC i j A

a x i j aq i j q i j

    

     
            

 (48) 

yielding the following correcting parameters: 

 

( , )3
1

1 1 2
( , )

2

2 1
( , )

1 1
( , )1

1
2 2 2

( , )
3

3 2 1 1

( , )

: ( , ) ( , ) ;

( , ) ( , )

( , )

: ( , )

( , ) ( , ) (

C

C

C

C

C

i j A

i j A

i j A

i j A

i j A

W p i j
a

NC a M p i j x i j

a
M p i j x i j

T q i j
a

TC a T q i j

a
M q i j x i j q i













 
  
  
        
      
 
 

 
 
      
  

  











Μ

Μ

2
( , )

.

, ) ( , )

Ci j A

j x i j


 
 
 
 
 
 
    
 



 (49) 

12. Verify convergence to the imposed precision  :  

 
( , ) ( , )

( , ) ( , )

: ( , ) ( , ) ( , ) ;

: ( , ) ( , ) ( , ) ,

C C

C C

old old
i j A i j A

old
i j A i j A

NC p i j p i j p i j

TC i j i j p i j




 

 

 

 

 

 q q
 (50) 

and return to step 2 if the precision goals are not met. The algorithm can be 

summarized in the flow-chart depicted in Fig. 3. 

4.2. Numerical solution of coupled contact problems 

In the general case, the NC and the TC cannot be solved independently, as the two 

problems are coupled, i.e. solution of each one requires resolution of the other. While the 

NC can be decoupled from the TC by neglecting the normal displacements induced by 

tangential tractions, as in case of Goodman approximation, solution of NC is always 

required to solve the TC, as shear tractions are linked to pressure in the slip area through 

Coulomb’s law. The solution of the partial slip-stick elastic contact problem, involving the 

coupled NC and TC, can be obtained in an iterative manner, using the algorithm consisting 

in the following steps. 
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Figure 3. Flow-chart for the uncoupled NC or TC 

1. Acquire the state after 1k   loading increments and establish the new increment. 

2. Adopt vanishing guess value for the increment of shear tractions ( , )i jq , i.e. 

( , , ) ( , , 1), ( , ) ( 1)Ci j k i j k i j A k   q q . 

3. Solve the uncoupled NC using the algorithm described in the previous section, and 

obtain pressure ( , , ),( , ) ( )Cp i j k i j A k . 

4. Memorize the obtained pressure for subsequent error computation: 

( , , ) ( , , )oldp i j k p i j k . 

5. Solve the uncoupled TC having as input the previously computed pressure, and obtain 

the shear tractions ( , , ),( , ) ( )Ci j k i j A kq . The latter constitutes a better approximation to 

coupled problem solution compared to shear tractions adopted in step 2. 

6. Solve the uncoupled NC again, using as input the shear tractions computed in step 5. 

The resulting pressure distribution ( , , )p i j k  is in its turn a better approximation to 

coupled problem solution than the one obtained in step 3.  

7. Verify if pressure distributions resulted in two subsequent computations, ( , , )p i j k  and 

( , , )oldp i j k , vary within an imposed precision goal. If convergence is not met, return to 

step 4. 

This algorithm can be used to simulate any loading history in the fully coupled three 

dimensional elastic contact with slip and stick. Essentially, three levels of iterations are 

employed. The inner level is responsible for solving either the normal (NC), or the 

tangential (TC) unconnected contact problem. The intermediate level mutually adjusts these 

solutions, based on the contribution of tractions in each direction to displacement fields. The 

outer level is employed to reproduce the loading history, and is related to friction being a 

dissipative process. Spinu and Frunza (Spinu & Frunza, 2011b) recently proved that results 

obtained by simulating the loading history are a closer match to existing analytical solutions 

than when the full load is applied in one step. 

5. Results and discussions 

The newly advanced algorithm is validated in this section by comparison with existing 

closed-form solutions for the contact of similarly elastic materials. The results are then 
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extended by simulating the three-dimensional contact between dissimilarly elastic materials, 

proving the capacity of the program to solve a large variety of problems incorporating the 

slip-stick processes in elastic mechanical contacts. 

5.1. Simulation of a fretting loop 

The newly proposed algorithm is first validated by comparison with the closed-form 

solution advanced in (Johnson, 1985) for the spherical contact undergoing a fretting loop. A 

steel ball of radius 18R mm  is pressed against an elastic half-space having the same elastic 

properties, with a normal force 1W kN . In this case, the NC is uncoupled from the TC, as 

shown by Eq. (32). A tangential force 1T  oscillating between two limiting values limT  and 

limT , where lim 0.9T W , is subsequently applied. During a fretting contact process, it is 

expected that friction vary on the contact area, as well as with accumulation of debris 

particles resulted from additional wear. However, for validation purposes, a frictional 

coefficient uniform over all contact area and constant during load application is assumed in 

this study. The numerical approach can equally handle mapped distributions of  , if such 

information is available. The loading history for fretting processes is depicted in Fig. 4, in 

which the load is applied incrementally in 700N   equal steps.  

 

Figure 4. The loading history in simulation of a fretting loop; all moments are assumed to vanish 

N  is chosen differently in the following simulations. When studying the contact between 

similarly elastic materials, accurate (i.e. concurring with the existing closed-form solution) 

results can be obtained with even a small number of increments ( 42N   increments in 

simulations depicted in Figs. 5 and 6). Moreover, it is found that every different state on the 

loading path can be obtained by simulating only the states when the tangential load changes 

its sign of, e.g. every state M on the trajectory DF require computation of three states: the 

ones corresponding to points B and D, as well as the current one (corresponding to point M). 

This is not the case when simulating the contact between dissimilarly elastic materials. It is 

found that a large number of increments is required to obtain the detailed contact 

behaviour, due to non-overlapping stick regions from one loading step to the next. This 

feature was also observed by Gallego et al. (Gallego et al., 2010), who pointed out that a 

waved shear tractions profile is predicted numerically when the number of increments is 
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small. Although some perturbations still appear, the large number of increments used in the 

current simulations 700N   led to well converged numerical solutions. 

The Hertz frictionless theory for the similarly elastic contact scenario predicts a central 

pressure 1.996Hp GPa  and a contact radius 0.489Ha mm , which are used as 

normalizers. Shear tractions profiles corresponding to equal loading levels but laying on 

different trajectories are depicted in Fig. 5, proving that the current state depends not only 

on the present load level, but also on its past evolution, thus showing a hysteretic behaviour 

or memory effect. Only profiles corresponding to states on AD are shown in Fig. 5. States on 

the DF trajectory can be obtained from those on AD by symmetry with respect to the 1x -

axis, and states on FH overlap those on BD corresponding to the same loading level. 

 

Figure 5. Profiles of shear tractions in the plane 2 0x   corresponding to different points on the 

loading curve, 0.1   

As depicted in Fig. 6, the force-displacement curve forms a hysteretic loop, also referred to 

as a fretting loop. The rigid-body tangential displacement is normalized by its value lim  

corresponding to limT . The analytical model predicts that the states corresponding to points 

B and F on the loading curve should overlap, which is also obtained through numerical 

simulation, within an imposed precision. 

From a mechanical point of view, regions undergoing the most severe stresses are of 

interest, leading to prediction of yield inception or crack nucleation in the contacting bodies. 

An algorithm to assess stresses due to known, but otherwise arbitrarily distributed contact 

tractions is readily available (Liu & Wang, 2002). A typical distribution of von Mises 

equivalent stress VM Hp  in the plane 2 0x  , corresponding to point B on the loading 

path, is depicted in Fig. 7. Evolution of magnitude and of depth of von Mises maximum 

stress in a fretting loop is depicted in Figs. 8-9, for various frictional coefficients.  
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Figure 6. The force-displacement curve in the fretting contact between similarly elastic materials 

 

Figure 7. Contour lines of von Mises equivalent stress VM Hp  in the plane 2 0x  , corresponding to 

point B on the loading path; position of maximum is denoted by the symbol “x”  

 

Figure 8. Magnitude of maximum von Mises equivalent stress versus loading level (indicated by the 

corresponding point on the loading curve) 
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Figure 9. Dimensionless depth of maximum von Mises equivalent stress versus loading level (indicated 

by the corresponding point on the loading curve) 

It is found through numerical simulation that shear tractions have a weak impact on the 

maximum von Mises stress when 0.2  . However, larger friction processes lead to a 

competition between the in-depth maximum, which fluctuates around its position in the 

frictionless contact (corresponding to point A in Fig. 9), and a second extremum developing 

on the surface, at the trailing edge of the contact. The latter can seriously diminish the load-

carrying capacity of the contact, especially in case of surfaces with poorly controlled surface 

quality, due to superimposition of microtopography-induced stress perturbations. 

5.2. Simulation of torsional contact 

Program validation is subsequently performed in case of a spherical contact undergoing 

torsion applied simultaneously to a normal constant force. Based on the results of this 

author, (Mindlin, 1949), Johnson (Johnson, 1985) presents the closed-form solution for this 

contact scenario when a partial slip regime is established on the contact area (i.e. when the 

torsional moment 3M  is smaller than a limiting value 3 lim 3 16HM Wa ). The solution is 

later reviewed and enhanced for the case of viscoelastic materials by Dintwa et al. (Dintwa 

et al., 2005). 

A spherical indenter of radius 18R mm  is pressed with a normal force 1W kN  against 

an elastic half-space, having the same elastic parameters, and subsequently an increasing 

torsional moment 3 3 limM M  is applied, leading to shear tractions 1q  and 2q  depicted in 

Figs. 10a and b, respectively. The norm of these tractions 1 1( , ) ( , ) ( , )i j q i j q i j q  is 

compared in Fig. 11 with analytical results, using cylindrical coordinates.  

Figure 12 depicts the dimensionless stick radius when the torsional moment 3M  is varied in 

the domain corresponding to partial slip. In all investigated cases, a good agreement 

between analytical results and numerical predictions is found, giving further confidence in 

the newly advanced computer program.  
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Figure 10. Distribution of shear tractions in torsional contact, 0.1  , 3 3 lim0.9M M  

 

Figure 11. Profiles of radial shear tractions, 0.1   

 

Figure 12. Dimensionless stick radius versus torsional moment 
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5.3. Extension of results 

The numerical program advanced in this study is subsequently used to simulate the fretting 

contact between dissimilarly elastic materials. To our best knowledge, an analytical solution 

to this contact process has not been advanced yet. The ball in the previous example is 

considered rigid, and the loading history is simulated using 700N   equal increments.  

 

Figure 13. Shear tractions profiles in the fretting contact between dissimilarly elastic materials, 

corresponding to different points on the loading path, 0.3   

 

Figure 14. Shear tractions profiles in the fretting contact between dissimilarly elastic materials, 

corresponding to different points on the loading path, 0.6   
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Numerical simulations predict that the investigated fretting contact exhibits a unique 

behaviour in the first two loading cycles, after which it stabilizes to a fixed path. Figures 13 

and 14 suggest that the shear tractions profiles corresponding to the BD and FH trajectories 

no longer match, as in case of similarly elastic materials. However, states D and H overlap, 

beside a few perturbations induced by the former boundaries of the stick area. Presumably, 

these perturbations are related to the discretization error, and the D and H states can be 

considered as concurring. Subsequent oscillating loading is expected to lead to states 

following the same fixed path, as in case of similarly elastic materials. An analogous 

behaviour was observed by Wang et al. (Wang et al., 2010) when studying numerically the 

partial slip contact of elastic layered half-spaces. 

6. Conclusions 

The work reported herein advances a numerical model for the fretting contact between 

dissimilarly elastic materials. A numerical approach is required to simulate this type of 

contact process, as analytical models can incorporate neither the loading history, which 

must be reproduced when friction is accounted for, nor the coupling of normal and 

tangential effects.  

The implemented algorithm is based on three levels of iterations, fully incorporating the 

interconnectivity between normal and tangential tractions. The innermost level solves, in a 

conjugate gradient type loop, either the normal, or the tangential uncoupled contact 

problem, while the intermediate loop iterates between these solutions, until pressure 

convergence is reached. The outer level reproduces the loading history, and is based on the 

assumption that irreversibility of friction requires simulation of all previous states in an 

incremental load process. 

The strong points of this algorithm consist in reduced computational complexity, compared 

to finite element analysis, as well as in its ability to handle arbitrarily shaped contact 

geometries or imposed frictional coefficient maps. Comparison with existing closed-form 

solutions for the spherical contact undergoing a fretting loop or torsion, when a uniform 

frictional coefficient is assumed, gives confidence in the newly advanced model.  

Evolution of stress state during a fretting loop in the spherical contact between similarly 

elastic materials is assessed. It is found that for specific combinations of loading levels and 

frictional coefficients, the most severely stressed region can be found on the bounding 

surfaces, at the trailing edge of the contact. 

Numerical simulations suggest that the fretting contact between dissimilarly elastic 

materials exhibits a unique path in the first two loading cycles, which stabilizes with 

subsequent oscillating loading to a fixed trajectory, as in case of similarly elastic materials.  

The newly advanced algorithm is expected to solve a large variety of contact problems 

involving interfacial friction, leading to a better understanding of complex multidisciplinary 

phenomena like fretting wear and fretting fatigue, in which transient contact tractions and 

induced subsurface stresses play an important role, as well as to a more accurate prediction 
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of contact failure through yield inception or crack nucleation. Study of partial slip elastic-

plastic contact is anticipated for future contributions, by addition of the residual term, 

related to development of plastic strains. 
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