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1. Introduction

Continuous dynamical systems that involve differential equations mostly contain parameters.

It can happen that a slight variation in a parameter can have significant impact on the

solution. The main questions of interest in this chapter are: How to continue equilibria

and periodic orbits of dynamical systems with respect to a parameter? How to compute

stability boundaries of equilibria and limit cycles in the parameter space? How to predict

qualitative changes in system’s behavior (bifurcations) occurring at these equilibrium points?

This chapter will also cover the classification of bifurcations in terms of equilibria and periodic

orbits. Especially it will present the specific bifurcation called ”Hopf bifurcation” which

refers to the development of periodic orbits from stable equilibrium point, as a bifurcation

parameter crosses a critical value. Since the theory of bifurcation from equilibria based on

center manifold reduction and Poincaré-Normal forms, the direction of bifurcations for the

mathematical models will also be explained using this theory. Finally, by introducing several

software packages and numerical methods this chapter will also cover the techniques to

determine and continue in some control parameters all local bifurcations of periodic orbits

of dynamical systems and relevant normal form computations combined with the center

manifold theorem, including periodic normal forms for periodic orbits.

In general, in a dynamical system, a parameter is allowed to vary, then the differential system

may change. An equilibrium can become unstable and a periodic solution may appear or a

new stable equilibrium may appear making the previous equilibrium unstable. The value of

parameter at which these changes occur is known as ”bifurcation value” and the parameter

that is varied is known as the ”bifurcation parameter”.

In this chapter, we also discuss several types of bifurcations, saddle node, transcritical,

pitchfork and Hopf bifurcation. Among these types, we especially focus on Hopf bifurcation.

The first three types of bifurcation occur in scalar and in systems of differential equations.

The fourth type called Hopf bifurcation does not occur in scalar differential equations

because this type of bifurcation involves a change to a periodic solution. Scalar autonomous
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differential equations can not have periodic solutions. Hopf bifurcation occurs in systems of

differential equations consisting of two or more equations. This type is also referred to as a

”Poincare-Andronov-Hopf bifurcation”.

For a given system of differential equations first we shall consider the stability and the local

Hopf bifurcation. By using the Hopf bifurcation theorem we prove the occurrence of the Hopf

bifurcation. And then, based on the normal form method and the center manifold reduction

introduced by Hassard et al.,[10], we derive the formulae determining the direction, stability

and the period of the bifurcating periodic solution at the critical value of the bifurcation

parameter. To verify the theoretical analysis, numerical simulations for bifurcation analysis

are given in this chapter. For references see [1]-[22].

We also introduce the Hopf bifurcation for continuous dynamical systems and state the

Hopf bifurcation theorem for these models. As it is well known, Hopf bifurcations occur

when a conjugated complex pair of eigenvalues crosses the boundary of stability. In the

time-continuous case, a limit cycle bifurcates. It has an angular frequency which is given by

the imaginary part of the crossing pair. In the discrete case, the bifurcating orbit is generally

quasi-periodic, except that the argument of the crossing pair times an integer gives just 2π. If

we consider an ordinary differential equation (ODE) that depends on one or more parameters

α

x′ = f (x, α), (1)

where, for simplicity, we assume α to be the only parameter. There is the possibility that under

variation of α nothing interesting happens to Equation (1). There is only a quantitatively

different behavior. Let us define Equation (1) to be structurally stable in the case there are

no qualitative changes occurring. However, the ODE (Ordinary Differential Equation) might

change qualitatively. At that point, bifurcations will have occurred.

Many of the basic principles for one dimensional systems apply also for two-dimensional

systems. Let us define a two-dimensional system

x′ = f (x, y, α), (2)

y′ = g(x, y, α),

where biologically we mostly interpret x as prey or resource and y as predator or consumer.

Equilibria can be found by taking the equations equal to zero, i.e.,

f (x, y, α) = 0,

g(x, y, α) = 0.

We have three possibilities for the stability of an equilibrium. Next to the stable and

unstable equilibrium, there is the saddle equilibrium. A two-dimensional stable equilibrium is

attracting in two directions, while a two-dimensional unstable equilibrium is repelling in two

directions. A saddle point is attracting in one direction and repelling in the other direction.

In the less formal literature saddles are often considered just unstable equilibria. A second

remark is that also the dynamics of the system around the equilibria can differ.

4 Numerical Simulation – From Theory to Industry
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The attracting or repelling can occur via straight orbits (a node) or via spiralling orbits (a spiral

or focus). Note that, it is not possible to have a saddle focus in two dimensions. It is possible

though in three of higher dimensional systems.

To prove the existence of Hopf bifurcation, we first obtain the Hopf bifurcation theorem

hypothesis, i.e., the existence of purely imaginary eigenvalues of the corresponding

characteristic equation with respect to the parameter α and also we prove the transversality

condition
dλ

dα
(α = α0) �= 0 (3)

at the critical value α0 where Hopf bifurcation occurs. Then based on the normal form

approach and the center manifold theory introduced by Hassard et. al,[10], we derive the

formula for determining the properties of Hopf bifurcation of the model.

Finally in this chapter, to support these theoretical results, we illustrate them by numerical

simulations. In numerical analysis, generally MATLAB solver packages are used to analyze

the dynamics of nonlinear models. In these solvers, differential equation systems are

simulated by difference equations. In this chapter, we also give some examples from biology

(such as well known predator-prey models with time delay) with numerical simulations and

by graphing the solutions in two or three dimensions, we illustrate the occurrence of periodic

solutions. For some examples see references by Çelik, [4], [5] and [6].

2. Basic concepts of bifurcation analysis

As it is stated above, in dynamical systems, a bifurcation occurs when a small smooth change

made to the parameter values (the bifurcation parameters) of a system causes a sudden

”qualitative" or topological change in its behavior. Generally, at a bifurcation, the local

stability properties of equilibria, periodic orbits or other invariant sets changes. It has two

types;

Local bifurcations, which can be analyzed entirely through changes in the local stability

properties of equilibria, periodic orbits or other invariant sets as parameters cross through

critical thresholds; and

Global bifurcations, which often occur when larger invariant sets of the system ”collide” with

each other, or with equilibria of the system. They cannot be detected purely by a stability

analysis of the equilibria (fixed or equilibrium points, see the next section).

2.1 Equilibrium points

In dynamical systems, only the solutions of linear systems may be found explicitly. The

problem is that in general real life problems may only be modeled by nonlinear systems. The

main idea is to approximate a nonlinear system by a linear one (around the equilibrium point).

Of course, we do hope that the behavior of the solutions of the linear system will be the same

as the nonlinear one. But this is not always true. Before the linear stability analysis, we give

some basic definitions below.

5Bifurcation Analysis and Its Applications
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Definition (Equilibrium Point): Consider a nonlinear differential equation

x′(t) = f (x(t), u(t)),

where f is a function mapping RnxR3 → Rn. A point x̄ is called an equilibrium point if there

is a specific ū ǫRm such that

f (x(t), u(t)) = 0n.

Suppose x̄ is an equilibrium point (with the input ū). Consider the initial condition x(0) = x̄,

and applying the input u(t) = ū for all t ≥ t0, then resulting solution x(t) satisfies

x(t) = x̄,

for all t ≥ t0. That is why it is called an equilibrium point or solution.

Example: As an example, consider the logistic growth equation (the rate of population

density)

x′ = rx(1 − x

K
),

where x(t) denotes the population density at time t, r and K are positive constants, K is the

carrying capacity. Then by setting right hand side function equal to zero,

f (x) = rx(1 − x

K
) = 0,

we obtain two equilibrium points x = 0 and x = K.

2.2 Linear stability analysis

Linear stability of dynamical equations can be analyzed in two parts: one for scalar equations

and the other for two dimensional systems;

2.2.1 Linear stability analysis for scalar equations

To analyze the ODE

x′ = f (x)

locally about the equilibrium point x = x̄, we expand the function f (x) in a Taylor series about

the equilibrium point x̄. To emphasize that we are doing a local analysis, it is customary to

make a change of variables from the dependent variable x to a local variable. Now let

x(t) = x̄ + ε(t),

where it is assumed that ε(t) ≪ 1, so that we can justify dropping all terms of order two and

higher in the expansion. Substituting x(t) = x̄ + ε(t) into the RHS of the ODE yields;

f (x(t)) = f (x̄ + ε(t))

= f (x̄) + f ′(x̄)ε(t) + f ′′(x̄)
ε2(t)

2
+ ...

= 0 + f ′(x̄)ε(t) + O(ε2),

6 Numerical Simulation – From Theory to Industry
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and dropping higher order terms, we obtain

f (x) ≈ f ′(x̄)ε(t).

Note that dropping these higher order terms is valid since ε(t) ≪ 1. Now substituting x(t) =
x̄ + ε(t) into the LHS of the ODE,

ε′(t) = f ′(x̄)ε(t).

The goal is to determine if we have growing or decaying solutions. If the solutions grows,

then the equilibrium point is unstable. If the solution decays, then the fixed point is stable.

To determine whether or not the solution is stable or unstable we simply solve the ODE and

get the solution as

ε(t) = ε0 exp( f ′(x̄)t),

where ε0 is a constant. Hence, the solution is growing if f ′(x̄) > 0 and decaying if f ′(x̄) < 0.

As a result, the equilibrium point is stable if f ′(x̄) < 0, unstable if f ′(x̄) > 0 as it is stated in

the following theorem.

Theorem: Suppose for scalar differential equation

x′ = f (x),

the derivative function f ′ is continuous on an open interval I where the equilibrium point x̄ǫI.

Then the equilibrium point x̄ is locally stable if f ′(x̄) < 0 and it is unstable if f ′(x̄) > 0.

If the equilibrium point is stable and in addition

lim
t→∞

x(t) = x̄,

then it is called asymptotically stable equilibrium point.

Example: Determine the stability of the fixed points to the Logistic growth equation

N′ = f (N) = rN(1 − N

K
), where r > 0.

We first find the equilibrium points by setting

f (N̄) = 0, which yields two points N̄ = 0, K.

Next we compute f
′
(N) and evaluate it at the equilibrium points.

f ′(N) = r(1 − 2N

K
)

at N̄ = 0, f ′(0) = r > 0, so it is unstable

at N̄ = K, f ′(K) = −r < 0, so it is locally stable.

2.2.2 Linear stability analysis for systems

Consider the two dimensional nonlinear system

7Bifurcation Analysis and Its Applications
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x′ = f (x, y),

y′ = g(x, y),

and suppose that (x̄, ȳ) is a steady state (equilibrium point), i.e.,

f (x̄, ȳ) = 0 and g(x̄, ȳ) = 0.

Now let’s consider a small perturbation from the steady state (x̄, ȳ)

x = x̄ + u,

y = ȳ + v,

where u and v are understood to be small as u ≪ 1 and v ≪ 1. Is is natural to ask whether u

and v are growing or decaying so that x and y will move away form the steady state or move

towards the steady states. If it moves away, it is called unstable equilibrium point, if it moves

towards the equilibrium point, then it is called stable equilibrium point.As in scalar equations,

by expanding the Taylor’s series for f (x, y) and g(x, y);

u′ = x′ = f (x, y)

= f (x̄ + u, ȳ + v)

= f (x̄, ȳ) + fx(x̄, ȳ)u + fy(x̄, ȳ)v + higher order terms...

= fx(x̄, ȳ)u + fy(x̄, ȳ)v + higher order terms....

Similarly,

v′ = y′ = g(x, y)

= g(x̄ + u, ȳ + v)

= g(x̄, ȳ) + gx(x̄, ȳ)u + gy(x̄, ȳ)v + higher order terms...

= gx(x̄, ȳ)u + gy(x̄, ȳ)v + higher order terms....

Since u and v are assumed to be small, the higher order terms are extremely small, we can

neglect the higher order terms and obtain the following linear system of equations governing

the evolution of the perturbations u and v,

[

u′

v′

]

=

[

fx(x̄, ȳ) fy(x̄, ȳ)
gx(x̄, ȳ) gy(x̄, ȳ)

] [

u

v

]

,

where the matrix

[

fx fy

gx gy

]

is called Jacobian matrix J of the nonlinear system.The above linear

system for u and v has the trivial steady state (u, v) = (0, 0), and the stability of this trivial

steady state is determined by the eigenvalues of the Jacobian matrix, as follows:

8 Numerical Simulation – From Theory to Industry
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Theorem : An equilibrium point (x̄, ȳ) of the differential equation is stable if all the

eigenvalues of J, the Jacobian evaluated at (x̄, ȳ) have negative real parts. The equilibrium

point is unstable if at least one of the eigenvalues has a positive real part.

As a summary,

Asymptotically stable : A critical point is asymptotically stable if all eigenvalues of the

jacobian matrix J are negative, or have negative real parts.

Unstable: A critical point is unstable if at least one eigenvalue of the jacobian matrix J is

positive, or has positive real part.

Stable (or neutrally stable) : Each trajectory move about the critical point within a finite range

of distance.

Definition(Hyperbolic point): The equilibrium is said to be hyperbolic if all eigenvalues of

the jacobian matrix have non-zero real parts.

Hyperbolic equilibria are robust(i.e., the system is structurally stable): Small perturbations

of order do not change qualitatively the phase portrait near the equilibria. Moreover,

local phase portrait of a hyperbolic equilibrium of a nonlinear system is equivalent to

that of its linearization. This statement has a mathematically precise form known as the

Hartman-Grobman. This theorem guarantees that the stability of the steady state (x̄, ȳ) of the

nonlinear system is the same as the stability of the trivial steady state (0, 0) of the linearized

system.

Definition(Non-Hyperbolic point): If at least one eigenvalue of the Jacobian matrix is zero or

has a zero real part, then the equilibrium is said to be non-hyperbolic.

Non-hyperbolic equilibria are not robust (i.e., the system is not structurally stable). Small

perturbations can result in a local bifurcation of a non-hyperbolic equilibrium, i.e., it can

change stability, disappear, or split into many equilibria. Some refer to such an equilibrium

by the name of the bifurcation (See the section below).

Example: Consider the following nonlinear autonomous system

·
x(t) = y(t)[x(t)− y(t)], (4)
·
y(t) = x(t)[2 − y(t)].

The equilibria are the points (x̄, ȳ) = (0, 0) and (x̄, ȳ) = (1, 2) and the Jacobian matrix is

J =

[

y x − 1

2 − y −x

]

.

We compute the Jacobian at the equilibrium point (0,0) where J(0, 0) =

[

0 −1

2 0

]

which implies

that the eigenvalues are purely imaginary

λ1.2 = ±
√

2i,

9Bifurcation Analysis and Its Applications
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by solving the characteristic equation

det(J − λI) = 0.

Since the point is non-hyperbolic, the linearized system can not tell about the stability. Later

on we will show that this is a center.

For the equilibrium point (1, 2), the Jacobian J(1, 2) =

[

2 0

0 −1

]

thus the point is locally

unstable (as

λ1 = 1 and λ2 = −1,

where one of the eigenvalues is strictly positive). Since it is a hyperbolic equilibrium point,

the stability of fixed point is the same as in the linearized system. So it is also unstable.

3. Bifurcation analysis

Consider a family of ODE’s that depend on one parameter λ

x′ = f (x, λ), (5)

where f : R
n+1 → R

n is analytic for λǫR, xǫR
n . Let x = x0(λ) be a family of equilibrium

points of equation (5), i.e., f (x0(λ), λ) = 0. Now let’s set

z = x − x0(λ).

Then

z′ = A(λ)z + O(|z|2),
where A(λ) =

∂ f
∂x (x0(λ), λ).

Let λ1, λ2, ...λn(λ) be the eigenvalues of A(λ). If, for some i, Reλi(λ) changes sign at λ = λ0,

we say that λ0 is a bifurcation point of equation (5).

3.1 Bifurcation in one dimension

We may assume that n = 1 so that f : R
2 → R

1, and x0(λ) is a real valued analytic function

of λ provided

λ1(λ) =
∂ f

∂x
(x0(λ), λ) = A(λ) = 0.

Therefore, the equilibrium point is asymptotically stable if λ1(λ) < 0, and unstable if λ1(λ) >
0. This implies that λ0 is a bifurcation point if λ1(λ0) = 0. Hence, bifurcation points (x0(λ), λ)

are solutions of

f (x, λ) = 0 and
∂ f

∂x
(x, λ) = 0.

The most common bifurcation types are illustrated by the following examples.

10 Numerical Simulation – From Theory to Industry
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3.1.1 Saddle-node bifurcation

A saddle-node bifurcation or tangent bifurcation is a collision and disappearance of two

equilibria in dynamical systems. In autonomous systems, this occurs when the critical

equilibrium has one zero eigenvalue. This phenomenon is also called fold or limit point

bifurcation.

Now consider the dynamical system defined by

x′ = a − x2, for a is real. (6)

An equilibrium solution (where x′ = 0) is simply x = ±√
a. Therefore,

if a < 0, then we have no real solutions,

if a > 0, then we have two real solutions.

We now consider each of the two solutions for a > 0, and examine their linear stability in the

usual way. First, we add a small perturbation:

x = x̄ + ε.

Substituting this into the equation yields

dε

dt
= (a − x̄2)− 2x̄ε − ε2,

and since the term in brackets on the RHS is trivially zero, therefore

dε

dt
= −2x̄ε,

which has the solution

ε(t) = A exp(−2x̄t).

From this, we see that for x = +
√

a, |x| → 0 as t → ∞ (linear stability); for x = −√
a,

|x| → 0 as t → ∞ (linear stability).

As sketched in the “bifurcation diagram” below, therefore, the saddle node bifurcation at a = 0

corresponds to the creation of two new solution branches. One of these is linearly stable, the

other is linearly unstable.

3.1.2 Transcritical bifurcation

In a transcritical bifurcation, two families of fixed points collide and exchange their stability

properties. The family that was stable before the bifurcation is unstable after it. The other

fixed point goes from being unstable to being stable.

Now consider the dynamical system

dx

dt
= az − bx2, for x, a, b real.

11Bifurcation Analysis and Its Applications
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Figure 1. Bifurcation diagram corresponding to the saddle-node bifurcation

Again, a and b are control parameters. We can find two steady states (x′ = 0) to this system

x = x̄1 = 0, ∀a, b

x = x̄2 =
a

b
, ∀a, b, b �= 0.

We now examine the linear stability of each of these states in turn, following the usual

procedure.

For the state x̄1, we add a small perturbation

x = x̄1 + ε,

which yields
dε

dt
= aε − bε2

with the linearized form
dε

dt
= aε

has the solution

e(t) = A exp(at).

Therefore, perturbations grow for a > 0 and decay for a < 0. So

the state x̄1 is unstable if a > 0,

the state x̄1 is stable if a < 0.

12 Numerical Simulation – From Theory to Industry
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Now for the state x̄2, we add a small perturbation

x = x̄2 + ε,

which yields the linearized form
dε

dt
= −aε

has the solution

e(t) = A exp(−at).

Therefore, perturbations grow for a > 0 and decay for a < 0. So

the state x̄2 =
a

b
is linearly stable if a > 0,

the state x̄2 =
a

b
is linearly unstable if a < 0.

It can be easily seen that the bifurcation point a = 0 corresponds to an exchange of stabilities

between the two solution branches.

Figure 2. Bifurcation diagram corresponding to the transcritical bifurcation

3.1.3 The pitchfork bifurcation

In pitchfork bifurcation one family of fixed points transfers its stability properties to two

families after or before the bifurcation point. If this occurs after the bifurcation point,

then pitchfork bifurcation is called supercritical. Similarly, a pitchfork bifurcation is called

subcritical if the nontrivial fixed points occur for values of the parameter lower than the

13Bifurcation Analysis and Its Applications
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bifurcation value. In other words, the cases in which the emerging nontrivial equilibria are

stable are called supercritical whereas the cases in which these equilibria are called subcritical.

Consider the dynamical system

x′ = ax − bx3, for a, b real.

As usual, a and b are external control parameters. Steady states, for which x′ = 0 are as

follows:

x = x̄1 = 0, ∀a, b,

x = x̄2 = −
√

a/b, for a/b > 0,

x = x̄3 =
√

a/b, for a/b > 0.

Note that the equilibrium points x̄2 and x̄3 only exist when a > 0 if b > 0 and for a < 0 if

b < 0.

As usual, we now examine the linear stability of each of these steady states in turn. (This can

be done for a general b). First we write the perturbation for x̄1 = 0,

x = x̄1 + ε

that yields the linearized equation
dε

dt
= aε,

with the solution

e(t) = A exp(at).

So we see that

the state x̄1 = 0 is linearly unstable if a > 0,

the state x̄2 = 0 is linearly stable if a < 0.

For the states x = x̄2 and x = x̄3, setting

x̄ = ±
√

a/b + ε,

dε

dt
= aε − 3bx̄2ε,

with the solution

e(t) = A exp(ct) where c = −2a.

Thus it is obvious that

the states x̄2 and x̄3 are linearly stable if a > 0,

the states x̄2 and x̄3 are linearly unstable if a < 0,

14 Numerical Simulation – From Theory to Industry
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Figure 3. Bifurcation diagram corresponding to the pitchfork bifurcation

3.2 Bifurcation in two dimension

3.2.1 Hopf bifurcation

Definition : A Hopf or Poincare-Andronov-Hopf bifurcation is a local bifurcation in which a

fixed point of a dynamical system loses stability as a pair of complex conjugate eigenvalues of

linearization around the fixed point cross the imaginary axis of the complex plane.

3.3 Hopf bifurcation theorem

Consider the two dimensional system

dx

dt
= f (x, y, τ) , (7)

dy

dt
= g (x, y, τ) ,

where τ is the parameter and suppose that (x (τ) , y (τ)) is the equilibrium point and α (τ)±
iβ (τ) are the eigenvalues of the Jacobian matrix which is evaluated at the equilibrium point.

In addition let’s assume that the change in the stability of the equilibrium point occurs at τ =
τ∗ where α (τ∗) = 0.

15Bifurcation Analysis and Its Applications
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Figure 4. Hopf bifurcation diagram

First the system is transformed so that the equilibrium is at the origin and the parameter τ at

τ∗ = 0 gives purely imaginary eigenvalues. System (7) is rewritten as follows;

dx

dt
= a11 (τ) x + a12 (τ) y + f1(x, y, τ), (8)

dy

dt
= a21 (τ) x + a22 (τ) y + g1 (x, y, τ) .

The linearization of the system (7) about the origin is given by dX
dt = J(τ)X, where X =

[

x

y

]

and

J(τ) =

[

a11 (τ) a12 (τ)

a21 (τ) a22 (τ)

]

is the Jacobian matrix evaluated at origin.

Theorem (Hopf bifurcation theorem)

Let f1 and g1, in system (8) have continuous third order partial derivatives in x and y. Suppose

that the origin is an equilibrium point of (8) and that the Jacobian matrix J (τ) as above, is

valid for all sufficiently small |τ|. Moreover, assume that the eigenvalues of matrix J (τ) are

α (τ)± iβ (τ) where α (0) = 0, β (0) �= 0 such that the eigenvalues cross the imaginary axis

16 Numerical Simulation – From Theory to Industry
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with nonzero speed, i.e.,
dα

dτ
|τ=0 �= 0.

Then in any open set U containing the origin in R
2 and for any τ0 > 0, there exists a value

τ̄, |τ̄| < τ0 such that the system of differential equations (8) has a periodic solution for τ = τ̄

in U. (Allen, L.J.S).

Note: The Hopf bifurcation requires at least a two dimensional differential equation system

to appear.

Definition: The bifurcation stated in the Hopf bifurcation theorem is called ”supercritical” if

the equilibrium point (0, 0) is asymptotically stable when τ = 0 (at the bifurcation point) and

it is called ”subcritical” if the equilibrium point (0, 0) is negatively asymptotically stable (as

t → −∞) when τ = 0.

In a supercritical Hopf bifurcation, the limit cycle grows out of the equilibrium point. In other

words, right at the parameters of the Hopf bifurcation, the limit cycle has zero amplitude,

and this amplitude grows as the parameters move further into the limit-cycle. (See the figure

below)

Figure 5. Bifurcation diagram corresponding to Supercritical Hopf bifurcation

However in a subcritical Hopf bifurcation, there is an unstable limit cycle surrounding the

equilibrium point, and a stable limit cycle surrounding that. The unstable limit cycle shrinks

down to the equilibrium point, which becomes unstable in the process. For systems started

near the equilibrium point, the result is a sudden change in behavior from approach to a stable

focus, to large-amplitude oscillations.(See the figure below).

Example: Consider the two dimensional system

dx

dt
= x2 − α, (9)

dy

dt
= −(x2 + 1)y,

where α is a parameter. When we compute the equilibrium points depending on parameter α;

If α < 0, then there is no x-nullclines, hence the system has no equilibrium points.

If α = 0, then the system has exactly one equilibrium point at (0, 0).

If α > 0, then the system has two equilibrium points (−√
α, 0) and (

√
α, 0).

17Bifurcation Analysis and Its Applications
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Figure 6. Supercritical Hopf bifurcation

Figure 7. Diagram for Subcritical Hopf bifurcation

Then the Jacobian matrix is

J =

[

2x 0

−2xy −(x2 + 1)

]

,

where at the equilibrium points J(0.0) =

[

0 0

0 −1

]

, J(
√

α, 0) =

[−2
√

α 0

0 −α − 1

]

and

J(
√

α, 0) =

[

2
√

α 0

0 −α − 1

]

.

For α = 0, there will be a line equilibrium (since one of the eigenvalues is zero) and for α > 0,

the point (−√
α, 0) is a sink and (

√
α, 0) is a saddle point so that α = 0 is the bifurcation point

for this differential equation system.

18 Numerical Simulation – From Theory to Industry
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Figure 8. Subcritical Hopf bifurcation

Example: Consider the two dimensional system

dx

dt
= y + αx, (10)

dy

dt
= −x + αy,

where α is the bifurcation parameter. We can easily show that the conditions of the Hopf

Bifurcation theorem hold. In this system f1 and f2 are zero. Then the Jacobian matrix is

J =

[

α 1

−1 α

]

for which the eigenvalues are λ1,2 = α± i where Reλ(α) = α and the imaginary part Imλ(α) =
±1.It follows that Reλ(0) = 0 and Imλ(0) �= 0. and also

dReλ(α)

dα
|α=0= 1 �= 0.

Hence, we conclude that there exists a periodic solution for α = 0 in every neighborhood of

origin.

4. Center Manifold teorem

Let f (0) = 0, for the dynamical system

x′ = f (x), x ∈ R
n, (11)

19Bifurcation Analysis and Its Applications
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and let the eigenvalues of the Jacobian matrix be λ1, λ2, ..., λn. Suppose that, the real parts of

the eigenvalues are zero and if not, suppose there are n+ numbers of eigenvalues with Re λ >

0, n0 number of eigenvalues with Re λ = 0 and n− number of eigenvalues with Re λ < 0. Let

Tc be the eigenspace on imaginary axis corresponding to n0 eigenvalues. The eigenvalues on

the imaginary axis (Re λ = 0) are called the critical eigenvalues as on the eigenspace Tc. And

suppose the function ϕt denote the flow corresponding to the equation (11).

With these assumption, we state the Center Manifold theorem as follows;

Theorem: (Center Manifold theorem)

There exists a locally invariant C∞ center manifold Wc
loc (0) such that

Wc
loc (0) = {(x, y) : y = h(x); |x| < δ, h(0) = 0; DJ(0) = 0}

such that the dynamics of the system

x′ = Acx + r1(x, y),

y′ = Asy + r2(x, y),

(where Ac and As are are the blocks in the canonical form whose diagonals contain the

eigenvalues with Re λ = 0 and Re λ < 0; respectively) restricted to the center manifold are

given by

x′ = Ac(x) + r1(x, h(x)).

And the manifold Wc
loc is called center manifold.

Remark: Center manifolds are not unique.

4.1 Center Manifold reduction for two dimensional systems

Example: Consider the two dimensional system of differential equations

x′ = xy, (12)

y′ = −y + x2.

The only equilibrium point is (0, 0), we linearize around that and obtain

J(0, 0) =

[

0 0

0 −1

]

.

Now we look for y = h(x) = ax2 + bx3 + cx4 + dx5 + O(x6). Then,

y′ = h′(x)x′ = xh′(x)h(x)

= 2a2x4 + 5abx5 + O(x6)
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and on the other hand,

y′ = −h(x)− x2

= −(a + 1)x2 − bx3 − cx4 − dx5 + O(x6).

Comparing the two expressions, we deduce that a = −1, b = 0, c = −2, d = 0 and the center

manifold reduction takes the form

y = h(x) = −x2 − 2x4 + O(x7).

Hence for the last equation x = 0 is asymptotically stable and therefore (0, 0) is asymptotically

stable for the original system.

Example: Consider the two dimensional system

x′ = x2y − x5, (13)

y′ = −y + x2.

Again (0, 0) is an equilibrium point and the jacobian matrix for the linearized system is

J(0, 0) =

[

0 0

0 −1

]

.

Consider the transformation y = h(x) = ax2 + bx3 + cx4 + dx5 + O(x6), which leads

y′ = h′(x)x′

= 2a2x5 + [2a(b − 1) + 3ab]x6 + O(x7),

and

y′ = −h(x) + x2

= −(a + 1)x2 − bx3 + O(x4)

= 2a2x4 + 5a − bxbx5 + O(x6),

from which we deduce that a = 1 and b = 0 and

x′ = x4 + O(x5).

For this reduced equation, x = 0 is unstable and hence, (0, 0) is also unstable for the original

system.

4.2 Center Manifold reduction for Hopf bifurcation

The aim of this section is to give a formal framework for the analytical bifurcation analysis of

Hopf bifurcations in delay differential equations

x′ = f (x, τ), xǫR
3 (14)
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with a single fixed time delay τ to be chosen as a bifurcation parameter. Characteristic

equations of the delay differential equation form (14) are often studied in order to understand

changes in the local stability of equilibria of certain delay differential equations. It is therefore

important to determine the values of the delay at which there are roots with zero part. We give

a general formalization of these calculations and determine closed form algebraic equations

where the stability and amplitude of periodic solutions close to bifurcation can be calculated.

We shall determine the direction of Hopf bifurcation and the stability of the bifurcating

periodic solutions by applying the normal form theory and the center manifold theorem by

Hassard et al.,[10], and throughout this section, we assume that the three dimensional system

of delay differential equations (14) undergoes Hopf bifurcations at the positive equilibrium

(N∗
0 , P∗

0 , S∗
0) at τ = τk, and iω1 is the corresponding purely imaginary root of the characteristic

equation at the positive equilibrium (N∗
0 , P∗

0 , S∗
0). For the sake of simplicity, we use the

notation iω for iω1.

We first consider the system (14) by the transformation

x1 = N − N∗
0 , x2 = P − P∗

0 , x3 = S − S∗
0 , t =

t

τ
, τ = τk + μ

which is equivalent to the following Functional Differential Equation(FDE) system in C =
C([−1, 0], R

3) ,

ẋ(t) = Lμ(xt) + f (μ, xt), (15)

where x(t) = (x1(t), x2(t), x3(t))
TǫR

3, and Lμ : C → R
3, f : R × C →R

3 are given

respectively, by

Lμ(φ) = (τk + μ)

⎡

⎣

a1 a2 a3

a4 a5 a6

a7 a8 a9

⎤

⎦

⎡

⎣

φ1(0)
φ2(0)
φ3(0)

⎤

⎦

+(τk + μ)

⎡

⎣

b1 b2 b3

b4 b5 b6

b7 b8 b9

⎤

⎦

⎡

⎣

φ1(−1)
φ2(−1)
φ3(−1)

⎤

⎦ ,

and

f (μ, φ) = (τk + μ)

⎡

⎣

f11

f12

f13

⎤

⎦ .

By Riesz representation theorem, there exists a function η(θ, μ) of bounded variation for

θǫ[−1, 0], such that

Lμφ =
∫ 0

−1
dη(θ, 0)φ(θ), for φǫC.

Indeed we may take

η(θ, μ) = (τk + μ)

⎡

⎣

a1 a2 a3

a4 a5 a6

a7 a8 a9

⎤

⎦ δ(θ)− (τk + μ)

⎡

⎣

b1 b2 b3

b4 b5 b6

b7 b8 b9

⎤

⎦ δ(θ + 1),
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where δ is the Dirac delta function. For φǫC1([−1, 0], R
3), define

A(μ)φ =

{

dφ(θ)
dθ θǫ[−1, 0),

∫ 0
−1 dη(μ, s)φ(s) θ = 0

and

R(μ)φ =

{

0 θǫ[−1, 0),
f (μ, φ), θ = 0.

Then the system (15) is equivalent to

ẋt = A(μ)xt + R(μ)xt,

where xt(θ) = x(t + θ) for θǫ[−1, 0). For ψǫC1([−1, 0], (R3)∗), define

A∗ψ(s) =

{

− dψ(s)
ds sǫ(0, 1],

∫ 0
−1 dηT(t, 0)ψ(−t) s = 0

and a bilinear inner product

〈ψ(s), φ(θ)〉 = ψ̄(0)φ(0)−
∫ 0

−1

∫ θ

ξ=0
ψ̄(ξ − θ)dη(θ)φ(ξ)dξ, (16)

where η(θ) = η(θ, 0). Then A(0) and A∗ are adjoint operators. Suppose that q(θ) and q∗(s)
are eigenvectors of A and A∗ corresponding to iωτk and −iωτk, respectively. Then suppose

that q(θ) = (1, β, γ)Teiωτkθ is the eigenvector of A(0) corresponding to iωτk, then A(0)q(θ) =
iωτkq(θ). Then in the following, we use the theory by Hassard et al.,[10], to compute the

coordinates describing center manifold C0 at μ = 0. Define

z(t) = 〈q∗, xt〉 , W(t, θ) = xt − 2Rez(t)q(θ). (17)

On the center manifold C0, we have

W(t, θ) = W(z(t), z̄(t), θ) = W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ ...,

where z and z̄ are local coordinates for center manifold C0 in the direction of q and q̄∗. Note

that W is real if xt is real. We consider only real solutions. For the solution xtǫC0, since μ = 0

and (15), we have

ż = iωτkz + 〈q∗(θ), F(0, W(z, z̄, θ) + 2Rezq(θ))〉
= iωτkz + q̄∗(0)F(0, W(z, z̄, 0) + 2Rezq(0))

de f
= iωτkz + q̄∗(0)F0(z, z̄)

= iωτkz + g(z, z̄),

where

g(z, z̄) = q̄∗(0)F0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2 z̄

2
+ .... (18)
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By using (17), we have xt(x1t(θ), x2t(θ), x3t(θ)) = W(t, θ) + zq(θ) + zq(θ),
q(θ) = (1, β, γ)Teiωτkθ , and

x1t(0) = z + z̄ + W
(1)
20 (0)

z2

2
+ W

(1)
11 (0)zz̄ + W

(1)
02 (0)

z̄2

2
+ O(|(z, z̄)|3),

x2t(0) = βz + β̄z + W
(2)
20 (0)

z2

2
+ W

(2)
11 (0)zz̄ + W

(2)
02 (0)

z̄2

2
+ O(|(z, z̄)|3),

x3t(0) = γz + γα + W
(3)
20 (0)

z2

2
+ W

(3)
11 (0)zz̄ + W

(3)
02 (0)

z̄2

2
+ O(|(z, z̄)|3),

x1t(−1) = ze−iωτkθ + z̄eiωτkθ + W
(1)
20 (−1)

z2

2
+ W

(1)
11 (−1)zz̄ + W

(1)
02 (−1)

z̄2

2

+O(|(z, z̄)|3).

From the definition of F(μ, xt), we have

g(z, z̄) = q̄∗(0) f0(z, z̄) = D̄τk(1, β̄
∗
, γ̄∗)

⎡

⎣

f 0
11

f 0
12

f 0
13

⎤

⎦

and we evaluate g(z, z̄).

To determine g21, we need to compute W20(θ) and W11(θ). By (15) and (18), we have

Ẇ = ẋt − żq +
.

zq (19)

= { AW − 2Re{q̄∗(0) f0q(θ)}, θǫ[−1, 0)
AW − 2Re{q̄∗(0) f0q(θ)}+ f0 θ = 0,

de f
= AW + H(z.z̄, θ),

where

H(z.z̄, θ) = H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ .... (20)

Note that on the center manifold C0 near to the origin,

Ẇ = Wz ż + Wz̄ z̄. (21)

Thus we obtain,

(A − 2iωτk)W20(θ) = −H20(θ), AW11(θ) = −H11(θ). (22)

By using (19), for θǫ[−1, 0),

H(z.z̄, θ) = q̄∗(0) f0q(θ)− q∗(0) f0(0)q̄(θ) = −gq(θ)− ḡ q̄(θ). (23)

Comparing the coefficients with (20), we obtain the following

H20(θ) = −g20q(θ)− ḡ02q̄(θ), H11(θ) = −g11q(θ)− ḡ11 q̄(θ). (24)
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From (22) and (24) and the definition of A, we get

Ẇ20(θ) = 2iωτkW20(θ)− g20q(θ)− ḡ02q̄(θ).

Noticing q(θ) = q(0)eiωτkθ , we evaluate W20(θ) by E1 = (E
(1)
1 , E

(2)
1 , E

(3)
1 )ǫR

3 is a constant

vector. From the definition of A and (22), we obtain

∫ 0

−1
dη(θ)W20(θ) = 2iωτkW20(0)− H20(0), (25)

and
∫ 0

−1
dη(θ)W11(θ) = −H11(0), (26)

where dη(θ) = η(θ, 0). Next we compute W20(θ) and W11(θ) from (25) and (26) and determine

the following values to investigate the qualities of bifurcating periodic solution in the center

manifold at the critical value τk. For this purpose, we express the direction of Hopf bifurcation

in terms of g′ijs and eigenvalues λτk. And then we can evaluate the following values;

c1(0) =
i

2ωτk
(g20g11 − 2|g11|2 −

|g02|2
3

) +
g21

2
,

μ2 = − Re{c1(0)}
Re{λ

′
(τk)}

,

β2 = 2Re{c1(0)}, (27)

T2 = − Im{c1(0)}+ μ2 Im{λ
′
(τk)}

ωτk

and we state this as in the following theorem.

Theorem : μ2 determines the direction of Hopf bifurcation; if μ2 > 0, then the Hopf bifurcation

is supercritical and the bifurcating periodic solutions exist for τ > τ0, if μ2 < 0, then the Hopf

bifurcation is subcritical and the bifurcating periodic solutions exist for τ < τ0. β2 determines

the stability of the bifurcating periodic solutions; bifurcating periodic solutions are stable if

β2 < 0, unstable if β2 > 0. T2 determines the period of the bifurcating solution; the period

increases if T2 > 0, it decreases if T2 < 0.

In the following section, we shall give a numerical example to verify the theoretical results.

4.2.1 Numerical example of Center Manifold reduction

Consider the following system with discrete time delay τ;

dN(t)

dt
= r1N(t)− ǫP(t)N(t),

dP(t)

dt
= P(t)(r2 − θ

S(t)

N(t − τ)
),

dS(t)

dt
= αP(t)− αS(t).

(28)
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Now we present some numerical simulations by using MATLAB(7.6.0) programming

(Çelik-3). We simulate the predator-prey system (28) by choosing the parameters r1 = 0.45,

r2 = 0.1, θ = 0.05, ǫ = 0.03, and α = 1, i.e., we consider the following system

dN(t)

dt
= 0.45N(t)− 0.03P(t)N(t),

dP(t)

dt
= P(t)(0.1 − 0.05

S(t)

N(t − τ)
),

dS(t)

dt
= P(t)− S(t),

(29)

which has only one positive equilibrium E∗ = (N∗
0 , P∗

0 , S∗
0) = (7.5, 15, 15). By algorithms

in the previous sections, we obtain τ0 = 1.5663, ω1 = 0.0045, z1 = ω2
1 and g′(z1) =

1.1944 × 10−4
> 0 which leads to

dReλ(τ0)
dτ = 5.8982 > 0. So by the theorem above, the

equilibrium point E∗ is asymptotically stable when τǫ [0, τ0) = [0, 1.5663) and unstable when

τ > 1.5663 and also Hopf bifurcation occurs at τ = τ0 = 1.5663 as it is illustrated by computer

simulations.

By the theory of Hassard et al.,[10], as it is discussed in previous section, we also determine

the direction of Hopf bifurcation and the other properties of bifurcating periodic solutions.

From the formulae in Section 5.2 we evaluate the values of μ2, β2 and T2 as

μ2 = 0.0981 > 0, β2 = −0.5785 < 0, T2 = 7.1165 > 0,

from which we conclude that Hopf bifurcation of system (29) occurring at τ0 = 1.5663 is

supercritical and the bifurcating periodic solution exists when τ crosses τ0 to the right, and

also the bifurcating periodic solution is stable.

In computer simulations, the initial conditions are taken as (N0, P0, S0) = (50, 25, 25) and

MATLAB DDE (Delay Differential Equations) solver is used to simulate the system (29). We

first take τ = 1.5 < τ0 and plot the density functions N(t), P(t) and S(t) in Figs.9,10,11

respectively which shows the positive equilibrium is asymptotically stable for τ < τ0..

Moreover in Fig.12, we illustrate the asymptotic stability in three dimension.

However in Figs.13,14,15 and 16 below, we take τ = 2 > τ0 sufficiently close to τ0 which

illustrates the existence of bifurcating periodic solutions from the equilibrium point E∗.

4.3 Exercises

1. Consider the Van der Pol equation

ẍ − (1 − x2)ẋ + x = 0

and convert this into a system and check the stability of fixed points.

2. Let y0 be an equilibrium point of the equation

dy

dt
= f (y).
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Figure 9. The trajectory of prey density versus time with the initial condition N0 = 50. The graph of
solutions of the model (29) when τ = 1.5 < τ0, where the equilibrium point E∗ is asymptotically stable.
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Figure 10. The trajectory of predator density versus time with the initial condition P0 = 25. The graph of
solutions of the model (29) when τ = 1.5 < τ0, where the equilibrium point E∗ is asymptotically stable.

Let g(y) be a positive function. Deduce the stability of y0 as an equilibrium solution of the

equation
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Figure 11. The trajectories of S(t) versus time with the initial condition S0 = 25. The graph of solutions
of the model (29) when τ = 1.5 < τ0, where the equilibrium point E∗ is asymptotically stable.
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Figure 12. The trajectory of N, P, S in three dimension with the initial condition (50, 25, 25) when
τ = 1.5 < τ0 for which the equilibrium point E∗ is asymptotically stable.
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Figure 13. The trajectory of N(t) when τ = 2 > τ0.

dy

dt
= f (y)g(y)

from its stability as an equilibrium solution of the equation
dy
dt = f (y). Repeat the same

question if g(y)is a negative function.

3. For the following nonlinear system

x′ = −x3 − y,

y′ = x − y3,

determine the stability of fixed points.

4. For the following nonlinear system

x′ = y − xy2,

y′ = −x + x2y,

classify the fixed points.

5. Analyze the bifurcation properties of the following problems choosing r as bifurcation

parameter,

29Bifurcation Analysis and Its Applications



28 Will-be-set-by-IN-TECH

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

P
(t

)

Time(t)

Figure 14. The trajectory of P(t) when τ = 2 > τ0.

a)x′ = −x + β tanh x,

b)x′ = rx − 4x3,

c)x′ = rx − sin(x),

d)x′ = rx + 4x3,

e)x′ = rx − sin h(x),

c)x′ = x +
rx

1 + x2
.

6. Find the equilibrium points and identify the bifurcation in the following system, and sketch

the appropriate bifurcation diagram and phase portraits:

dx

dt
= (1 + τ)y − x − 2x3,

dy

dt
= x − y − y3.

Then compute the extended center manifold near the bifurcation point by choosing τ as

bifurcation parameter.
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Figure 15. The trajectory of S(t) when τ = 2 > τ0.

7. Show that the following system is structurally unstable,

dx

dt
= x + y − x2 + y2,

dy

dt
= −2x − y + xy,

and the following system is structural stable. Explain our reason.

dx

dt
= 2x + y − x(x2 + y2),

dy

dt
= −x + 2y − y(x2 + y2).

8.

dx

dt
= xy,

dy

dt
= 1 − y2 − x2,

for the above system, classify the fixed points.
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Figure 16. When τ = 2 > τ0 a stable periodic orbit bifurcates from the equilibrium point E∗.

9. For r ∈ R, consider the differential equation

x′ = rx − 2x2 + x3

on the real line.

(a) Show that x∗ = 0 is a fixed point for any value of the parameter r, and determine its

stability. Hence identify a bifurcation point r1.

(b) Show that for certain values of the parameter r there are additional fixed points. For

which values of r do these fixed points exist? Determine their stability and identify a further

bifurcation points r2.

(c)Using a Taylor expansion of the differential equation above, determine the normal form of

the bifurcation at r1. What type of bifurcation takes place.

(d) Similarly, determine the normal from of the bifurcation at r2. What type bifurcation takes

place?

(e) Sketch the bifurcation diagram for all values of r and x∗. (Use a full line to denote a curve

of stable fixed points, and a dashed line for a curve of unstable fixed points).

10. Consider the system of differential equations

x′ = y − xy2,

y′ = −x + yx2,
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in the (x, y) plane.

(a) Determine all fixed points of the system.

(b) Let r2 = x2 + y2. Show that r′ = 0 Considering the result of (c), what does this imply for

the trajectories?

(c) Sketch the phase portrait in the (x, y) plane, including trajectories through (1, 0) and (2, 0).
Which fixed point does the trajectory through (2, 0) approach?

11. Consider the Lorenz system (the model of heat convection by Rayleigh-Benard occurring

in the earth’s atmosphere) in three dimension as follows;

x′ = σ(y − x),

y′ = rx +−xz − y,

z′ = xy − bz,

where σ, r, b are constants. Perfom the stability analysis of this nonlinear system.

12. For the Holling-Tanner type Predator-Prey model

x′ = x(1 − x)− x

a + x
y,

y′ = y(δ − β
y

x
),

where x(0) > 0, y(0) > 0 and a, δ, β are positive constants. Find the equilibria and classify

them.

13. Consider the Delayed Predator-Prey model

x′(t) = rx(t)− bx(t)x(t − τ)− αx(t)y(t),

y′(t) = −cy(t) + βx(t)y(t),

with time delay τ and positive constants r, b, α, c and β. By choosing τ as bifurcation

parameter, check whether bifurcating periodic solutions occur around the equilibrium points

or not.
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