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1. Introduction

Progress in nuclear physics acquired during World War II has naturally led many scientists to
devote their research activities to the field of tomographic imaging techniques using ionizing
radiation. This was, in the post-war booming economy, particularly of great importance for
medical diagnostic as well as for industrial non destructive evaluation (NDE). As the objective
is to extract information on the inner part of objects of interest, penetrating radiation was
the most appropriate agent for this purpose. With the availability of high quality X-ray
and gamma-ray sources (either directly originated from nuclear transitions or from pair
annihilation) and the emergence of sensitive detectors, three types of imaging have been
introduced and developed throughout half a century. Nowadays they have emerged as
mature standard investigation methods for several domains of application.

These are: a) the X-ray transmission Computed Tomography (CT), which exploits the physical
law of radiation attenuation in matter, b) the Single Photon Emission Tomography (SPECT),
which uses the possibility of implanting radiation sources inside objects, c) the Positron
Emission Tomography (PET), which uses the possibility of implanting positron sources in
objects and exploits the properties of electron-positron pair annihilation. Milestones of their
sensational evolution throughout decades are vividly recalled in recent reviews, see e.g.
[35, 47].

It is observed that all three cited imaging methods deal exclusively with primary (or
non-deviated) radiation. The physical quantity, which is non-uniformly distributed over
an object and responsible for the imaging process, is respectively: the linear attenuation
coefficient for CT, the γ-ray radio-activity density inside the object for SPECT, and the β+-ray
(or positron) radio-activity density for PET.

However right at the start, scientists were also attracted by the idea of using scattered
radiation by Compton effect (the scattering of X- or gamma photons by an electron) to image
the inner parts of an object by reconstructing its electron density map. While this last imaging
technology has not yet reached the same level of maturity as the three quoted above, it has
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gone through revolutionary conceptual steps which have led to what is nowadays known
as Compton scatter tomography (CST). Yet it has stirred continuous interest in numerous
applications, see e.g. [2], [4], [11], [18], [5], [22], [29], [1], [23]. The aim of this chapter is
to recount the past episodes of research, to give a comprehensive account of what has been
accomplished in CST and to describe some new ideas which have arisen recently, see [42, 54].
The emphasis of the discussion shall be placed at the theoretical level. Negative effects on
imaging such as beam attenuation and multiple scattering, which complicate enormously the
analytic treatment, shall be dealt with conventional retrieval or compensation methods. The
crux of the matter is to see how fertile ideas evolve in time and generate new fruitful concepts.

2. Compton scattering

To appreciate the role of scattered radiation for imaging purposes, it is useful to recall some
of the key points on Compton scattering. When a thin pencil of X- or gamma radiation
shines through a medium, its intensity weakens as its traverses matter. One of the cause
for this attenuation process is Compton scattering: deflected rays by scattering will not reach
a detector placed along the incident direction.

From the geometry and kinematics of this scattering, see e.g. [6], one may infer that:

• the scattered photon flux density in a given spatial direction is given by the differential
Compton scattering cross-section dσC/dΩ = π r2

e P(ω), where re = 2.82 × 10−15 m is the
classical electron radius and P(ω), the Klein-Nishina scattering probability under a scattering
angle ω.

• the scattered photon energy E is directly connected to the scattering angle ω by the so-called
Compton relation

E = E(ω) = E0
1

1 − ǫ cos ω
, (1)

where E0 is the energy of incident photons and ǫ the ratio of E0 to the electron rest energy.

Then the number of particles d2Nsc scattered in a solid angle dΩsc along a direction making
an angle ω with the incident direction follows from the definition of the differential scattering
cross section dσC/dΩ, if the following quantities are given: a) φin, the incident photon flux
density, b) n(M), the electron density at the scattering site M, surrounded by volume element
dM. Thus, for a given incident energy, the angular distribution of scattered photons around
the scattering site M is no longer isotropic. The final form of this number of scattered photons
in the direction given by the angle ω is

d2Nsc = φin n(M)dM π r2
e P(ω) dΩsc. (2)

But this is still not realistic. For radiation emitted from a point source and incident on site M,
see Fig. 1, attenuation effects in matter before and after scattering are to be taken into account,
as well as beam spreading due to straight line propagation, in the evaluation of the detected
photon flux density. Equation 2 reads now for a point source emitting isotropically I0 photons
per second and per steradian

d2Nsc =
I0

4π
mσ(SM)Ain(SM) n(M)dM π r2

e P(ω)Aout(MD)mσ′ (MD) dΩsc, (3)
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Figure 1. Compton scattering

where the attenuation factors on the traveled distances SM and MD are given by

Ain(SM) = exp
(
−

∫ SM

0
ds μ(S + sM)

)
, and Aout(MD) = exp

(
−

∫ MD

0
ds μ(M + sD)

)
.

(4)
In equation 4, μ(M) is the matter linear attenuation coefficient at site M and the respective
beam spreading factor mσ(r) is of the form

mσ(r) =
(

1
πσ

tan−1 σ

2r

)2

, (5)

with σ the linear size of scattering volume and r the traversed distance. Note that for σ → 0,
mσ(r) ∼ 1/r2, a well known photometric factor, which shall be used later. Equation 3 is
fundamental to the image formation by scattered radiation.

When E0 is chosen in such a way that competing events such as photoelectric absorption and
pair creation are virtually absent, then Compton scattering becomes the main phenomena to
be considered for imaging, and the relevant physical quantity is n(M), the electron density in
matter at site M, from which other quantities such as chemical composition may be deduced.
As n(M) appears also in the attenuation process, its determination becomes quite involved
since it must be retrieved from a non-linear expression in n(M). It is clear that, in CST imaging,
n(M) plays the role of the attenuation map in CT, the gamma-ray activity density in SPECT
and the beta-plus-ray activity density in PET.

3. The earlier CST modalities

Equation 3 has inspired many of the earlier CST modalities which shall be described below.

3.1. Point by point scanning CST

The simplest and earliest procedure is schematically described by Fig. 2. Both point source
and detector are equipped with an axial collimator (lead cylindrical tube). Their axis lie in a
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plane and the detector is connected to a multichannel analyzer. When the axis of a collimated
point-like detector is made to intersect the incident pencil beam, the intersection site is actually
a scattering site of the Compton effect. So by measuring the scattered photon flux density at
a given energy, by estimating the strength of the attenuation factors, and by evaluating the
beam spreading factors one can obtain n(M). The process is then repeated for all sites in a
trans-axial slice. It is interesting to note that equation 3 has been recast in the framework of
an inverse problem by E. M. A. Hussein et al.[33], who have set up a discretization scheme to
solve it.

Figure 2. CST point by point scanning

At the turn of the twentieth century, the idea of using scattered gamma rays for investigating
hidden structures in tissues seems to have been proposed for the first time by F. W. Spiers [52].
In 1959, P. G. Lale [40], realizing that radiographic images of organs fail to reveal their inner
structure, has suggested a technique using Compton scattered radiation from a thin pencil
of X-rays. Using equation 1, it is possible to move a collimated detector in space to measure
the scattered radiation flux density and deduce the electron density at a precise point on the
incoming pencil of X-rays. When this measurement can be performed in a planar slice of an
object, it said that an image of the slice is obtained by Compton scatter tomography (CST). Of
course this is clearly a point by point procedure which is quite time consuming.

An analogous problem arises in nuclear industry. There heat transfer research in circulating
two-phase fluids requires knowledge and measurement of their densities without disturbing
or arresting their flow. It was realized that penetrating gamma-radiation would be the most
suitable for this purpose. As matter density is responsible for traversing radiation attenuation
(since most of the attenuation occurs as a result of Compton scattering) measurements of
radiation attenuation along linear paths crossing the section of a pipe can be easily done.
D. Kershaw [36] has shown how the matter density distribution can be reconstructed from
these measurements. In fact this problem is practically identical to the medical computed
tomography which was developed simultaneously at that time and Kershaw has actually
performed the mathematical inversion of the classical Radon transform, but most probably
without being aware of the seminal works of J. Radon [49] and A. M. Cormack [15]. But it
was N. N. Kondic [37], who has first suggested the use of scattered radiation for obtaining the
two-phase fluid density in a pipe.

In 1973, R. L. Clarke et al. [13] used both transmitted and scattered gamma-rays to measure
bone mineral content. In [14], they have introduced the term gamma-tomography for their
apparatus which is made of a fixed collimated pencil source and four focussing collimated
detectors positioned so as the scattering angle is about 450. The investigated object is placed on
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a moving platform which allows a raster scanning motion. The detected number of photons
at each point (in fact a small "sensitive volume") is directly mapped onto the screen of an
oscilloscope which yields a density image in a slice.

Later on, S. R. Gautam et al. [21] presented an imaging system called Compton Interaction
Tomography, which consists of a pencil incident beam falling on a large object, the
backscattered pencil is registered by a collimated detector situated on a line parallel to the
large object. This is also a point by point determination of the electron density, but with the
idea that the object is on one side of the line source-detector. Numerous works have been
done by the NDE community in the 80’s, see e.g. [10], [27], [30], including some reviews such
as [31],[32],[8], and the use of dual sources by [28].

3.2. Line by line CST

In 1971, F. T. Farmer & M. P. Collins [19] advocated the use of a wide angle collimated detector
limited by two plates parallel to the incident radiation pencil. Fig. 3 shows how schematically
how this procedure works. The detector is coupled to a multichannel analyzer. This design
allows to obtain rapidly the electron density profile along the probing incident radiation
pencil. This is the reason why it is called line scanning technique. A global image of an
object slice is realized when parallel lines are put together. This technique has been refined in
[20].

Figure 3. CST with line by line scanning

Variants of this design have been developed by the NDE community to combat the low
efficiency of the single voxel technique. In [25], G. Harding described a Compton scatter
imaging system for NDE with horizontal scanning and incident pencil beam perpendicular
to the scanning direction. Scatter detectors are disposed on both sides of the incident beam.
Fig. 4 shows a sketch of the COMSCAN (Compton Scatter Scanner), developed by the Philips
Research Laboratories in Hamburg, Germany which was quite successful (see [26]).

3.3. Plane by plane CST

Then emerged several planar scatter imaging systems as extensions of linear scatter imaging
systems in NDE [30], [53] as well as in medicine [24], which work at fixed scattering angle with
relative success, since most of the reconstruction methods are still mathematically ill-defined
and the technological problems not yet under control. Fig. 5 shows a plane by plane scanning
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Figure 4. Philips Research Laboratory Compton Scatter Scanner (COMSCAN)

at fixed scattering angle ω using an movable collimated gamma camera. However this
technique seemed to suffer from lack of sensitivity.

Figure 5. CST with plane by plane scanning

By now, Compton scatter tomography as set up by these workers seemed to be well
established with spatial resolutions of better than 1cm and tissue density resolutions of better
than 5/100 for a radiation dose of less than 1 rad. Yet two problems arose: reduction in
image contrast and impaired tissue density resolution due to photon multiple scattering and
attenuation artifacts. J. J. Battista et al. [7] has offered a way to cure for an improved Clarke
scanner.

In the meantime the inversion problem has been formulated as a matrix inverse problem in
[3] and [33], which was then solved numerically. It was realized that CST has considerable
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advantages over transmission CT in the low energy and low Z (atomic number) region, i.e.
in medical range, and that CST has wide ranging NDE applications: viewing the interior
of munitions, or structural material such as concrete, however with poor resolution because
scanning was performed by hand moving the source-detector unit from pixel to pixel across
the object. At this point, a remarkable leap forward, which provides a sound theoretical
framework for CST, came into play.

4. Recent CST modalities

As early as 1978, a very original idea came from N. N. Kondic [38], who advocated the use
of wide-angle collimators for both source and detector, instead of ray like collimators. Up to
now, most proposed devices work with thin pencil-like beam source and with sharply (or
widely) collimated detector coupled to a multichannel-analyzer. Kondic described a new way
of irradiating a slice of an object by using a source’s collimator with a wide planar angle as well
as recording scattered radiation with a detector’s collimator with wide angle. Thus the source
takes the form of a fan beam and the wide angle collimator of the detector would delimitate
an area in which an object is to be placed. In Fig. 6, we show a sketch of this proposal.
Kondic made the crucial observation that when such a detector is connected to a multichannel
analyzer, each measured energy channel, because of the Compton relation, is due to the sum
of all scattering sites located on a circular arc starting from the source and ending at the
detection site. Kondic called such an arc an isogonic line, wrote down the expression of the
photon flux density registered at given scattering energy (including attenuation factors) and
for the first time stated the electron density reconstruction problem in terms of integral data.
Unfortunately a theoretical solution was not yet at hand. Expansion of this method and its
variants were made later in [39]. Kondic cited also the advantages of using the isogonic lines.
As collimation of the initial and scattered radiation in earlier modalities allows the detection
of relatively few scattered photons, the counting statistics are very poor. The use of wide angle
collimators would allow to work with higher counting rates which improves the data statistics
and reduces the corresponding error, see [22]. Moreover Kondic did stress the need of varying
the source - detector relative positions and (see item 6 on page 1146 of [39]), and proposed a
rotation of the tomographic assembly in order to scan the whole field. Thus the photon flux
density collected in an energy channel of a multichannel analyzer is due to the contribution
not from a single scattering site but to the whole set of scattering sites corresponding to the
same value of the scattering energy (or equivalently the same scattering angle ω). From
elementary geometry, it can be seen that these sites lies on a circular arc passing through the
source and the detection sites and subtending an inscribed angle of (π − ω). The measured
quantity is essentially an integral of the electron density over a curve in a first approximation
whereby attenuation and other effects are set aside.

In 1985, elaborating on Kondic’s ideas, D. E. Bodette & A. M. Jacobs [9] were the first to realize
that the scattered radiation data at constant energy may be expressed as an integral transform of
the electron density on the isogonic line of Kondic. They pointed out the analogy with CT for
which a measurement is also proportional to the integral of the linear attenuation coefficient
along a straight line. They also conceded that the analytic derivation of a solution would be
out of hand and offered a numerical treatment to extract a few first moments of the electron
density from which several collective properties can be determined.
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In 1993, starting from these ideas, T. H. Prettyman et al. [48] conceived a device which
he called an energy dispersive projective scatterometer. Fig. 7 represents a sketch of this 1993
scatterometer device with two heavy wide angle collimators positioned at the gamma-ray
source and at the detector. He then produced a numerical algorithm to deduce the electron
density from the obtained measurements. He also pointed out that more complete data can
be obtained by rotating the object, but one could have as well rotate the scatterometer. The
coupling of the detector to a multichannel analyzer allows to collect the object projection data
at constant scattering energy E(ω) as an integral on an isogonic arc of circle. More importantly,
he observed that "different projections can be obtained by rotating the sample.", hinting that, as
in the case of CT, a large number of projections, generated by a spatial rotation, would be
necessary for image reconstruction. However the concept of an integral transform is still
missing in the formulation of this forward problem.

In a sectional slice, the electron density n(M) is a function of two coordinates. The necessary
scatterometer data to recover n(M) should depend also on two variables. One of them
obviously would be ω the scattering angle (or alternatively the scattering energy E(ω), which
can be read off on a multichannel analyzer). But there are many ways to choose the second
variable. We shall discuss three of them. The situation is very reminiscent of Synthetic
Aperture Radar imaging which admits two approaches, one of them makes use of integrals
of the ground reflectivity function over circles on a planar ground. Hence this approach turns
the reconstruction problem into a problem of integral geometry in the sense of I. M. Gelfand,
which consists of reconstructing a function on a two-dimensional space by its circular arc
integrals.

In the sequel, we shall discuss three modalities based on three classes of circular arcs in the
plane. They are illuminating examples of mathematical contributions to imaging science.
Moreover as pointed out in S. J. Norton [44], the existence of an analytic inverse formula
for an integral transform could provide the basis for a computationally efficient and robust
imaging algorithm, which should be also resistant to noise.

The original idea of Kondic has led Bodette and Jacobs to conclude that a true CST should to
be founded on a generalized Radon transform in the same way CT, SPECT and PET imaging
have as mathematical foundation the classical Radon transform. In reality, SPECT and PET
imaging need a more complicated transform called the attenuated Radon transform which
includes an attenuation factor in the form of the exponential of a line integral to account for
a realistic functioning. But the presence of such a factor has made the inversion problem
extremely complicated even if the attenuation map is known a priori. After decades of effort,
the inversion of this transform was finally and successfully performed by R. G. Novikov [46],
thanks to an ingenious tour de force in complex analysis. Here we are facing the formidable
inversion problem of an attenuated Radon transforms on circular arcs in the plane.

If a straight line in a plane is defined by two parameters, a circle requires three parameters:
the two coordinates of its center and its radius. Thus to reconstruct a function of two variables
such as n(M), a condition should be imposed in order to bring down the circle parameters
to two. But there exists an infinite number of ways to define a two-parameter circle in the
plane. In the CST context, the scattering angle ω, or any related function of it, appears to be
a necessary parameter. The second parameter may be taken from the rotational symmetry
of the problem and is simply a polar angle φ specifying the geometric position of the circle
with respect to a reference direction. The integral transform may be then written down by
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Figure 6. Sketch of Kondic’s 1978 proposal

Figure 7. Sketch of Prettyman’s 1993 Scatterometer

summing equation 3 over the scattering sites M. The result n̂(ω, φ) is called the attenuated
Radon transform of n(M) on a circular arc. Then, for fixed S and D, we have

n̂(ω, φ) =
∫

R2
dM

I0

4π
mσ(SM)Ain(SM) n(M)π r2

e P(ω)Aout(MD)mσ′ (MD) δ(Circ.Arc),

(6)
where δ(Circ.Arc) symbolizes the Dirac distribution concentrated on the chosen circular arc.

In the rest of the chapter, we shall discuss CST modalities, which are based on integral
measurements, i.e. for which data are integrals of the electron density on arcs of circle linking
the source point to the detection point in the plane. At present there are three of such CST
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modalities, corresponding to three choices of circle families in the plane. To remain on the
track of the basic ideas, attenuation and beam spreading factors shall not be taken into account
at first since solving such a general problem would be out of reach. Consequently we shall
first concentrate on the problem of integral transform inversion. Attenuation and propagation
spreading would be dealt with later. We shall see that in some cases the beam spreading effect
can be included in the exact solution but attenuation must be either corrected or compensated
for.

4.1. First CST modality (Norton 1994)

The first CST scanner which integrates the notion of Radon transform on Kondic isogonic
arcs was proposed by S. J. Norton [44]. At that time it was known that A. M. Cormack [16]
had established that the Radon transform on circles intersecting a fixed point in the plane is
invertible. Norton proposed to use this result in the conception of his CST scanner, which was
patented in 1995, see [45]. The Norton scanner has a gamma-ray source at fixed point S and a
detector D movable on a line intersecting the source site, as sketched in Fig. 8.

Figure 8. Fisrt CST modality

The point source S emits primary radiation towards an object, of which M is a running point.
A point detector D moves along an Ox-axis and collects, at given energy E(ω), scattered
radiation from the object. The physics of Compton scattering demands that the registered
radiation flux energy n̂(D) at site D is due to the contribution of all scattering sites M lying
on an arc of circle from S to D subtending an angle (π − ω), where ω is the scattering angle
corresponding to the outgoing energy E(ω), as given by equation 1.

Mathematically, n̂(D) is essentially the integral of the object electron density n(M) on
such arc of circles, when radiation attenuation and beam spreading effects due to radiation
propagation are neglected. If polar coordinates with S as origin are used, then a running
point M on a circle of diameter p, with center at the point of polar coordinates (p/2, φ), is
given by (r, θ) with r = p cos(θ − φ). Thus, calling γ = (θ − φ) and recalling that the circle
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arc element is ds = p dγ, we have n̂(D) = n̂(p, φ) with

n̂(p, φ) =
∫

arc SD
ds n(r, γ + φ) = p

∫ π/2

−φ
dγ n(p cos γ, γ + φ), (7)

where, for ease of notations, we have absorbed in the definition of n̂(D) the Compton
differential cross-section and the emitted flux density of the source and assumed no
attenuation and beam spreading factors on the paths SM and MD. Equation 7 is not really the
circular Radon transform of n(M) in A. M. Cormack [16], since the integral goes over only the
upper circular arc, which physically corresponds to the scattering angle ω and the detected
energy E(ω). Note that the lower arc SD, is related to the scattering angle (π − ω) and the
scattering energy E(π − ω), which is according to equation 1 not equal to E(ω). Yet Norton
argued that for an object situated above the line SD, which means that the support of n(r, θ)
is situated in the upper half-plane, the inversion procedure of A. M. Cormack should work. A
closed form inverse formula, which mathematically well defined, has been given in [17] as

n(r, θ) =
1

2π2r

∫ 2π

0
dφ

∫ ∞

0
dp

∂n̂(p, φ)

∂p
1

r/p − cos(θ − φ)
. (8)

In his work of 1994 [44], Norton has also derived an alternative inversion formula via the
radial Fourier transform of n(r, θ).

We now give some details on how equation 8 is derived. Assuming that both n(r, θ) and
n̂(p, φ) can be represented by their angular Fourier series

n(r, θ) = ∑
l

nl(r) eilθ , with n̂(p, φ) = ∑
l

n̂l(p) eilφ, (9)

then equation 7 takes the form of a Chebyshev 1 transform, i.e.

n̂l(p) = 2
∫ p

0
dr

cos l
(
cos−1(r/p)

)
√

1 − (r/p)2
nl(r), (10)

which can be inverted using the following identity, (see [16]),

∫ t

s

dx
x

cosh
(

l cosh−1 (s/x)
)

√
(s/x)2 − 1

cos l(cos−1(t/x))√
1 − (t/x)2

=
π

2
. (11)

The inverse formula for nl(r) is given in [17] as

nl(r) =
1

π r

⎛
⎜⎝
∫ r

0
dp

dn̂l(p)
dp

(
(r/p)−

√
(r/p)2 − 1

)l

√
(r/p)2 − 1

−
∫ ∞

r
dp

dn̂l(p)
dp

Ul−1(r/p)

⎞
⎟⎠ , (12)

where Ul−1(cos x) = sin lx/ sin x. Then n(r, θ) in equation 8 is obtained by resumming the
series in equation 9.

1 This name comes from the fact that the Chebyshev polynomial of the first kind is Tl(cos x) = cos lx.
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4.2. Second CST modality (Nguyen-Truong 2010)

There are two scanning modes in this modality. If the object is "small", or can be put inside
a circle of radius p (a mechanical adjustable parameter), one can make an "internal" scanning
inside this circle. If the object is "large" or situated far way from the observer, one can use the
"external" scanning mode. The two modes shall be discussed separately.

4.2.1. Internal scanning

The second modality has originated from an proposal in [41]. At the time only numerical
simulation and reconstruction using the Singular Value Decomposition method were
performed on a turbine blade with encouraging results. One may conceive this modality
as an evolved Prettyman’s scatterometer, which can rotate around an axis perpendicular to its
plane, realizing what Prettyman had foreseen long ago to generate more useful data for his
numerical reconstruction method. In fact, as will be shown the rotational motion is necessary
for the reconstruction the electron density in a trans-axial slice.

Figure 9. Second CST modality: internal scanning

The apparatus is is sketched in Fig. 9. An emitting radiation point source S is placed at
a distance 2p from a point detector D. The segment SD joining them rotates around its
middle point O. At site D is collected the single-scattered radiation flux density from the
scanned object for a given angular position of the line SD and at a given scattering energy
E(ω), (equivalently at scattering angle ω). Then at fixed φ, a multichannel analyzer records
the photon counts in each energy channel. Data acquisition is performed for every angular
position φ of SD.

Thus, thanks to the physics of the Compton effect, the detected radiation flux density is
proportional to the integral of the electron density n(M) on a class of circular arcs sharing
a chord of fixed length 2p, which rotates about its fixed middle point O.

With a polar coordinate system centered at O, the equation of a circular arc lying inside a circle
of center O and radius p reads (see [42])

r = r(cos(θ − φ)) = p
(√

1 + τ2 cos2 (θ − φ)− τ cos (θ − φ)

)
, (13)
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which is defined by two parameters τ and φ: a) φ is the angle made by its symmetry axis with
the reference direction Ox and b) τ is related to the scattering angle ω by τ = cot ω. Note that
τ is positive for 0 < ω < π/2 and the range of θ is (φ − π/2) < θ < (φ + π/2).

Again to simplify the notation by assuming that attenuation and beam spreading are
neglected as well as by absorbing the Compton kinematic factor into one single function, we
can say that the detected photon flux density n̂(τ, φ) is the Radon transform of the electron
density n(r, θ) along arcs of circle given by equation 13. Thus using the auxiliary angle
γ = (θ − φ) as in the previous subsection, we may express n̂(τ, φ) with ds, the integration
arc element given by

ds = r dγ

√
1 + τ2

1 + τ2 cos2 γ
= dr

√
1 + τ2

τ sin γ
. (14)

Now introducing the angular Fourier components of n̂(τ, φ) and n(r, θ) as given by equation
9, we see that they are related by

τ n̂l(τ)√
1 + τ2

= 2
∫ p

p(
√

1+τ2−τ)

dr√
1 − 1

4τ2

(
p
r − r

p

)2
cos

[
l cos−1

(
1

2τ

(
p
r
− r

p

))]
nl(r). (15)

At first this Chebyshev transform looks a bit hopeless. However if one introduces a new
variable g defined by

g =
1
2

(
p
r
− r

p

)
, (16)

one can put it under the form

τ n̂l(τ)√
1 + τ2

= 2
∫ τ

0
dg

cos l cos−1 ( g
τ

)
√

1 − g2

τ2

p(
√

1 + g2 − g)√
1 + g2

nl(p(
√

1 + g2 − g)). (17)

Then defining new functions by

N̂l(τ) =
τ n̂l(τ)√

1 + τ2
and Nl(g) =

p(
√

1 + g2 − g)√
1 + g2

nl(p(
√

1 + g2 − g)), (18)

we obtain

N̂l(τ) = 2
∫ τ

0
dg

cos l cos−1 ( g
τ

)
√

1 − g2

τ2

Nl(g), (19)

which is precisely of the form of equation 10, obtained in the Radon problem on circles passing
through a fixed point. Hence an inversion formula exists in the (τ, g) variables, i.e.

Nl(g) =
1

π g

⎛
⎜⎝

∫ g

0
dp

dN̂l(τ)

dτ

(
(g/τ)−

√
(g/τ)2 − 1

)l

√
(g/τ)2 − 1

−
∫ ∞

g
dτ

dN̂l(τ)

dτ
Ul−1(g/τ)

⎞
⎟⎠ . (20)
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A closed form of the inversion formula can be deduced from equation 8

N(g, θ) =
1

2π2g

∫ 2π

0
dφ

∫ ∞

0
dτ

∂N̂(τ, φ)

∂τ

1
g/τ − cos(θ − φ)

. (21)

Finally going back to the original functions n(r, θ) and n̂(τ, φ), via equations 18, the
reconstructed electron density is

n(r, θ) =
1

2π2

√
1 + 1

4

(
p
r − r

p

)2

r
2

(
p
r − r

p

)
∫ 2π

0
dφ

∫ ∞

0
dτ

1
1

2τ

(
p
r − r

p

)
− cos(θ − φ)

∂

∂τ

(
τ n̂(τ, φ)√

1 + τ2

)
.

(22)

4.2.2. External scanning

This scanning mode is illustrated by Fig. 10. Data acquisition is the same as for internal
scanning, except for an object of compact support, the rotational motion may be replaced by
a back and forth radar type sweeping motion.

Figure 10. Second CST modality: external scanning

The working is similar to the internal scanning mode, except that one uses the scattering angle
range π/2 < ω < π and the "external" arc of circle given by the equation

r = r(cos(θ − φ)) = p
(√

1 + τ2 cos2 (θ − φ) + τ cos (θ − φ)

)
, (23)

where τ = − cot ω > 0 and (φ − π/2) < θ < (φ + π/2). This arc of circle Radon transform
has not yet been considered in [42]. Similarly the Radon transform of the electron density
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on this arc of circle is now expressed by the following Chebyshev integral transform for its
angular components

τ n̂l(τ)√
1 + τ2

= 2
∫ p(

√
1+τ2+τ)

p

dr√
1 − 1

4τ2

(
r
p − p

r

)2
nl(r) cos

[
l cos−1

(
1

2τ

(
r
p
− p

r

))]
. (24)

This equation will take the form of equation 10, as equation 19, when the intermediate variable

g′ =
1
2

(
r
p
− p

r

)
, (25)

and the functions

N̂l(τ) =
τ n̂l(τ)√

1 + τ2
and Nl(g′) =

p(
√

1 + g′2 + g′)√
1 + g′2

nl(p(
√

1 + g′2 + g′)), (26)

are used. Finally, following the same steps as in the previous scanning mode, the
reconstruction formula for n(r, θ) reads

n(r, θ) =
1

2π2

√
1 + 1

4

(
r
p − p

r

)2

r
2

(
r
p − p

r

)
∫ 2π

0
dφ

∫ ∞

0
dτ

1
1

2τ

(
r
p − p

r

)
− cos(θ − φ)

∂

∂τ

(
τ n̂(τ, φ)√

1 + τ2

)
.

(27)

4.3. Third CST modality (Truong-Nguyen 2011)

In this subsection we discuss two scanning modes of a third CST modality proposed in [54].
This modality has originated from a search for curves in the plane such that the Radon
transform on these curves may be reduced to a Chebyshev integral transform of the form
of equation 10, for circles passing through a fixed point. It turns out that Radon transforms
on arcs of circles orthogonal to a fixed circle do have this property. The pair source-detector still
moves on a circle of radius p (still an adjustable parameter) and centered at O, the origin of a
polar coordinate system. But their separation distance is no longer constant as in the second
CST modality: it depends on the scattering angle ω. The positions of S and D are given by an
opening angle γ0, measured from the symmetry axis of the circular arc.

4.3.1. Internal scanning

In this case, the Radon transform is defined on the following circular arc of equation

r = p(τ cos(θ − φ)−
√

τ2 cos2(θ − φ)− 1), (28)

where τ = 1/ cos γ0 and −γ0 < (θ − φ) < γ0. Inspection of Fig. 11 shows that γ0 =
(π/2 − ω) for 0 < ω < π/2. Hence τ = 1/ sin ω > 1. So data acquisition works as follows.
For fixed φ, the pair source - detector must be simultaneously displaced on the circle of radius

p so that the opening angle ŜOD = 2γ0 = (π − 2ω), before registering at D a photon count.
The number of isogonic lines is thus equal to the number of positions of the pair (S, D).
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Figure 11. Third CST modality: internal scanning

The integration arc element being now

ds = r dγ

√
τ2 − 1

τ2 cos2 γ
− 1 = dr

√
τ2 − 1

τ sin γ
, (29)

the Radon transform of the electron density n̂(τ, φ) becomes, in terms of the angular
components nl(r) and n̂l(τ), a Chebyshev transform similar to equation 17, i.e.

τ n̂l(τ)√
τ2 − 1

= 2
∫ p

p(τ−
√

τ2−1)

dr√
1 − 1

4τ2

(
p
r + r

p

)2
nl(r) cos

[
l cos−1

(
1

2τ

(
p
r
+

r
p

))]
. (30)

The structural similarity with equations 15 and 24 suggests an intermediate variable g” of the
form

g” =
1
2

(
r
p
+

p
r

)
, (31)

which yields the following Chebyshev transform

τ n̂l(τ)√
τ2 − 1

= 2
∫ τ

1
dg”

cos l cos−1
(

g”
τ

)

√
1 − g”2

τ2

p(g” −
√

g”2 − 1)√
g”2 − 1

nl(p(g” −
√

g”2 − 1)). (32)

Now redefining the functions by

N̂l(τ) =
τ n̂l(τ)√

τ2 − 1
and Nl(g”) =

p(
√

g” − g”2 − 1)√
g”2 − 1

nl(p(g” −
√

g”2 − 1)), (33)

we obtain the form of equation 10, nevertheless with a lower integration bound equal to τ = 1
and not zero. This does not spoil the inversion procedure based on the identity 11, as shown
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in [54]. Consequently we recover the electron density in closed form as

n(r, θ) =
1

2π2

√
1
4

(
p
r + r

p

)2
− 1

r
2

(
p
r + r

p

)
∫ 2π

0
dφ

∫ ∞

0
dτ

1
1

2τ

(
p
r + r

p

)
− cos(θ − φ)

∂

∂τ

(
τ n̂(τ, φ)√

τ2 − 1

)
.

(34)

4.3.2. External scanning

This scanning mode is shown in Fig. 12. It has the same data acquisition procedure as for
internal scanning. It is appropriate for large objects or objects situated far away from the
scanner, e.g. buried objects underground or undersea, with a back and forth radar type of
scanning motion.

Figure 12. Third CST modality: external scanning

The Radon transform is now defined on the external circular arc with respect to the reference
circle of radius p of equation

r = p(τ cos(θ − φ) +
√

τ2 cos2(θ − φ)− 1). (35)

Here π/2 < ω < π and γ0 = (ω − π/2) 2. As for the case of internal scanning, we have also
τ = 1/ cos γ0 and −γ0 < (θ − φ) < γ0 with the same data acquisition procedure.

The integration arc element is the same as in the previous scanning mode, see equation
29. Then the Radon transform of the electron density n̂(τ, φ) becomes, in terms of function
angular components, the following Chebyshev transform

τ n̂l(τ)√
τ2 − 1

= 2
∫ p(τ−

√
τ2−1)

p

dr√
1 − 1

4τ2

(
p
r + r

p

)2
nl(r) cos

[
l cos−1

(
1

2τ

(
p
r
+

r
p

))]
. (36)

2 Note that the two arcs of equations 28 and 35 belong to the same circle.

117Recent Developments on Compton Scatter Tomography: Theory and Numerical Simulations



18 Will-be-set-by-IN-TECH

We see that the intermediate variable g” of equation (31) can be used again so that

τ n̂l(τ)√
τ2 − 1

= 2
∫ τ

1
dg”

cos l cos−1
(

g”
τ

)

√
1 − g”2

τ2

p(g” +
√

g”2 − 1)√
g”2 − 1

nl(p(g” +
√

g”2 − 1)). (37)

Now redefining the functions by

N̂l(τ) =
τ n̂l(τ)√

τ2 − 1
and Nl(g”) =

p(
√

g” + g”2 − 1)√
g”2 − 1

nl(p(g” +
√

g”2 − 1)), (38)

we obtain the form of equation 10, and surprisingly the same equation as for internal scanning.
Consequently one end up with the same reconstruction formula (34), which is a remarkable
advantage for this modality. This is due to the fact that the two arcs are on the same circle.

5. Numerical simulations

This section is devoted to showing that the analytic formulas of inversion do lead to robust
computation algorithms. As we have shown, it is sufficient develop a single reconstruction
algorithm for the Radon transform on circles passing through a fixed point, since all other
cases can be reduced to that one by a change of variable and a change of functions. Since we
use the formalism of angular Fourier components, we shall adapt a procedure set up long ago
by C. H. Chapman & P. W. Carey [12] for the classical Radon transform.

5.1. Algorithm

The idea is to start with the result of A. M. Cormack [15] (see his equation 18b) for the
reconstructed angular Fourier component of n(r, θ) given by

nl(r) =
1

π r

⎛
⎜⎝
∫ r

0
dp

dn̂l(p)
dp

(
(r/p)−

√
(r/p)2 − 1

)l

√
(r/p)2 − 1

−
∫ ∞

r
dp

dn̂l(p)
dp

Ul−1(r/p)

⎞
⎟⎠ . (39)

We compute first nl(r) from a discretized version of equation 39, which shall be set up now,
and get n(r, θ) back by its angular Fourier series using equation 9.

To this end, we change the form of equation 39 by making the following change of variables

p =
r

cosh x
and p =

r
cos x

, (40)

respectively in the first and in the second integral of (39). Hence

nl(r) =
1
π

(∫ ∞

1
dx

dn̂l(p)
dp

e−lx

cosh2 x
−

∫ π/2

0
dx

dn̂l(p)
dp

sin lx
cos2 x

)
. (41)

Then these integrals will be approximated by discrete sums in which we take for simplicity
the same step δ for the variable r as well as for the variable p. Hence nl(r) ≃ nl(jδ), with

nl(jδ) =
1
π

⎛
⎝

j−1

∑
k=1

dn̂l(p)
dp

∫ xk+1
j

xk
j

dx
e−lx

cosh2 x
−

K−1

∑
k=j

dn̂l(p)
dp

∫ xk+1
j

xk
j

dx
sin lx
cos2 x

⎞
⎠ , (42)
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where K is the maximal value taken by k. Now introducing the indefinite integrals

Il(x) =
∫ x

dz
e−lz

cosh2 z
and Jl(x) =

∫ x
dz

sin lz
cos2 z

, (43)

we see that they obey the following recursion relations, see [50]

(l − 2)Il(x) = 2 (tan x sin(l − 2)x − cos(l − 2)x)− l Il−2(x), (44)

with I0(x) = 1/ cos x and I1(x) = −2 ln(cos x), and

l Jl+1(x) = − 1
xl(1 + x2

− (l + 2)Jl−1(x), (45)

with

J0(x) =
x

2(1 + x2)
+

1
2

tan−1 x and J1(x) = ln
(

x√
1 + x2

)
+

1
2(1 + x2)

. (46)

The derivatives of dn̂l(p)/dp are replaced by a simple linear interpolation n̂′
l(k), i.e.

dn̂l(p)
dp

≃ nl(k + 1)− nl(k)
δ

= n̂′
l(k). (47)

Then the discretized value of the reconstructed angular component of nl(r), with r ∼ jδ, is

nl(jδ) =
1
π

⎛
⎝

j−1

∑
k=1

n̂′
l(k) (Il((k + 1)δ)− Il(kδ))−

K−1

∑
k=j

n̂′
l(k) (Jl((k + 1)δ)− Jl(kδ))

⎞
⎠ . (48)

Equation 48 shall be used in numerical simulations3.

5.2. Simulation results

In this subsection, we present numerical simulations on the first CST modality applied to the
Shepp-Logan medical phantom, see [50]. The source S is placed below on the left of the image
and the detector moves along the line SD. The relevant space is represented by 256 × 256
(length unit)2. Let Nφ be the number of angular steps and let Np be the number of radii for
circles going through the origin O. Then the following sampling steps δφ = 2π/Nφ and δ =
4 � 256/Np are taken. Since there is no rotation around the object, the (φ, p)-space is very large
in comparison to the studied image. To have a good representation of the object, we need a
large maximum value of p, (e.g. four times the image size).

To estimate the reconstruction quality, we use the normalized mean square error (NMSE) and
the normalized mean absolute error (NMAE) (expressed as a percentage), defined by

NMSE =
100
N2

∑
(i,j)∈[1,N]2

|Ir(i, j)− Io(i, j)|2

max
(i,j)∈[1,N]2

{Io(i, j)}2 and NMAE =
100
N2

∑
(i,j)∈[1,N]2

|Ir(i, j)− Io(i, j)|

max
(i,j)∈[1,N]2

{Io(i, j)} ,

3 For difficulties on the handling of the inversion formula of S. J. Norton, see [55]
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where Ir is the reconstructed image and Io is the original image.

In order to reduce the artifacts generated around the object by the circular harmonic
decomposition approach, we can use information given by the contours of the projection
data. If the projection data are vanishing, this means that the corresponding circular arc
does not intersect the object. Therefore if the object of interest is bounded in space, a null
set in the projection space corresponds to a null set in the original space. This approach
gives a very interesting image quality in the reconstruction of the Shepp-Logan phantom.
Contours and small structures are nicely recovered. A maximum value pmax is to be fixed
in numerical computation. But a sharp cut-off of p and the ensuing loss of data generate
significant artifacts. Moreover an increase of pmax leads to an increase of the detector length
in the first CST modality.

The original Shepp-Logan phantom is given in Fig. 13.

Figure 13. Shepp-Logan original phantom, reprinted from [51]

Fig. 14 illustrates the first CST modality data, obtained by application of the Radon transform
on circles passing through the coordinate origin. Finally the reconstructed image by the first
CST modality is given in Fig. 15.

Now using the same algorithm but in different function spaces, one can achieve the
reconstruction with the two other CST modalities. With the second CST modality for small
objects, collected data and image reconstruction are given in Fig. 16, see [51].

We see that generally a reasonable image quality in the reconstruction of the medical phantom
is obtained. Contours and small structures are correctly recovered. The numerical error
measurements are very close to those of the ordinary Radon transform and are even better
for a medical phantom. Artifacts arise if the studied object occupies the whole medium since
the boundary parts are not well scanned and less information are available from these parts.
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Figure 14. Data of the first CST modality (Norton 1994), reprinted from [51]

Figure 15. Shepp-Logan phantom reconstructed by the first CST modality (Norton 1994), reprinted from
[51]

As the set up works with radial parameters, an object of circular symmetry fits better to this
modality: this is the case of a medical phantom.

As for the CST third modality for small objects, the simulations results are displayed in Fig.
17, see [43].
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(a) Data of the second CST modality, reprinted from [50]

(b) Image reconstruction by the second CST modality, reprinted from
[50]

Figure 16. Second CST modality simulation results illustration

The modified Chapman & Carey approach used here gives in general a reasonable image
quality in the reconstruction of the medical phantom (Fig. 17) with (Normalized Mean
Absolute Error =2.2% (NMAE) and Normalized Mean Square Error = 0.038 (NMSE). Contours
and small structures are well recovered. The numerical error measurements obtained using
the algorithm described above are of the same order of magnitude as in existing scanning
devices. Nevertheless we observe some artifacts. They can be reduced by a better acquisition
of the data. Indeed the (φ, τ)-space is very large but the (φ, ω)-space is bounded. Hence with
a good resolution, the loss of data is less important.
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(a) Data of the third CST modality, reprinted from [43]

(b) Image reconstruction by the third CST modality reprinted from [43]

Figure 17. Third CST modality simulation results illustration

5.3. Open problems

Of course what is presented here does not claim neither completeness nor perfection. There
are still many important problems to tackle.

1) Attenuation. This question, as mentioned before, has no analytic answer, even in the near
future. One way to solve practically the problem is to produce an approximate iterative
corrective algorithm, see e.g. [51].

2) Beam spreading. In the limit of vanishingly small detecting pixel, the inclusion of beam
spreading factors proportional to the inverse distances (or inverse square distances) SM−1,−2
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(or MD−1,−2) does not spoiled the inversion procedure. One may redefine an "effective"
electron density and an "effective" Radon transform. This is due to the fact that the product
(SM × MD)−1,−2 is of the form of a product of a function of τ and a function of r, see [42, 54].

3) Multiple scattering. This degrading factor is due to the use of wide angle collimator and is
difficult to be removed by theoretical means. As in other gamma-ray imaging systems, such as
Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography
(PET), this problem can be only approximatively fixed by corrective measures adapted to each
particular scanner.

4) Noise. Radiation processes carry fluctuations as noise which could drastically affect
numerical simulations in image reconstruction. So algorithm robustness should be tested
against noise systematically. There is no universal receipt and an adapted de-noising
procedure is to be set up for each scanner type. An example of such de-noising procedure
is given in [51].

6. Conclusion and perspectives

Compton scatter tomography (CST) is an outstanding example of the use of Compton
scattered radiation for non-invasive imaging. CST provides high resolution and high
sensitivity imaging with virtually any material, including lightweight structures and organic
matter, which normally pose problems in conventional x-ray computed tomography because
of low contrast. However it also suffers from the usual degrading factors of radiation imaging,
such as multiple scattering, attenuation, noise and fluctuations, etc., which have to be treated
by appropriate (existing or to be developed) methods. Yet it has undergone a very impressive
theoretical evolution. In this chapter, we have shown how the expression of the differential
cross-section of the Compton effect has led to the idea of measuring the value of matter
electron density point by point. The ensuing progress brought to light the successive line
by line and plane by plane scanning procedures, however with limited success. A quantum
leap in redefining CST was made in the 80’s by N. N. Kondic, who advocated the use or wide
angle collimators and pointed out the occurrence of integral measurements along circular arcs
corresponding to a definite measured photon energy. Then a concept of integral transform
of Radon type has emerged from this type of integral measurement in [9]. Later in the 90’s,
elaborating on a proposal of N. N. Kondic, T. H. Prettyman has constructed a scanner on
this principle and called an energy dispersive projective scatterometer. He also realized that
a relative motion between this apparatus and the object is necessary to generate the data
needed for image reconstruction. This is the starting point for recent CST modalities which
are now based on Radon transform on Kondic isogonic circular arcs. We have presented
and discussed three existing CST modalities based on three "circular-arc" Radon transforms.
Two of them are of recent origin and have arisen as new elements of integral geometry. The
remarkable aspect is that they share a common inversion method based on the inversion of
the Radon transform on circles intersecting a fixed point. As numerical simulations show their
feasibility and viability as imaging systems, CST appears as a promising area of research and
development which could bring interesting advances in the field of non-invasive imaging for
medicine and industry. Work towards more efficient ways for data processing, e.g. setting
faster back-projection types of reconstruction methods, is underway in this context.
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