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1. Introduction 

Broadening is the deformation of materials in the vertical direction of force in the steel 

rolling process. Slab broadening in continuous casting increases the slab width in the 

secondary cooling zone. Continuous casting is a process in which the temperature drops 

sharply. The drop in temperature leads to slab shrinkage; the linear shrinkage of carbon 

steel is about 2.5% in the width direction. The decrease in slab width from the initial shell to 

the cooling slab is considered to be almost negligible and the width may even increase 

under some conditions. 

Although the slab shrinks in the secondary cooling zone, the width of the slab is 

sometimes greater than that of the entrance of the corresponding mold. The change in slab 

width is due to broadening being greater than shrinkage. It is rarely well-know that this 

phenomenon often occurs for slab in continuous casting. Slab broadening makes it 

difficult to accurately control the size of the slab and has adverse effects on the 

subsequent rolling processes. Slab broadening becomes increasingly obvious with 

increasing casting speed. If no vertical miller is used in the rolling process, the broad part 

of the slab is cut off, wasting material. With a vertical miller, the broad part of the slab is 

rolled in the width direction, which leads to fluctuation in the slab thickness. The study of 

slab broadening in the continuous casting process is thus necessary. The present work (FU 

JianXun et al. 2010(a-c),2011(a-b)) investigates slab broadening in continuous casting 

using mathematical simulation, industrial measurements, and experiments. Assessments 

of slab width in several continuous casting factories indicate that slab broadening is 

common in the continuous casting process. Slab broadening occurs in the secondary 

cooling zone, as confirmed by experiments. The effects of the productive factors on the 

slab broadening were also derived. The mechanism of slab broadening is investigated and 

discussed. 
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2. Research method 

2.1. Index definition 

In order to measure slab broadening, the ratio of apparent shrinkage (RAS) and the ratio of 

ultimate broadening (RUB) were defined respectively as: 

  RAS  U / W 1   100%,    (1) 

  RUB  S / T 1   100%,     (2) 

where: 

U is size of mold on the top entrance (mm); 

W is the measured width of the slab (mm); 

T is the ultimate width of the slab (in mm); 

S is the width of the slab (in mm). 

The value of the RAS, which denotes the degree of mold shrinkage, is positive when the top 

width exceeds the slab width. This index can be used to set the mold size. The value of the 

RUB, which denotes the degree of broadening, is positive when the slab width exceeds the 

ultimate width.  

2.2. Online measurements 

An online measurement system was designed to measure slab broadening at the exit of the 

caster.(FU JianXun et al. 2011(b)) The system comprises an optical lens, a digital camera, a 

data cable (IEEE 1394), and a computer. The system is controlled using the computer. The 

digital camera is used to take infrared images of the hot slab. Data is read from the camera 

at a preset frequency. 

 

Figure 1. Online width measurement system for hot slabs.( FU JianXun et al. 2011(b)) 

Then, the graphics module creates images of the hot slab according to color aberration, and 

saves the images as files. The accuracy of the online system is 1 mm. A photograph of the 

system is shown in Figure 1. 



 
Numerical Simulation of Slab Broadening in Continuous Casting of Steel 561 

2.3. RAS and RUB investigation 

Table 1 lists the RAS and RUB values obtained for five companies. The data in the right 

column is from a handbook (XIONG Yi-gang, 1994). The RAS values range from 0.47% to 

2.16%, with most being higher than the handbook data. The linear shrinkage of carbon steel 

from the initial shell to the cooled slab is 2.5%. The RUB values range from 0.34% to 2.03%, 

which is the result that the linear shrinkage subtracting the RAS. In general, the width of a 

slab is smaller than the top width of a mold. Broadening may overcome shrinkage under 

certain operating conditions for some particular grades of steel. 

The width of a cooled slab is larger than the ultimate width when broadening exists. To 

obtain a slab with the desired dimensions, the top and bottom widths of the mold must be 

reset. Therefore, the measured width (W) could replace the ultimate width (T). The RAS of a 

slab can thus be set by changing the values of the top and bottom widths of the mold. Then 

compare these values with the linear shrinkage of each steel grade, and it could 

consequently be found out whether the slab broadening exists and the approximate range of 

it could also be derived. 

 

 CompanyA Company B Company C Company D Company E Handbook 

RAS (%) 0.47~0.54 1.81 1.93~2.16 1.70~1.90 1.10 ~2.11 2.1 

RUB (%) 1.96~2.03 0.69 0.34~0.57 0.60~0.80 0.39~1.40 0.4 

Table 1. RAS and RUB values at various manufactures (FU JianXun et al. 2010(a)) 

The data show that slab broadening is common in continuous casting. The slab width is the 

result of shrinkage and broadening. The linear shrinkage of a carbon steel is about 2.5%, 

which is slightly larger than the slab broadening. 

2.4. Mechanics calculations ( FU JianXun et al.2011(a)) 

In the secondary cooling zone, the slab has to release sensible heat and latent heat to avoid 

complete solidification and to maintain the surface temperature according to the technical 

requirements of the metallurgy process. In this zone, the stress and strain of the slab are the 

result of mechanical action and thermal effects (S. Kobayashi et al,1988). Some parts of the 

slab may have a low temperature, which causes thermal stress in the secondary cooling 

zone. The thermal stress of the slab in the secondary cooling zone is small enough to be 

ignored compared to the stress caused by the bulging and the roller disalignment. Thus, 

mechanical stresses, includes the bending stress, straightening stress, roller-misalignment 

stress, the stress of rollers acting on the slab, and the static pressure of molten steel, 

determine the degree of slab broadening.  

The bulging stress of a slab is defined as (Sheng Y et al ,1993) : 

 (
4 4

3 3
(1sqrt t)),

32 32x x

pl pl

E S E S
    (3) 
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where Ex is the equivalent elastic modular ratio, expressed as:(Sheng Y et al ,1993)  
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The stress of bending and straightening is expressed as:(Lei H et al ,2007) 
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The stress of disalignment is expressed as: (Chen J,1990) 

 q 2

300
100%,is

l


    (6) 

The values of these stresses calculated for the Q235 slab are listed in Tables 2 and 3. The 

calculations were based on the parameters of the continuous casters of Maanshan Iron and 

Steel Co. Ltd. A casting speed of 0.0167 m·s-1 was used. The bending zone of the continuous 

caster is at the 10th~15th rollers of the 2nd segments, and the straightening zone is at the 

60th~65th rollers of the 9th segments. A negative stress indicates that a pushing stress acts 

on the contact surface between the slab and rollers whereas a positive stress indicates a 

tensile stress acting on the contact surface. 

 

Roller 

ID 

Slab shell 

thickness 

(10-2 m) 

Casting 

speed 

(m·s-1) 

Bulging 

(10-2 m) 

Bulging 

strain(%) 

Disalignment 

strain(%) 

Bending 

strain(%) 

10 4.10 0.0167 0.101 0.115 0.0128 -0.0011 

11 4.28 0.0167 0.097 0.115 0.0134 -0.0011 

12 4.45 0.0167 0.093 0.115 0.0139 -0.0012 

13 4.62 0.0167 0.090 0.115 0.0144 -0.0013 

14 4.78 0.0167 0.087 0.115 0.0149 -0.0011 

15 4.93 0.0167 0.084 0.115 0.0154 -0.0010 

Table 2. Comparison of slab stresses in the bending zone( FU JianXun et al.2011(a)) 

 

Roller 

ID 

Slab shell 

thickness 

(10-2 m) 

Casting 

speed 

(m·s-1) 

Bulging 

(10-2 m) 

Bulging 

strain(%) 

Disalignment 

strain(%) 

Bending 

strain 

(%) 

60 10.4 0.0167 0.14 0.196 0.0160 0.0160 

61 10.5 0.0167 0.09 0.152 0.0197 0.0197 

62 10.6 0.0167 0.08 0.149 0.0198 0.0198 

63 10.7 0.0167 0.08 0.147 0.0200 0.0200 
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Roller 

ID 

Slab shell 

thickness 

(10-2 m) 

Casting 

speed 

(m·s-1) 

Bulging 

(10-2 m) 

Bulging 

strain(%) 

Disalignment 

strain(%) 

Bending 

strain 

(%) 

64 10.8 0.0167 0.08 0.145 0.0202 0.0202 

65 10.9 0.0167 0.08 0.142 0.0203 0.0203 

Table 3. Comparison of slab stresses in the straightening zone( FU JianXun et al.2011(a)) 

Tables 2 and 3 reveal that the bending, straightening, and disalignment stresses are far 

lower than the stress of bulging. Therefore, the stresses of bending, straightening, and 

disalignment do not cause the broadening of a slab. 

3. Model and parameters 

3.1. Finite element model 

Building a satisfactory three-dimensional (3D) finite element model for the numerical 

simulation of continuous casting in the secondary cooling zone is quite complex. Thus, to 

simplify the problem, the following assumptions are made, as in our previous work((FU 

JianXun et al. 2010(b-c); 2011(b)): 

1. The bending and straightening effects of the slab are ignored, and the slab is considered 

to be a linear object. 

2. In the simulations, time, space, the characteristics of steel, and the temperature field in 

the slab are continuous, and the effects of the initial mechanical conditions of the slab 

on the deformation are ignored. The continuous caster in the secondary cooling zone is 

divided into several stages. 

3. Because of symmetry, 1/4 of the slab and rollers on one side is used for the calculation. 

4. The slab is deformable, the rollers are stiff, and the gap between rollers is variable. The 

calculation boundaries are placed at the rollers. 

Based on these assumptions, the thermal-mechanical coupled model of the whole secondary 

cooling zone is divided into 6 independent sub-models for calculation. The 15 segments of 

the secondary cooling zone are divided into 6 groups. The first 5 groups each contain 2 

segments; the remaining 5 segments make up the last group as a completely solidified slab. 

A 2-m slab is used for the simulation. The slab goes through the roll arrangement at a given 

speed. The simulation is performed continuously from the first group to the last group, and 

the results of a group of rollers are taken as the initial inputs for the subsequent group. 

Eight-node isoparametric elements are used for the geometric discretization of the 

computational domain in the model. The slab comprises 4500 elements and 5250 nodes. 

Figure 2 shows the finite element models of the rollers and the slab in the caster. Figure 3(a) 

shows the rollers and the slab in the 3rd independent sub-model. Figure 3(b) shows the 6th 

independent sub-model. 

Due to the symmetry of the slab in the width direction, one half of the slab was simulated. 

The grid units at the start plane of the slab move forward at a given speed. The static 



 
Numerical Simulation – From Theory to Industry 564 

pressure of molten steel is taken as a mechanical boundary condition. The boundary is 

applied to the solidifying front of the slab, which is defined as the position with zero-

strength temperature (ZST). Considering the effects of solidification-induced segregation 

and solid fraction (fs), the temperature of the units is the ZST where fs is equal to 0.8, and 

the units are considered a solidified shell where fs  0.8. T80 denotes the temperature at the 

boundary between the solid phase and the liquid phase (T80=ZST). Static pressure acts on the 

units where the temperature is higher than T80. The boundary conditions of heat transfer 

and contact are also applied to the model. 

 

Figure 2. Finite element model of all the rollers and the slab (FU JianXun et al. 2011(b)) 

  

Figure 3. Finite element models of (a) the third group of rollers and the slab (b)the sixth group of 

rollers( FU JianXun et al. 2010(c)) 

3.2. Constitutive equations 

The key factors that determine the accuracy of a model for analyzing the stress in a slab are 

included in the constitutive equation of the slab. These factors are heat transfer, mechanical 

load, stress relaxation, and plastic strain, all of which are time-dependent. The constitutive 

equation of steel at high temperature, which determines the accuracy of numeric 

simulations, is expressed as: 
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 .e ie T
ij ij ij ij       (7) 

where:  

ij  is the total strain; 
e
j  is the elastic strain;  

ie
ij  is the non-elastic strain; 
T
ij  is the thermal strain, and ij  is the strain tensor.  

The non-elastic strain ie
ij is composed of time-independent inelastic strain and time-

dependent creep deformation. A viscoelastic-plastic model is used to describe the 

solidifying behavior of the slab under the conditions of continuous casting, which is 

expressed as: (Chen J,1990) 

 ( , , ).ie ie
ij ij ijf T    (8) 

where: ie
ij is the non-elastic strain ratio; ij  is the stress; and T  is the temperature.  

This equation indicates that the non-elastic strain ratio is a function of the stress, 

temperature, and non-elastic strain. 

The constitutive equation of time-dependent plastic deformation is used to describe the 

stress of carbon steel under various temperatures and strain ratios; it is expressed as: (S. 

Kobayashi et al.,1988) 

 

P

1/Aexp( Q / R )[sinh(β )] ,
.

( ) ,

m
P

n

T K

K



 
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

 


 (9) 

where: 

P  is the equivalent plastic strain ratio;  

R  is the gas constant; 

Q  is the activation energy of deformation;  

  is the equivalent stress; 

P  is the equivalent plastic strain;  

K  is the strength factor; 

n  is the factor of hardening; and A ,  , m  are constants. 

When carbon steel becomes plastic, strain hardening is observed. The coefficient of strain 

hardening can be obtained from the following equation: 

 1
p( ) .nH K n      (10) 

In this work, the user program includes the strain hardening coefficient in the elastic-plastic 

model of the MSC.Marc solver to describe the viscoelastic-plastic behavior of the cast slab 

under high temperature. The work hardening of carbon steel is described by the equations 

given by Sorimachi and Brimacombe (K. Sorimachi et al.,1977); 
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 1 / 0.13exp( 0.023 ),K E    (11) 
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where: E  is the elastic modulus; K1~K3 are factors of hardening; Θ is the temperature (°C). 

Equations (11)~(13) are applied when the strain is smaller than 0.01~0.02, and greater than 

0.02, respectively. The factors of hardening are incorporated into the elastic-plastic model in 

the software package Marc by the user programs. 

3.3. Parameters 

All simulation parameters are taken from the technological parameters of the #2 continuous 

caster (SMS-Demag) of Maanshan Iron and Steel Co. Ltd. The parameters of the continuous 

caster are listed in Table 4. 

 

Segment 

No. 

Shrinkage 

between rollers 

(mm) 

Slab 

thickness (m)

Roller 

diameter(m)

Slit width between 

rollers (m) 

Distance from 

meniscus (m) 

1-2 0.20/0.46 0.2375 0.200 0.240 0-4.374 

3-4 0.46/0.46 0.2370 0.245 0.284 4.374-8.388 

5-6 0.46/0.44 0.2362 0.255 0.297 8.388-12.592 

7-8 0.44/0.44 0.2354 0.265 0.310 12.592-16.992 

9-10 0/0.30 0.2346 0.283 0.322 16.992-21.254 

11-15 0.30/0.30 0.2343 0.300 0.335 21.254-33.249 

Table 4. Parameters of the slab and caster at various segments 

Casting temperature: T=1533 °C;  

Liquidus temperature Tl=1513 °C; 

Solidus temperature Ts =1446.0 °C;  

T80 = 1459.6 °C; 

Environmental temperature: 25 °C;  

Roller temperature: 100 °C; 

Coefficient of contact heat transfer: 25.0 W/(m·K) ( Y. S. Xi and H. H. Chen,2001) ; 

Coefficient of fraction: 0.3; Distance tolerance: 0.01 ( Y. S. Xi and H. H. Chen,2001). 

When the casting speed is in the range of 1.0~1.2 m/min, the SMS-Demag casting machine 

uses a fixed cooling water intensity in the secondary cooling zone. The parameters of the 

SPHC steel and Q235 steel are listed in Table 5. 
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Steel C (%) S i(%) Mn(%) P(%) S(%) Al(%) Tl(°C) Ts(°C) 

SPHC 0.05 0.05 0.20 ≦0.02 ≦0.012 0.03 1528.9 1493.0 

Q235 0.18 0.20 0.40 ≦0.025 ≦0.022 1517.0 1446.0 

Table 5. Compositions of SPHC steel and Q235 steel 

The coefficient of thermal expansion, Young's modulus of elasticity, and Poisson’s ratio of 

the steel as functions of temperature are required for simulation. The elastic modulus of 

carbon steel for various temperatures during continuous casting is given in equations (14) 

and (15).( Ueshima Y et al; 1986, I.Ohnaka,1986) 

 
        ,   ,     

  ,  

9

-3 2 7 3 9

(347.6525-0.350305*T) * 10 900

(968 2.33 (1.9 10 )*T (5.18 10 ) * ) * 10 900,

E T

E T T Ts T

  


        
 (14) 
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
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When E=E(Ts) and Ezst=E(Tzst), Ezst takes a small non-zero value in order to restrain the 

deviatoric stress in the liquid phase region to maintain hydrostatic pressure. When the 

temperature is lower than Ts, the elastic modulus is expressed by (14); when it is higher than 

Ts, it is expressed by (15). 

When the temperature is lower than Ts, Poisson’s ratio can be defined as equation (14); 

when the temperature is higher than Ts, with decreasing fs, Poisson’s ratio gradually 

increases from the value at Ts to a certain value which is close to 0.5; it remains at this value 

above ZST, as expressed by equations (16) and (17). (Uehara M et al.,1986) 

  L

( ) (1 )
, T T 1 ,

1
s ZST s s ZST

ZST S
ZST

f f f
f f

f

 


    
   


 (16) 

 80, , ( ).ZST S ZSTT T f f     (17) 

Where fZST is the solid phase ratio at ZST, often taken as 0.80. ZST  is the Poisson’s ratio at 

ZST; it is very close to 0.5. The Poisson’s ratio of the steel for various temperatures is shown 

in Figure 4(a). The coefficient of thermal expansion values of Q235 and SPHC are taken from 

the local measurement results shown in Figure 4(b). 

4. Effects of casting speed on slab broadening (Jian-Xun Fu et al , 2011b) 

4.1. Numerical simulation 

By tracing one node of the slab at the side-face and recording its width, the width of the slab 

at various positions in the secondary cooling zone can be obtained. The RUB can then be 

derived from the simulated width of the slab. The simulated RUB values of Q235 and SPHC 

steels at three casting speeds are shown in Figure 5(a) and (b), respectively.  
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Figure 4. (a) Young's modulus of elasticity and Poisson’s ratio of Q235 steel for various temperatures; 

(b)Coefficient of thermal expansion of Q235 and SPHC. (Jian-Xun Fu et al , 2011b) 

 

 

Figure 5. (a) RUB values versus distance from meniscus of a Q235 steel;.(b) RUB values versus distance 

from meniscus of a SPHC steel at three casting speeds. (FU JianXun et al. 2011(b)) 

Slab broadening for Q235 and SPHC steels at three casting speeds shows similar 

characteristics. The values of the RUB at the three casting speeds are all positive in the 

whole secondary cooling zone, which means that slab broadening existed for Q235 and 

SPHC steels at these speeds. The RUB changed from one segment to another for the first five 

segments. The RUB increased and then gradually decreased after reaching its maximum at 

the fifth and sixth segments. Near the tenth segment, the RUB decreased smoothly; the slab 

became completely solidified at this location. 

The simulations of Q235 and SPHC steels produced similar results. The RUB increased with 

increasing casting speed. For Q235 steel, when the casting speeds were 1.0, 1.1, and 1.2 

m/min, the maximum RUB values were 1.44%, 1.88%, and 2.04 %, respectively, and the RUB 

(a) (b)

(a) (b)
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values at the exit of the caster were 0.76%, 0.96%, and 1.14%, respectively. For SPHC steel, 

when the casting speeds were 1.0, 1.1, and 1.2 m/min, the maximum RUB values were 

1.34%, 1.44%, and 1.69%, respectively, and the RUB values at the exit of the caster were 

0.64%, 0.76%, and 0.95%, respectively. 

Slab broadening is closely correlated with casting speed, which may be due to the slab‘s 

temperature changing with casting speed. When the casting speed increased, the liquid core 

length and temperature of the slab both increased. With increasing temperature of the slab, 

the high-temperature mechanical properties of the slab changed; ductility increased and the 

strength and resistance to external pressure decreased, increasing the RUB. 

With increasing casting speed, a given cross section of the slab takes up the same amount of 

space. At 25 m away from the meniscus, the surface temperature in the wide face at a 

casting speed of 1.2m/min is 11.6 °C and 21.7 °C higher on average than those at casting 

speeds of 1.1 and 1.0 m/min, respectively (see Figure 6). Under a given set of conditions, 

increasing the casting speed increases production. However, high casting speed can lead to 

slab broadening. 
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Figure 6. Surface temperature on the slab at various positions.(FU JianXun et al. 2011(b)) 

4.2. Verification of simulation results 

For continuous caster #2 at Maanshan Iron and Steel Co. Ltd., the slab widths of two steel 

grades were tracked online at the exit of the caster (the end of the 15th segment); the slab 

width was measured once per minute. For each grade of steel, measurements were taken for 

more than 70 minutes. The data are shown in Figures 7(a), and (b), respectively.  

Figure 7(a) shows the slab width and the RUB of SPHC steel at various moments. Slab 

broadening can be clearly seen. The RUB of SPHC steel ranges from 1.4% to 2.4%, with an 

average of 1.96%. The average RUB is greater than the ratio of linear shrinkage, indicating 

that the width of the slab after cooling was greater than the top width of the mold. This 

result shows that slab broadening occurred in the secondary cooling zone. 
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The slab width changed smoothly except from 45 to 55 min, during which time a sharp 

trough appears on the RUB curve. In the initial 6 minutes of this period, the RUB decreased 

to 1.4% from 2.25%, and in the following 4 minutes, the RUB increased to 2.1% from 1.4%. 

This trough was caused by the changing of the tundish, during which the casting speed 

decreased sharply, and then quickly recovered to normal; i.e., the change in casting speed 

caused the change in slab broadening. 
 

 

Figure 7. (a) Width of slab and RUB for SPHC steel at various moments; (b) Width and RUB for Q235 

steel at various moments. (FU JianXun et al. 2011(b)) 

Figure 7(b) shows the slab width and the RUB for Q235 steel at various times. The RUB for 

Q235 steel ranges from 0.77% to 2.91%, with an average of 2.04%. There are five sharp 

corners on the RUB curve for Q235 steel. By comparing the curve with the production 

process of Q235, it was found that each sharp corner corresponds to an unsteady production 

stage. The biggest one corresponds to the changing of the tundish, the last one corresponds 

to the end of casting, and the remaining three correspond to the changing of ladles. 

Figure 8 shows the relationship between the RUB and the casting speed for Q235 steel. The 

shapes of the RUB curve and the casting speed curve are very similar. When the tundish 

was changed, the casting speed decreased to 0.5 m/min over a 10-minute period and then 

recovered to normal in 5 minutes; this change formed a sharp trough in the casting speed 

curve. At nearly the same time, the RUB decreased to 1.91% from 0.77% in 10 minutes and 

then increased to 2.1% in 5 minutes, producing a sharp trough in the curve. When the ladle 

was changed, a similar change happened. When the casting speed was maintained at 1.0 

m/min, the RUB remained stable at about 2.0%. The RUB is thus closely correlated with 

casting speed. 

There is a small lag between the RUB curve and the casting speed curve in Figure 12. The 

change in casting speed curve occurred earlier than that in the RUB curve. For example, the 

casting speed curve exhibits a sharp trough at about 100 minutes; a sharp trough appears in 

the RUB curve at about 110 minutes. Comparing Figure 7 and Figure 8, it can be seen that 

the simulation results generally agree with the industrial measurement results. 

(a) (b)
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Figure 8. Relationship between the RUB and casting speed. (FU JianXun et al. 2011(b)) 

5. Effects of width and thickness on slab broadening (FU JianXun et al. 

2010(b)) 

5.1. Numerical simulation 

One node of the slab was traced and the width was recorded at various positions of the 

secondary cooling zone. The RUB was derived from the calculated width of the slab.  

The calculated RUB of Q235 steel slab with a cross section 2000 mm × 230 mm at speed of 

1.0m/min is shown in Figure 9(a). The RUB changes from one segment to another; its value 

is over 0 throughout the secondary cooling zone, indicating slab broadening. The RUB 

increases in the first five segments, and then drops down gradually after reaching its 

maximum in the sixth segment. In the sixth segment, the width of the slab reaches its 

maximum with a large fluctuation due to the bulging of the slab in the direction of 

thickness. Figure 9(b) shows the simulated deformation of the slab in this direction. The 

shell of the slab has low yield strength and high plasticity; thus, the slab at the points 

contacting the rollers is depressed and bulges at the slit between the two rollers. Similar to 

the periodicity of bulging, the width of the slab fluctuates periodically. 

The simulated broadening and bulging of the slab in the sixth segment are shown in Figure 

10. There is an obvious correlation between broadening in the width direction and bulging 

in the thickness direction. The position in the slab where the smallest bulging is observed 

has the greatest broadening. This is due to the depression of slab in the thickness direction 

contributing to slab broadening in the width direction. 

5.2. Effects of slab width on broadening (FU JianXun et al. 2010(b)) 

230-mm-thick slabs of Q235 with various widths were simulated at a casting speed of 1.0 

m/min. The RUB values for various segments are shown in Figure 11. It shows that the 
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simulated RUB of slab slightly increases with the increase of width. The maximum values 

are 1.27 %, 1.36 %, and 1.44 %, respectively. The RUBs at the exit of caster are 0.63 %, 0.70 %, 

and 0.76 %, respectively. There is no obvious increase of RUB for slabs with increasing the 

width, but the increase of broadened size is noticeable. In conclusion, slabs with great width 

have great broadening. 

 

Figure 9. (a) Calculated RUB of Q235 steel in the secondary cooling zone; (b)Calculated deformation of 

slab between rollers. (FU JianXun et al. 2010(b)) 
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Figure 10. Broadening and bulging of slab in the sixth segment. (FU JianXun et al. 2010(b)) 

Under the same conditions, the wide slab has greater broadening than narrow slab because 

of compound effects of temperature and stress. Compared with wide slab, narrow slab has a 

larger range for heat flow distribution and hence the greater equivalent von Mises stress. 

But the wider slab has more enthalpy to be removed. So in the same position of caster, the 

narrow slab has higher yield strength and lower plasticity, and the solidified shell is able to 

resist great stress.  

(a) (b)
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Figure 11. Calculated RUB values for slabs of various widths . (FU JianXun et al. 2010(b)) 

5.3. Effects of slab thickness on broadening 

To study the effect of slab thickness on broadening, 2050-mm-thick Q235 slabs with 

thicknesses of 230 and 250 mm, respectively, were simulated at a casting speed of 1.0 m/min; 

the results are shown in Figure 12.  

The calculated broadening values for the two slabs are slightly different. The maximum 

RUB values are 1.4% and 1.38% for 250- and 230-mm-thick slabs, respectively. The RUB 

values are 0.74% and 0.71% at the exit of the continuous caster, respectively. The difference 

of broadening is just 0.6 mm between the two slabs. This is because the bulging changes 

little with increasing thickness. 
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Figure 12. Calculated RUB with different thicknesses. (FU JianXun et al. 2010(b)) 
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5.4. Verification of simulation results 

To verify the obtained simulation results, the slab broadening cast on the #2 caster in 

Maanshan Iron and Steel Co. Ltd was measured. The online measuring system was 

designed to measure the width of the slab. The digital camera was fixed above the exit of the 

caster. Q235 steel was used for the experiments. The parameters of the continuous caster 

and measured results are listed in Table 6. 

The online measured RUB values are greater than the simulation results for all the 

experimental slabs. This is because the preset width of a cold slab in the experiments was 

the upper width of the mold. The upper width is always greater than the defined width. For 

the slab with a preset width of 2050 mm, the upper width of the mold is 2081.3 mm (a 

broadening of 1.56%). With this difference taken into account, the experimental results well 

agree with those of the simulation. 

 

Defined 

width 

(mm) 

Upper 

width 

(mm) 

Lower 

width of 

mold 

(mm) 

Measured

width 

(mm) 

Measured

RUB (%)

Measured 

broadening

(mm) 

Calculated 

broadening 

(mm) 

Deviation 

rate (%) 

1600 1623.8 1610.4 1630.4 1.90 6.6 7.04 6.7 

1850 1877.7 1867.3 1885.9 1.94 8.2 9.25 12.8 

2050 2081.3 2067.5 2091.4 2.02 10.3 11.69 13.5 

Note: the measured broadening of the slab is the difference between the measured width of the slab and the upper 

width of the mold, and the calculated broadening of the slab is that between the calculated width and the defined 

width. 

Table 6. Measured and calculated widths of slabs 

6. Analysis of slab broadening ( FU JianXun et al.2011(a)) 

6.1. Change of mold size 

The slabs broaden in width, which varies with the operating parameters of steel produced. 

The statistical data of 76 taper samples of the mold revealed that the change is very small for 

the taper of the mold. The average change of a one-sided taper was 0.37 mm, and only a few 

samples had changes of 1~2 mm. The slight change of the taper is due to metering errors, 

wear, and deformation. Slab broadening is thus independent of the mold size. 

6.2. Exception of equipment or operating parameters 

The secondary cooling process is the most important procedure in continuous casting. The 

temperature field of the slab was checked with the data provided by the producer of the 

caster. A good agreement was found, indicating that the caster worked well in the 

secondary cooling process. The monitoring records obtained in a controlled room also reveal 

that the caster worked well. However, the width of the produced slabs exhibited obvious 
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broadening during the process. It is thus concluded that slab broadening is independent of 

exceptions of equipment or operating parameters. 

6.3. Soft reduction 

Soft reduction may strengthen slab broadening and even cause side bulging. For SPHC and 

Q235 steels, the slabs were broadened in the process of continuous casting with soft 

reduction set to 0.5~2.5 mm. The broadening width ranges are 2~19 mm and 2~8 mm for 

SPHC and Q235 steels, respectively. The ratios of broadening are 0.1%~1.46% and 

0.15%~0.62% for SPHC and Q235 steels, respectively. Therefore, soft reduction contributes to 

slab broadening, but is not the main cause. 

6.4. Contraction of roll gap 

For the continuous caster #2 in Maanshan Iron and Steel Co. Ltd, the ultimate thickness of 

a produced slab is 230 mm, and the bottom thickness of the mold is 237.5 mm. With a 

casting speed of 1.1 m/min, the molten steel completely solidifies at the start of the 11th 

sector where the thickness of the slab is 234.3 mm and the roll gap contraction is 3.2 mm. 

In this zone, the linear shrinkage ratio is 0.5%~0.7% (1.2~1.7 mm) due to the drop of 

temperature. Without the contribution of the temperature drop, the roll gap contraction is 

1.5~2.0 mm. This amount of shrinkage equals soft reduction of medium or light scale. The 

roll gap contraction is uniformly distributed. The roll gap contraction acts on the slab and 

affects the fluctuation of the liquid level of molten steel. However, the slab broadening is 

far less than that induced by soft reduction. So roll gap contraction is not the main cause 

of broadening. 

6.5. Summary 

The static pressure of the molten steel core and the force of the driving rollers may be the 

main cause of slab broadening.  

When there is no support on the narrow face of a slab, the slab deforms in the width 

direction under the static pressure of molten steel. The high-temperature mechanical 

properties of the slab are worse than those under normal temperature(Lei H et al,2007; 

Chen J,1990; S. Kobayashi et al,1988). The slab has good ductility under high temperature 

and is unable to resist the static pressure of molten steel in the width direction. Therefore, 

the slab greatly deforms at the edges, and thus the width is broadened. Previous studies 

found that the hardness of the solidified shell and the ability to resist the static pressure of 

molten steel are determined by the thickness of the shell and the formation of ferrite-

austenite with a dual phase.( Mizukami H et al,1977; Uehara M et al, 1986; Ramacciotti 

A,1988) 

The shell of the slab is clamped under the pressure of the driving roll cylinders so that it 

moves forward with the rotation of the driving rollers. The solidifying and soft slab is 

extended and broadens under the pressure of the driving rollers when passing through 
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the cast-rolling segment. The degree of extension and broadening increases with casting 

speed. 

6.6. Creep deformation 

The forces acting on the slab shell in the secondary cooling zone can be modeled as the 

bending of a rectangular thin plate under loading (i.e., static pressure of molten steel). One 

segment of the slab along the strand direction is taken to build the model. In the model, the 

slab is a rectangular thin plate fixedly supported along two sides and simply supported 

along the other two sides. In addition, the thin plate is subjected to lateral loads, and the 

temperature field linearly changes in the thickness direction of the slab. Because the width 

of the slab is much greater than the gap between the rollers, the effects of the slab boundary 

on the internal side of the slab can be ignored according to the Saint-Venant principle. 

According to plate theory, the slab shell is viscoelastic at high temperature, and the stress 

and deformation satisfy the Maxwell creep law. As shown in Figure 13. 

 

 

Figure 13. Model of slab shell and the force model of slab creep. (Sun J et al,1996) 

In the secondary cooling zone, the total stress equals the sum of elastic strain and creep 

strain, when the slab shell creepily bends under the static pressure of molten steel. The 

elastic strain changes little with time. The elastic deflection is expressed as: (Sun J et al,1996): 
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where: 
/2
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( ) d

h

h
T T z z z


   . 

The expression of elastic deflection has the series of hyperbolic function, and converges 

rapidly, thus setting m=1 is sufficiently accurate for calculation. Using equation (18) and the 

Cauchy equation, the creep deformation of slab shell on the narrow side can be derived as: 
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Figure 14. Comparion of calculated and measured side creep results. ( FU JianXun et al.2011(a)) 

The amount of creep deformation for the narrow side of the slab was calculated using 

Matlab software; the results are shown in Figure 14. The figure also shows the measured 

results from the experiments of a stagnant slab. The agreement between the calculated 

results from the Maxwell model and the measured results illustrates that the Maxwell model 

is able to reveal deformation behavior at high temperature. 

6.7. Industrial experiments of stagnant slab (FU JianXun et al.2011(a)) 

If the static pressure of molten steel is the main reason for the broadening of a slab, the 

broadening must happen at the forepart of the continuous caster where the slab has a high 

temperature and a thin shell. If the stress of the rollers is the main reason for broadening, the 

broadening must happen at the middle part of the continuous caster, specifically the 

position near the completely solidified zone. Because the molten steel is fluidic before this 

part(Lin Q Y et al ,2004), decreasing the roller gap does not broaden the slab. 

Since the continuous caster is a vertical bow type, it is very dangerous to keep close to it, 

and thus it is impossible to measure the width of the slab directly. Therefore, when the 

caster stopped to for the tundish replacement, the width of the stagnant slab was measured 

to determine where slab broadening happens. When the tundish is to be replaced, the 

casting speed gradually slows down to zero. This process takes about 4-5 min to form a 
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stagnant slab, which is cooled down continuously by secondary cooling water. The slab in 

the continuous caster is composed of three parts: 

1. For the fully solidified part during casting, the slab broadening is the sum of 

broadening of the molten steel core. 

2. For the part solidified during the stopping period, because it reveals the slab 

broadening at specific position, and corresponds to the real broadening amount of slab, 

this part is focused on in our experiments. 

3. For the unsolidified part until restarting the casting, the slab broadening continues 

during subsequent casting, as the molten steel core still exists in the slab shell. 

However, because the slab shell is very thick, little broadening happens. 

Using the square-root law of solidification, the fully solidified normal position and stagnant 

position can be derived, and thus the above three parts of the slab could be determined.  

The slab was Q235 steel, the casting speed was 0.0167 m·s-1, the cross section of the slab was 

2.050 m × 0.230 m, the upper width of the mold was 2.0813 m, the lower width of the mold 

was 2.0675 m, the casting temperature was 1533°C, Tl was 1513°C, and Ts was 1546°C. 

The width of the front slab was also traced. It remained at 2.040 m, indicating that nearly no 

broadening of the slab happened at this position. It may be because it was cooled so rapidly 

that there was no time for broadening. Therefore, the width of the front slab was used as the 

standard width for assessing slab broadening. 

The absolute broadening of the slab was derived from the slab width, which was measured 

while the slab was pushed through the exit of the continuous caster, subtracting the width 

of the front slab. The broadening values of the slab are shown in Figure 15(a) and (b). 

 

Figure 15. (a) Absolute broadening of slab in the first strand of stagnant slab; (b) Absolute broadening 

of slab in the second strand of stagnant slab.( FU JianXun et al.2011(a)) 

Slab broadening mainly happened in the front 6 segments (before 12.6 m). In these sectors, 

the broadening increases linearly with the distance from the meniscus. At the position of 

(a) (b)
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12.6 m, the slab broadening was at its maximum, and then decreased slowly with distance 

from the meniscus. These results confirm that the stress of the roller is not the main reason 

for broadening. Otherwise, the slab broadening will happen before the slab is fully solidified 

near the 9th and 10th segments. The trend of slab broadening is consistent with that of the 

static pressure of molten steel, which confirms that the slab broadening is dependent on the 

static pressure of molten steel. 

7. Mechanism of slab broadening 

The static pressure of molten steel deforms the slab shell. The coupled thermo-mechanical 

viscoelastic-plastic 3D finite element model was built with the secondary development of 

the commercial software MSC.Marc. The calculated and measured results of slab width are 

shown in Figure 16. 

The figure reveals that the calculated deformation agrees very well with the measured 

deformation. Slab broadening is the result of slab deformation under the pressure of static 

melting at high temperature. The deformation of the slab in the direction of thickness is 

shown in Figure 17(a). The temperature field of the slab is shown in Figure 17(b). 
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Figure 16. Simulated and measured widths of slab;( FU JianXun et al.2011(a)) 

The on-site investigation, force analysis, calculation from Maxwell creep model, and 

numerical simulation from the coupled thermo-mechanical viscoelastic-plastic 3D finite 

element model reveal that the slab broadening is due to slab deformation under the static 

pressure of molten steel. The slab shell deforms without constraints on the narrow side. 

Creep deformation appears when the material plastic gradually deforms with time under 

certain conditions. Plastic deformation only happens when the stress exceeds the elastic 

limit. However, creep deformation happens when the acting time of stress is sufficiently 

long, even if the stress is very small. The creep deformation of metal is obvious only if the 

temperature is over the creep temperature (about 0.3 Tm). The slab deforms for a long time 



 
Numerical Simulation – From Theory to Industry 580 

under the pressure of static molten steel at high temperature. The creep rate depends on the 

composition of the compound metal, and the processes of refining and thermal treatment. 

Creep deformation causes slab broadening because it makes the material keep stress 

relaxed, reduces hardness, and enhances plasticity. 

  

Figure 17. (a) Deformation of slab in the direction of thickness at 230 mm; (b) Temperature field of slab 

at 1150 s. ( FU JianXun et al. 2010(c)) 

The amount of broadening depends on the forces acting on the slab and the properties of the 

slab material, especially those at high temperature. Specifically, it depends on the static 

pressure of molten steel, the high-temperature mechanical properties of steel, the 

composition of the slab material, the thickness of the slab shell, secondary cooling intensity, 

casting speed, and the constitution of the caster. 

The static pressure of molten steel is the driving force for the deformation of the slab shell. It 

is related to the type and constitution of caster. At present, vertical-bending casters are most 

common. For these casters, the static pressure is related to the density of molten steel and 

the height of the caster. 

Under the conditions of high casting speed and constant cooling water, the fully solidified 

zone extend, the length of molten core increases, and the shell becomes thinner. Because of 

the higher temperature, the slab shell also has lower yield strength and better malleability. 

Consequently, the slab broadening increases. However, if the cooling water supply is 

changed when the casting speed is increased, the problem will become sophisticated.  

The effects of steel grade on the broadening result from differences in material properties at 

high temperature, and hence differences in resistance to plastic deformation and creep 

deformation. With an increase in the carbon percentage, the ratio of ferrolite and austenite in 

the two phase regions changes. The increase in austenite is helpful to the reduction of slab 

broadening. 

Intracell dislocation climb and intercell slide are two forms of creep deformation. Solution 

strengthening, precipitation strengthening, and dispersion strengthening insert a lot of 

defects into the crystal structure of steel, which hinder dislocation movement and thus 

(a) (b)
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reinforce steel. Thus, micro-alloying of steel could enhance the hardness of the slab and 

reduce slab broadening. 

In summary, higher casting speed, lower intensity of secondary cooling, thinner slab shell, 

larger static pressure of molten steel, and lower hardness of steel at high temperature 

increase slab broadening. 

8. Conclusion 

1. The mechanism of slab broadening is that the slab with high temperature exposes to no 

constraint at the direction of narrow face, and because of the static pressure of molten 

steel, the slab deforms in this direction. 

2. Slab broadening is a common problem in continuous casting. The average RUB for the 

three grades of steel studied was in the range of 1.27%~3.00%, with a maximum of 4.4%. 

3. Stagnant slab measurement experiments reveal that slab broadening happens in the 6 

front segments, and that roller compaction is not responsible for slab broadening. 

4. The agreement between the calculated results from the Maxwell model and the 

measured results illustrates that the Maxwell model is able to reveal the deformation 

behavior of a slab at high temperature. 

5. Higher casting speed, lower intensity of secondary cooling, thinner slab shell, larger 

static pressure of molten steel, and lower hardness of steel at high temperature increase 

slab broadening. The micro-alloying of steel improves the hardness of the slab and 

reduces slab broadening. 
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