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1. Introduction

The problems of antenna synthesis, which use the amplitude RP as input information, are
often used in the process of antenna design for many practical applications [4, 16, 27, 31].
In spite of the fact that the respective mathematical problems are ill-posed [32] and they
have the branching solutions [29], the antenna synthesis according to the desired amplitude
characteristics is very useful and perspective.

As a rule, the branching of solutions depends on the properties of prescribed amplitude
RP, geometrical and physical parameters of the considered antenna. The methods of
nonlinear functional analysis [23] allowing to localize the branching solutions are applied for
investigation of solutions and determination of their number and qualitative characteristics.
Such approach too much simplifies determination of the optimal solutions by the numerical
methods. The iterative processes for the numerical solving of the corresponding non-linear
equations were elaborated in [3, 8, 11].

The Chapter is organized as follows.

In Section 2 we derive the main formulas for RP of antennas and introduce the objective
functionals for the synthesis problem. Also in Section 2 we consider the variational statement
of problems and derive the fundamental nonlinear equations of the synthesis.

Section 3 contains the application of the proposed approach to several types of antennas.
Depending on the restrictions which are imposed on the sought distribution of current
or field in the antenna elements and type of antenna, the problems of amplitude-phase,
amplitude, and phase synthesis are considered for the specific antennas. The methods of
successive approximations are applied for solving the derived non-linear integral equations;
the convergence of the elaborated methods is discussed. The direct optimization of the
proposed functionals by the gradient methods is performed and successfully applied to
solving the amplitude and phase synthesis problems.

In Section 4 conclusions are formulated.

©2012 Andriychuk, licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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2. The theoretical background of the synthesis problems

In this Section, we present the necessary information about the properties of the
electromagnetic (EM) field in far zone, introduce the variational approach to the antenna
synthesis problems, as well as discuss the arising nonlinear integral and matrix equations.

2.1. RP of electromagnetic field

The EM field in the non-limited homogeneous medium satisfies the Maxwell equations [25]

rotH = ikεE +
4π

c
I, (1)

rotE = −ikμH, (2)

divE = ρ/ε, (3)

divH = 0, (4)

where E is a component of electric field, H is a component of magnetic field, I is the extrinsic
current density, ρ is the volume density of electric charge.

The scalar and vector potentials are used for solving the equations (1)-(4). Introducing the
vector potential Ae as [34]

H = rotAe, (5)

we satisfy the equation (4). Substituting (5) into (2), we receive the equation

rot(E + iωμAe) = 0, (6)

which testifies that the vector field in the parenthesis of (6) is potential. This yields the
equation

E = −iωμAe − gradϕe, (7)

where ϕe is the scalar potential. Substituting (5) and (7) into (1), we receive the following
equation for I:

∇2 Ae + ω2εμAe − grad(divAe + iωϕe) = −I. (8)

Using Lorentz lemma [15]
divAe + iωεϕe = 0, (9)

we receive the inhomogeneous Helmholtz equation for the vector potential

∇2 Ae + k2 Ae = −I, (10)

where k = ω
√

εμ is a propagation coefficient. For a free space, the values ε and μ are real
and related with the light velocity as c = 1/

√
εμ, and coefficient k = ω/c = 2π/λ is the

wavenumber, λ is the length of wave.

The vector potential Ae in the arbitrary observation point Q(x, y, z) is determined by formula
[26]

Ae(x, y, z) =
1

4π

∫

V

I(x′, y′, z′)
−eikRPQ

RPQ
dV, (11)
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where RPQ =
√

(x − x′)2 + (y − y′)2 + (z − z′)2 is the distance between the observation point
Q(x, y, z) and integration point P(x′, y′, z′), I(x′, y′z′) is the density of current in the domain
V.

Using formulas (5), (7), and (11), we receive the solution to system (1)-(4) in the term of electric
vector potential

E = −iωμAe − 1

ωε
graddivAe, (12)

H = rotAe. (13)

In the process of solving the synthesis problem, the representation of field in far zone is of
interest. Using the approximate representation of distance RPQ in far zone, we receive the
formula for vector potential in this region

Ae
∞(Q) =

−eikr

4πr

∫

V

I(x′, y′, z′)eikr′ cos αdV + O(
1

r2
), (14)

where α is the angle between the vectors, directed into observation and integration point, r′

and r are the radius-vector of the points P and Q, respectively.

Substituting (14) into (13) and neglecting by terms of O( 1
r2 ) order, we receive the formulas

for components of magnetic field H in term of vector potential Ae
∞. These formulas in the

spherical coordinates have form

Hr = 0, Hθ = ikAe
∞ϕ, Hϕ = −ikAe

∞θ . (15)

Consequently, the formulas for E are the following

Er = 0, Eθ = −iωμAe
∞θ , Eϕ = −iωμAe

∞ϕ. (16)

Using formulas (15), (16) and relation

E = − 1

ωε
rotH, (17)

we receive the formulas for non-zero E components of EM field

Eθ(r, θ, ϕ) = −iωμ
e−ikr

4πr
fθ(θ, ϕ), (18)

Eϕ(r, θ, ϕ) = −iωμ
e−ikr

4πr
fϕ(θ, ϕ). (19)

Function e−ikr

4πr is a spherical wave and it depends on r only. The second terms in (18) and (19)
are the functions of angular coordinates of the observation point and are determined by the
current I(x′, y′, z′)

fθ(θ, ϕ) =
∫

V

[Ix(x′, y′, z′) cos θ cos ϕ + Iy(x′, y′, z′) cos θ sin ϕ−

Iz(x′, y′, z′) sin θ]eik(x′ sin θ cos ϕ+y′ sin θ sin ϕ+z′ cos θ)dV,
(20)

fϕ(θ, ϕ) =
∫

V

[Iy(x′, y′, z′) cos ϕ − Ix(x′, y′, z′) sin ϕ]×

eik(x′ sin θ cos ϕ+y′ sin θ sin ϕ+z′ cos θ)dV.
(21)
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The functions (20) and (21) characterize the angular distribution of E components in far zone.

In such a way, the vectors E and H in far zone are expressed by formulas [4]

E(r, θ, ϕ) = −iωμ
e−ikr

4πr
{ 0, fθ (θ, ϕ) , fϕ (θ, ϕ)}, (22)

H(r, θ, ϕ) = ik
e−ikr

4πr
{0, fϕ (θ, ϕ) ,− fθ (θ, ϕ)}. (23)

The functions fθ(θ, ϕ) and fϕ(θ, ϕ) are defined as the RPs. Function

N(θ, ϕ) = | fθ (θ, ϕ) |2 + | fθ (θ, ϕ) |2 (24)

is the power RP and it characterizes the angular distribution of power intensity radiation. The
functions fθ (θ, ϕ), fϕ (θ, ϕ), and N(θ, ϕ) are used in the process of formulating and solving
the synthesis problems for various antennas.

2.2. Variational statement of the synthesis problems

Abstracting of the specific type of antenna, we present the functions fθ and fϕ in the formulas
(22)-(24) by the linear operator A = {Aθ , Aϕ}:

f = AI, ( fν = Aν I, ν = θ, ϕ), (25)

acting from some complex Hilbertian space HI , to which the distribution functions of current
or field belong, into the complex space C2

f = C[Ω] ⊕ C[Ω] of vector-valued continuous

functions on the compact Ω̄ ∈ R2 (or Ω̄ ∈ R1) [29]. The form and properties of the operators
Aν depend on a type and geometry of antenna. In many practical applications, one can reduce
the synthesis problem to separate consideration of the fθ and fϕ components. This allows to
reduce the synthesis problem to the scalar one. In that way, we will use more simple formula

f = AI (26)

for operator expression of the RP f .

The specific form of the operator A depends on the antenna type. This operator is integral for
the continuous antennas. As an example, for a cylindrical antenna with curvilinear generatrix
and with current polarized along the cylinder axis, the RP in the transversal plane has form
[21]

f = AI :=
∫

S

I(S)eikr(ϕ′) cos(ϕ−ϕ′)dSϕ′ , (27)

where f and I are nonzero components fθ and Iz respectively; ϕ is the angular coordinate of
the point in far zone, ϕ′ is the angular coordinate of the point in antenna, r = r(ϕ′) describes

the generatrix in polar coordinates, dSϕ′ =
√

r2 + (dr/dϕ′)2 is an element of arc. In the case
of array, the operator A is described by a finite sum.

In the previous subsection, we consider the direct external problem of electrodynamics
consisting of determination of the asymptotic (RP) of EM field in far zone. The inverse
problem, namely determination of such a current I that create EM field with the desired RP f ,
is of specific interest in the antenna design. The characteristic parameters of antenna can be
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fixed or be subject to determination in process of solving this problem. In such interpretation,
the inverse problem is defined as the synthesis problem, namely the problem of determination
of the current according to the desired RP.

The RPs are due to satisfy a series of requirements for the main lobe and sidelobes. In one
case, the RP with narrow main beam is required, another time, this beam should have the
specific wide (for example, cosecant) form; the sidelobes be as low as possible.

The angular distribution of the radiation power is characterized by the amplitude of RP, but
not the whole RP. Therefore, only amplitude | f | of function f is interesting in the process of
statement and solving the synthesis problem. In this case, the freedom of choice of the phase
arg f of function f is used for better approximation to the amplitude RP. In the synthesis
theory, function | f | is amplitude RP, and function arg f is phase RP.

In this way, in the process of synthesis we prescribe not the whole complex function f , but only
its amplitude. We denote this function as F, the created (synthesized) by antenna amplitude
RP is denoted by | f |. The both functions are real and positive. Of course, these functions
can not coincide in any real-world situation. This fact yields to use the variational statement
of the synthesis problem. In such statement, one requires not the whole coincidence of the
functions | f | and F, but the better approximation of function | f | to F in a certain sense only.
The mean-square deviation of both RPs is used as the criterion of optimization.

Let us introduce the Hilbertian spaces of radiation patterns H f and currents HI . Let (·, ·) f be
an inner product in H f , and norm of f is defined as [4]

|| f ||2 = ( f , f ) f . (28)

The functional
σ = (F − s| f |, F − s| f |) f (29)

is used in most cases as optimization criterion. Dependence of σ on the sought distribution of
the current I in antenna is determined by formula (26). The additional multiplier s in (29) can
be either prescribed (for example, s = 1) or determined from the condition ∂σ/∂s = 0. In the
latter case

s = (F, | f |) f /( f , f ) f . (30)

Let us introduce the normalization (F, F) f = 1, then (29) can be written as

σ = 1 − Qκ2, (31)

where
Q = ||I||2/|| f ||2, (32)

κ = (F, | f |) f /||I||, (33)

and ||I|| is the norm of current, determined by inner product (·, ·)I in the Hilbertian space HI

of currents: ||I||2 = (I, I)I . The factor Q characterizes the goodness (reactivity) of antenna,
and κ determines its power efficiency, namely the part of power radiated by the RP.

The generalized functional, allowing to diminish the mean-square deviation of RPs and
relative norm of current, has the form

σt = (F − | f |, F − | f |) f + t||I||2. (34)

195Synthesis of Antenna Systems According to the Desired Amplitude Radiation Characteristics
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Choosing the weight multiplier t, one can regularize the value of mean-square deviation of the
RPs and norm of current. Similar functional appears when the method of Lagrange multipliers
[16] is used to solving the conditional extremum problems. Simultaneously, one can use some
weight function p ≥ 0 in the definition (28) and to improve the approximation to prescribed
amplitude RP F in the appointed angular range.

2.3. The fundamental equations of synthesis

Let us demonstrate how one can receive the respective Lagrange-Euler’s equation [17] in the
process of minimization of functional σ. Let s = 1. It is known [30] that the equality to
zero of functional’s gradient is requirement of its extremum. This yields determination of the
maximum of the following value

∂σ

∂z
=

1

||z|| lim
ε→0

σ(I + εz)− σ(I)

ε
. (35)

In order to determine the derivative ∂σ
∂z , one requires to factorize σ(I + εz) in series relatively

to ε
σ(I + εz) = σ(I) + εδσ(I, z) + O(ε2) (36)

and to extract the linear term δσ. Evidently, ∂σ
∂z = δσ

||z|| . The increment of amplitude RP | f |
should be known in order to calculate δσ. This increment has the form [4]

|A(I + εz)| = | f |+ εRe[A(z)e−i arg f ] + O(ε2). (37)

Substituting this expression into (35), we receive

∂σ

∂z
= −2(F, Re[A(z)e−i arg f ]) f + 2Re( f , Az) f , (38)

or
∂σ

∂z
= −2Re[(A∗( f − Fe−i arg f ), z)I ], (39)

where A∗ is an operator adjoint to A in the following sense:

(AI1, f2) f = (I1, A∗ f2)I . (40)

If A is an integral operator then A∗ is the same with the complex conjugate kernel and
integration with respect to the second argument.

Using the Cauchy-Bunyakovsky-Schwarz inequality [10] and maximizing ∂σ
∂z , we receive the

expression for gradient of σ:

z = A∗( f − Fe−i arg f ), (41)

which is used usually for the numerical minimization of σ. In order to receive the
Lagrange-Euler’s equation one should equate to zero the function z (condition of σ minimum)

A∗( f − Fe−i arg f ) = 0. (42)

The equation (42) contains f as an unknown function. One can turn out that its solutions
represent the unreliazable patterns [20]. In order to avoid such solutions, it is necessary to

196 Numerical Simulation – From Theory to Industry
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substitute formula (26) into (42) instead of f . In this way, we receive the integral equation for
the optimal current distribution

A∗AI = A∗A(Fe−i arg AI). (43)

If operator A is integral (consequently, A∗ is also integral) then (43) is the nonlinear
Hammerstein equation [38].

One can receive the similar expression for z in the process of κ maximization:

z = A∗(Fe−i arg f )− I. (44)

Equating the right part of (44) to zero, we receive the explicit expression for I:

I = A∗(Fe−i arg f ). (45)

Equations (26) and (45) yield the system of nonlinear integral equations for the optimal current
I and RP f created by it.

System of nonlinear equations (26), (45) can be reduced to one nonlinear equation

f = AA∗(Fe−i arg f ). (46)

Since right hand side of (46) is a result of acting by the operator A on some function, any
solution to this equation represents the realizable RP. Once this equation is solved, the optimal
distribution of current is determined by formula (45). The equation (46) is more simple than
system (26), (45) because determination of its solution does not require additional operation
of A and A∗.

Taking into account the above considerations, we receive the following nonlinear
Hammerstein equation of the second kind for the RP f

t f + AA∗ f = AA∗(Fe−i arg f ) (47)

in the case of functional σt minimization. As in the case of (46), the solution to this equation
(at t 
= 0) represents the realizable RP. Having the solution to (47), we determine the optimal
current distribution by formula

I = −1/tA∗( f − Fe−i arg f ). (48)

The integral equations (43), (46), and (47) are the fundamental equations for the synthesis
problems according to the prescribed amplitude RP F.

2.4. The numerical solution of the integral equations

The equations (43), (46), and (47) are solved numerically by the method of successive
approximations. The new approximation is determined by explicit formula

fn+1 = AA∗(Fe−i arg fn ) (49)

in the process of κ maximization. The equation

A∗AIn+1 = A∗A(Fe−i arg AIn ) (50)

197Synthesis of Antenna Systems According to the Desired Amplitude Radiation Characteristics
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is solved when the synthesis problem is formulated in the term of functional σ minimization.
If functional σt is minimized then the respective iterative procedure has form

t fn+1 + AA∗ fn+1 = AA∗(Fe−i arg fn ). (51)

In the last case, one can use the iterative process

fn+1 = −1/tAA∗( fn − Fe−i arg fn ), (52)

but the convergence domain of this process is limited.

In accordance with the procedure used in Subsection 2.3, the solutions to the nonlinear
equations (43), (46), and (47) are the stationary points of the respective functionals. Since
the used functionals are nonconvex, the several solutions can appear, what corresponds
to existence of several local minima or saddle points. The number of solutions can vary
depending on the physical parameters of the problem what requires the special careful
analysis of the obtained solutions [11].

3. Application to specific antennas

3.1. Amplitude-phase synthesis of cylindrical antenna

In this Subsection, we consider the application of variational approach to the synthesis
problem of cylindrical curvilinear antenna. Functional (34) is used as criterion of optimization,
complex function I is optimizing function. Since both the amplitude and phase of complex
function I are optimizing parameters, the considered problem is the amplitude-phase
synthesis problem.

3.1.1. The integral equation approach

Let the generatrix of the antenna has the length 2l and be parallel to Oz axis, and form of
cross-section be determined by close curve S which be described by formula r = r(ϕ′), where
ϕ′ is the angular coordinate on S.

In many practical applications, the antennas with currents linearly polarized along Oz axis
are of interest. For such case, the RP has only the component fθ(θ, ϕ), denote it as f (θ, ϕ). On
account of formula (18):

f (θ, ϕ) =
∫

S

l
∫

−l

I(r(ϕ′), z) sin θeik[r(ϕ′) sin θ cos(ϕ−ϕ′)+z cos θ]dSϕ′dz. (53)

Let the current distribution in antenna surface be determined as

I(r, z) = I1(r(ϕ′)) · I2(z), (54)

then the spatial RP is completely determined by the RP f1(θ, ϕ), created by the distribution
of current I1(r(ϕ′)) in S, and RP f2(θ) in the longitudinal plane, created by the current
distribution in the generatrix of cylinder

f (θ, ϕ) = f1(θ, ϕ) · f2(θ). (55)

198 Numerical Simulation – From Theory to Industry
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Function f2(θ) is the RP of a linear antenna with length 2l. Function

f1(θ, ϕ) =
∫

S

I1r(ϕ′), z) sin θeik[r(ϕ′) sin θ cos(ϕ−ϕ′)]dSϕ′ (56)

is the RP of a plane curvilinear antenna with form S. Consequently, one can reduce the
synthesis problem of cylindrical antenna to two independent problems for synthesis of linear
and plane curvilinear antennas.

There is a many literature sources on the synthesis problem of linear antennas (see, e.g. [9]
and references there). Therefore we consider here the synthesis problem for plane curvilinear
antenna.

It is easily seen from formula (53) that the angle θ determines effective electrical scale of
antenna. Therefore one can suppose θ = π/2. Omitting the indices "1"’ in the distribution
of current and RP, we represent the RP (56) in form

f (ϕ) = AI :=

2π
∫

0

I(ϕ′)eik[r(ϕ′) cos(ϕ−ϕ′)]
√

r2 + (dr/dϕ′)2dϕ′, (57)

that is, RP is determined due to action of linear bounded operator A.

The amplitude-phase synthesis problem for closed plane curvilinear antenna according to
desired amplitude RP F consists of determination of such distribution of the current I(ϕ′), that
the amplitude RP | f (ϕ)| created (synthesized) by it, is the most close to F(ϕ). The functional
(34) is used as the criterion of optimization. The inner products in the spaces of the RPs and
currents are defined as

( f1, f2) f =

2π
∫

0

p(ϕ) f1(ϕ) f ∗2 (ϕ)dϕ, (58)

(I1, I2)I =

2π
∫

0

I1(ϕ′)I∗2 (ϕ′)
√

r2 + (dr/dϕ′)2dϕ′. (59)

Using (47), (57), and definitions (58) and (59), we receive the nonlinear equation with respect
to RP f

t f (ϕ) +

2π
∫

0

p(ϕ1)K(ϕ, ϕ1) f (ϕ1)dϕ1 = B f , (60)

where K(ϕ, ϕ1) is the kernel of operator AA∗

K(ϕ, ϕ1) =

2π
∫

0

eikr(ϕ′)[cos(ϕ−ϕ′)−cos(ϕ1−ϕ′)]
√

r2 + (dr/dϕ′)2dϕ′, (61)

and nonlinear operator B is determined as

B f =

2π
∫

0

p(ϕ1)K(ϕ, ϕ1)F(ϕ1)e
i arg f (ϕ1)dϕ1. (62)
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The methods of successive approximations are applied for solving the nonlinear equation (60).
The simplest of them

fn+1 = 1/t(B − AA∗) fn (63)

has the limited region of convergence determined by formula

t > 2
√

2πl(

2π
∫

0

p2(ϕ)dϕ)1/2, (64)

where l is the length of contour S. Once the function f is found, the optimal current I is
determined by formula (48).

The iterative process (51) is more preferable, it yields the converging sequence of functional σt

which satisfies the condition
σt( fn+1) < σt( fn) (65)

for arbitrary t.

3.1.2. The gradient methods of optimization

Above we mentioned the methods of successive approximations for solving the arising
nonlinear equations. The direct optimization of σt functional by the gradient methods can
be also applied for solving the synthesis problem. The simplest gradient method is defined by
the formula

In+1 = In + δnzn, (66)

where δn is an optimizing multiplier, zn is a gradient of functional σt (34) on the function In:

zn = A∗( fn − Fei arg fn ) + tIn, (67)

and
δn = ||zn||/an, (68)

where an is a number determined by known values in the n + 1-th iteration [4].

The disadvantage of method (66) is that only the information about optimizing function from
previous iteration is used, in addition it has the slow convergence at the end of iterative
process. The method of conjugate gradients [28]

In+1 = In + δnhn, (69)

and proposed in [3] generalized gradient method

In+1 =
M

∑
m=1

δ
(m)
n r

(m)
n , (70)

do not have such disadvantage. Here hn is a combination of zn from previous iterations, and

r
(1)
n = In, r

(2)
n = zn, r

(3)
n ..., r

(M)
n is a set of some orthogonal functions, δn and δ

(m)
n are the

coefficients subject to determination.
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For method (70), the problem of minimization of σt is reduced to the solution of nonlinear
algebraic system

M

∑
m=1

[t(r
(m)
n , r

(j)
n )I + (Ar

(m)
n , Ar

(j)
n ) f ]δ

(m)
n = (Fei arg fn+1 , Ar

(j)
n ) f , (j = 1, ..., M) (71)

with unknown δ
(m)
n . This system is solved effectively by the method of successive

approximations substituting in its right hand side the function arg fn from previous iteration.
Such iterative process is converging and similarly to iterative process (51) yields the
converging sequence of σtn which satisfies the condition (65).

3.1.3. The numerical results

The numerical results are shown for the prescribed amplitude RPs F(ϕ) = sin2(ϕ/2) and
F(ϕ) = sin128(ϕ/2) (Fig. 1a and Fig. 1b respectively). The influence of the parameter t in
the functional (34) on the quality of synthesis is investigated. One can see that decrease of
t improves the proximity of given F and synthesized | f | RPs. But the norm ||I|| of currents
grows if t decreases. In the case of narrow F it is necessary to diminish t in order to decrease
the mean-square deviation of the RPs. The detailed information about the synthesis quality is
shown in Table 1.

F(ϕ) = sin2(ϕ/2) F(ϕ) = sin128(ϕ/2)
t σ κ t σ κ
0.1 0.0024 0.3419 0.01 0.0411 0.3450
1.0 0.1437 0.4367 0.10 0.0612 0.3581
10.0 1.2744 1.1065 1.0 0.0977 0.4272

Table 1. The values of σ and κ for two desired RPs F(ϕ)

(a) F(ϕ) = sin2(ϕ/2) (b) F(ϕ) = sin128(ϕ/2)

Figure 1. Dependence of synthesis quality on the parameter t in the functional σt

3.2. The problem of amplitude synthesis for resonant antennas

Resonant antennas are a new type of antennas [24], which allow to form the radiation
characteristics satisfying a wide spectrum of practical requirements. Such antennas
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are formed by several surfaces, one of which is semitransparent. Antennas with one
semitransparent and other metal boundary are considered here.

The synthesis problem consists of determination of such parameters of antenna (the geometry
of inner boundary and transparency of the outer boundary), which form the amplitude RP or
front-to-rear factor (FRF) the most close to the prescribed ones.

3.2.1. Generalization of variational statement

The generalized method of eigen oscillations [1] is the mathematical basis for solving the
analysis (direct) problem of resonant antennas. The two-dimensional model of antennas (the
case of E- polarization) is considered.

The main constructive parameter of resonant antennas is the cophased field in the outer
surface. This field can be considered quite real (i.e., only its amplitude can be considered)
since the constant phase shift of field does not change the amplitude RP. In this connection, the
synthesis problem for resonant antennas is formulated as the amplitude synthesis problem.

The direct problem consists of determination of the RP f (ϕ) by the known field v(S) in the
outer boundary S of the given form. The RP created by this field can be presented similarly to
(26). The operator A in the case of circular external boundary has form [37]

Av =

2π
∫

0

K(ϕ, ϕ
′
)v(ϕ

′
)dϕ

′
, (72)

where kernel

K(ϕ, ϕ
′
) =

∞

∑
n=0

in cos n(ϕ − ϕ
′
)

(1 + δ0n)H2
n(ka)

, (73)

δ0n is the Kronecker delta, function H2
n(ka) is the Hankel function of second kind, a is the circle

radius.

In the case of resonant antenna with arbitrary outer boundary, the method of auxiliary sources
[2, 12, 18] is used for determination of the RP f by the field v. In this method, the field u(r, ϕ)
outside of antenna is represented approximately by the finite sum

u(r, ϕ) =
N

∑
n=1

an H2
0(kRn), (74)

where Rn =
√

r2 + r2
n − 2rrn cos(ϕ − ϕn) is the distance between an observation point and

n-th auxiliary source; r, ϕ and rn, ϕn are the polar coordinates of a point of observation and
n-th source, respectively; an are the unknown coefficients subject to determination in the
process of solving the synthesis problem.

The RP is given by

f (ϕ) =

√

2

π
eiπ/4

N

∑
n=1

aneikrn cos(ϕ−ϕn). (75)
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Solving the synthesis problem, we determine the field in outer boundary S of the antenna and
transparency of this boundary. The form of inner boundary S0 is determined as a curve of
constant phase of the field u(r, ϕ) [37].

Additionally, the restrictions on a field in some areas of a near zone can be prescribed. The
functional

σt =

2π
∫

0

p(ϕ)[F(ϕ)− | f (ϕ)|]2dϕ +
M

∑
i=1

∫

Si

pi(Si)[Ui(Si)− |ui(Si)|]2dSi + t

2π
∫

0

v2(ϕ)dϕ, (76)

which is generalization of (34), allows to take into account these requirements. Here Ui(Si)
are prescribed values of the field’s amplitude in the areas of restriction, ui(Si) are the obtained
values of the field. Functions p(ϕ), pi(Si) are the weight functions, allowing to adjust a degree
of proximity of the given and received values of RP and field, t is the parameter limiting norm
of the field v.

In the first step of solving the synthesis problem, the field v on the outer boundary S is
determined from a condition of minimum of the functional (76). Minimization of functional
can be carried out by the gradient methods, or by solving the respective Lagrange-Euler’s
equation. In the first case, the generalized gradient method [3]

vn+1 = δ
(1)
n vn + δ

(2)
n zn + δ

(3)
n hn (77)

is used. The gradient z of the functional (76) (by virtue of the requirement of real field) has
form

z = tv − ReA∗[F exp(i arg f )− f ]−
M

∑
i=1

ReB∗
i [Ui exp(i arg ui)− ui], (78)

where A∗ and B∗
i are the operators adjoined to A and Bi, respectively [4]. Each step of iterative

process (77) reduces σt. Since σt is limited from below (σt ≥ 0), the process (77) is converging.

In the second step, the transparency ρ of the outer boundary S and the form of inner metal
boundary S0 are determined.

For the antenna with circular outer boundary, the transparency distribution can be presented
in the explicit form

ρ(ϕ) = πkv(ϕ)/(2
N

∑
n=0

an cos nϕ

J2
n(ka) + N2

n(ka)
), (79)

where Jn and Nn are the Bessel and Neumann functions, respectively.

In the case of antenna with arbitrary outer boundary, similarly to [37], the distribution of

transparency is determined by the formula

ρ(ϕ) = 1/[
∂ψ(S(ϕ))

∂N
]. (80)

3.2.2. The numerical results

The numerical calculations are carried out for the resonant antenna with a given outer elliptic

boundary. The prescribed amplitude RP is: F(ϕ) = sin8(ϕ/2). In Fig. 2, the results are

presented for the antenna with parameters kb = 15 and different ka: ka = 12.75, ka = 14.25,
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where b and a are the big and small semiaxes of ellipse. For such antenna the level of side lobes

in the synthesized amplitude RP | f | is smaller than –20 dB, and distribution of transparency

is smoother in the area of main radiation (the continuous lines in Figs. 2a, 2b correspond to

ka = 12.75, and the dashed ones correspond to ka = 14.25). The outer elliptic boundaries

(dashed lines), the found form of inner metallic boundaries (continuous lines), and the inner

contour Sa of placement of the auxiliary sources (dash-and-dot lines) are shown in Figs. 3a,

3b. The auxiliary sources are distributed uniformly on the Sa.

(a) the prescribed F (thick line) and synthesized RPs | f | (b) the transparency ρ of outer boundary S

Figure 2. Synthesis of resonant antenna with elliptic outer boundary

The distribution of transparency ρ in the area opposite to direction of main radiation has a

spasmodic character. Such distribution cannot be realized by the physical reason. Therefore

the values of ρ are averaged in this range in order to receive the smooth distribution of ρ. This

leads to some change of field v on S, but the numerical calculations show small change of the

synthesized amplitude RP | f |. The more smooth distribution of ρ in the area mentioned above

can be achieved by increasing the number of auxiliary sources here.

The numerical results for solution of the synthesis problem with restrictions on the field in a

near zone are given for the antenna with circular outer boundary. The prescribed amplitude

RP is: F(ϕ) = sin8(ϕ/2); ka = 15. Minimization of a field was carried out in two points

ϕ = π/2, 3π/2 on the additional circle with radius kb = 20. These points were allocated in

the second summand of the functional (76) using the weight function p1(ϕ) = δ(π/2, 3π/2);
p(ϕ) ≡ 1, t = 0.01. In Fig. 4a, the prescribed RP F (thick continuous line) and synthesized | f |
(thin continuous line) amplitude RP are shown. The amplitude |u1| of obtained field on the

circle of restrictions is marked by dashed line.

It can be seen that the field at restriction points is reduced up to level -37 dB. The synthesized

field v (continuous line) and transparency ρ (dashed line) are presented in Fig. 4b. The form

of the inner synthesized metallic boundary is more complicate than in the previous example.

3.3. Waveguide resonant antenna

Synthesis of resonant antenna with waveguide excitation is carried out according to the FRF.

The optimizing functional enables to take into account a various requirements to the FRF of

antenna in the operating frequency range, as well as outside this range.
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(a) ka = 12.75 (b) ka = 14.25

Figure 3. Form of antenna boundaries S and S0

(a) the RPs and field in area of restriction (b) the field v and transparency ρ in outer
boundary

Figure 4. Synthesis of resonant antenna with restriction on the field

3.3.1. The physical description of problem

The geometrical parameters of resonant antenna with waveguide excitation are shown in Fig.
5. In order to create RP enough narrow, the width L of antenna should be much larger than
the wavelength λ. The height d is of the order of λ/2. Excitation is carried out by a metal
single-mode waveguide with semitransparent grid at its end; the width l of waveguide is of
the order λ/2, and both its length and the length D of the antenna along the Ox axis are of the
order of L.

The RP of antenna has form

f (θ, ϕ) =
∫∫

S

u(x, y) exp[ik(x sin θ cos ϕ+y sin θ sin ϕ)]dxdy. (81)

The direct (analysis) problem on determination of the electromagnetic field components in
the semitransparent aperture is reduced to two separate problems in the planes xOz and yOz
respectively. We consider here the case of E-polarization. The unknown function u is the Ey
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Figure 5. Geometry of the resonant antenna

component of electromagnetic field. In the region over the antenna this component satisfies
the Helmholtz equation and the boundary conditions

u = 0 (82)

on the all metallic walls;

u+ = u−,
∂u−

∂x
− ∂u+

∂x
=

u

ρ(S)
(83)

on the semitransparent upper boundary, the same conditions in the aperture of the exciting
waveguide; the condition of radiation on the infinity

u∣

∣

∣

∣

∣

∣

r → ∞

x > 0

=
exp(−ikr)√

kr
f (ϕ), (84)

and asymptotical condition in the exciting waveguide

u∣

∣

∣

∣

∣

∣

x → −∞

y+ < a

= cos
πy

2a
(exp(−iβ1x) + R1 exp(iβ1x)). (85)

The problem of determination of the field u(x, y) in the semitransparent boundary S is solved
in three steps [37]. In the first step, the field in the irregular region of antenna is determined
using the cross-section method [19]. In the second step, the field over the exciting waveguide
is sought for, and the matching of field in the regular and irregular regions of antenna is
fulfilled. The reflection coefficient R1 is determined by the fulfillment of the adjoint boundary
conditions (85) in the third step.

Under condition of the linear polarization of field in the aperture of exciting waveguide, the
RP (81) can be represented as product of two functions, namely the RP of plane antenna with
variable height d(y) of the upper wall and transparency ρ(y) of the lower wall, and RP of the
linear antenna in the xOz plane.
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In such a way, the RP in the yOz plane can be written down in the form [37]

f (θ, ϕ) = k sin θ

L/2
∫

−L/2

u(y, 0) exp(iky sin ϕ)dy. (86)

Numerical calculations can be essentially simplified, if one assumes that the field above the
antenna is represented approximately in the form [37]

u∣

∣

∣

∣

∣

|y| < L/2
z → +0

∼= u(y, 0) exp(−ikz). (87)

3.3.2. The objective functionals

In the process of statement of the synthesis problem one requires to provide the best
approximation to the prescribed FRF in the operating frequency range [k1, k2] and the minimal
values of the FRF outside this range, that is for k ∈ [k0, k1) and k ∈ (k2, k3].

The variational approach for solving this problem was developed in [37]. Modification
of variational statement of the synthesis problem is proposed. The problem consists of
determination of functions d(y) and ρ(y), which maximize FRF η1 in the operating range
[k1, k2]. In this case, the least value of FRF in this range is specified as a criterion of
optimization, and this value is maximized by a choice of functions d and ρ. That is, the
functional is maximized

η1 = max min
k1≤k≤k2

η(k). (88)

The additional parameter of optimization 1 − |R1(k)|2, where R1(k) is the reflection factor
of the main wave in exciting waveguide, with some weight multiplier can be included into
functional (88). In this case, the transparency of waveguide aperture can be also used as an
additional parameter of optimization.

Minimization of FRF outside the operating frequency range is one of requirements of
electromagnetic compatibility for radiating systems [36]. Thus, the value of FRF should
remain the largest in the main frequency range. Under these requirements, the following
generalization of the variational statement of problem is considered: to find functions d and
ρ, maximizing the functional η1, and, at the same time, minimizing additionally the following
functional [6]

η2 = min max
k0≤k<k1,k2<k≤k3

η(k), (89)

that is, minimization of the maximal FRF value outside the [k1, k2] range is required. Of course,
it is necessary to take into account the restrictions on the functions d(x) and ρ(x) owing the
physical reason:

d0 < d(y) < dm, ρ0 < ρ(y) < ρm. (90)

For example, d0, dm are the boundary values of height, which provide the single-mode
conditions in antenna, and ρ0, ρm are the boundary values of transparency, which provide
a good quality of antenna in the required ranges. Moreover, the received functions should
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satisfy the additional conditions of smoothness, which can be formulated as restriction on the
second derivatives

|d′′
(y)| ≤ M1, |ρ′′

(y)| ≤ M2. (91)

3.3.3. The modeling results

The numerical results are shown in Fig. 6. Calculations were carried out for the problem of
η maximization in range ±5.0% in neighborhood of the central frequency (kc = 6.0). It is
necessary to minimize the FRF outside of this range for 5.2 < k < 5.6 and 6.4 < k ≤ 6.8.
Parameters of antenna are the following: the length of antenna L = 6.0, half-width of excited
waveguide l/2 = 0.3L, number of considered reflected waves in waveguide N1 = 5, number
of waves in a background N2 = 20.

The optimized values of FRF are marked by solid line in the basic and additional ranges; the
dashed line corresponds to not optimized values of η in the main and additional ranges.

Figure 6. Optimized values of FRF in the basic and additional ranges versus the frequency (k)

Process of additional optimization is carried out on the simplified procedure, that is the control
of decrease of the FRF in the basic range is omitted [6]. Therefore, the values of FRF in the basic
range are slightly decreased in comparison with the FRF values for initial problem.

The optimal form d(y) of the lower boundary of antenna and transparency ρ(y) of the upper
boundary are slightly different for the both cases of optimization.

In Fig. 7, the change of the FRF values at three points of main and additional ranges of
frequency (two extreme points and middle one) is shown. The width of main range is equal
to 8.33% , and width of additional range is equal to 10.0% . In Fig. 7a, curve 1 corresponds to
the central value of frequency k = 12.0, and curves 2 and 3 correspond to the extreme points
k = 11.0 and k = 13.0 respectively. In Fig. 7b, curve 1 corresponds to the central frequency
k = 14.0, and curves 2 and 3 correspond to the frequency values k = 13.01 and k = 15.0. One
can see that the main optimization takes place in the first iterations; there is the improvement
only in low-order digit in the next steps. Therefore, it is enough to make 3-5 steps for the main
range and 9-11 steps for the additional range, in iterative procedure to receive the practically
interesting results.

The total number of iterations also depends on the width of the considered frequency ranges.
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(a) the main range (b) the additional range

Figure 7. The FRF values versus the iteration number N

3.4. Phase synthesis problem for cylindrical array

The phase distributions of excitation currents in the array’s elements are the optimizing
parameters in the problem of phase synthesis. The optimization of considered functionals
is reduced to the solution of the corresponding system of nonlinear equations. The gradient
methods for direct optimization of functionals are used in practical applications.

3.4.1. The RP of array

A series of simplifications in process of synthesis of the cylindrical array is used in order to
reduce the computing time [9, 22]. Separation of variables onto the vertical and horizontal
components for the distributions of currents in the array elements, as well as for the RPs, is
one of the simplifications.

Thus, the expressions for current Inm(x, y) in radiators and RP f (θ, ϕ) have the form [4]

Inm(x, y) = I1
nm
(x) · I2

nm
(y), (92)

f (θ, ϕ) = f1(θ) · f2(ϕ). (93)

It is assumed that the radiating elements are flat apertures, for example, end of open
waveguide. The RP depends on the angular coordinates θ and ϕ. From the practical point
of view, the consideration of such models of the arrays is justified by the fact that they
allow to receive the values of required radiation characteristics with the accuracy of 2% -
5%, while the time of solution for the respective problems of analysis (determination of the
RP of array), considerably decreases. Such approach to the solution of direct electrodynamic
problems is effective especially for the arrays with constant coordinate surfaces, e.g., for the
plane, cylindrical and conical arrays. Proceeding from the above assumptions, we separate
the synthesis problem of such arrays into two synthesis problems for the linear and circular
arrays.

The spatial RP of cylindrical array [9] is:

f (θ, ϕ) =
M

∑
m=1

N

∑
n=1

Inm fnm(θ, ϕ) exp(ik(zm cos θ + a sin θ cos(ϕ − ϕn))), (94)

where N is the number of radiators in circular subarray (identical for all subarrays), M is the
number of circular subarrays, a is radius of cylinder. The currents Inm are complex numbers,
by means of which choice the approximation to the given amplitude RP F(ϑ, ϕ) is carried out.
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The functions fnm(ϑ, ϕ) are the RPs of separate radiators, (zm, a, ϕn) are the coordinates of
radiators. The RP of separate radiators is identical and can be presented in the following form

fnm(θ, ϕ) = fn(ϕ − ϕn) fm(θ). (95)

Following the above assumptions, the RP (94) can be written as

f (θ, ϕ) = fl(θ) fc(ϕ), (96)

where

fl(ϑ) = A1 I :=
M

∑
m=1

Im fm(ϑ) exp(ikzm cos ϑ) (97)

is the RP of linear array, and

fc(θ, ϕ) = A2 I ≡
N

∑
n=1

In fn(ϕ − ϕn) exp(ika sin θ cos(ϕ − ϕn)) (98)

is the RP of circular array for each θ. Below we consider the synthesis problem for the circular
array.

3.4.2. Optimization criteria

The complex currents in the array elements are determined by their amplitudes and phases.
We denote these values |In| and ψn, respectively. The amplitudes |In| of currents are
prescribed together with the amplitude RP F in the problem of phase synthesis. The phases
ψn are the optimizing parameters. We use the functionals (29) and (33) for optimization.

The equalities

χ = arg A(|I|eiψ), (99)

ψ = arg A∗(Feiχ). (100)

should be satisfied at the points of functional (33) maximum. This set yields the system of
transcendental equations for the phases ψ of current and phase RP χ.

Using normalization of the current I values: ||I|| = 1, we write down the functional (33) in
two equivalent forms

κ = (Feiχ, A(|I|eiψ)) f = (A∗(Feiχ), |I|eiψ)I , (101)

where χ = arg f is the phase RP. The operator A∗ is adjoint to A and determined similarly to
[4].

At first, we consider the problem of κ maximization. Substituting (99) into (100), we receive
the system of nonlinear algebraic equations for optimal phase distribution of currents

ψn = arg A∗(F exp(i arg A(|I|eiψ))), n = 1, 2, ..., N. (102)

In practice, the system (99), (100) is more convenient for the numerical solution. For this
reason, we use the following iterative process

arg f (k) = arg A(|I| exp(iψ(k))), (103)
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ψ(k+1) = arg A∗(F exp(i arg f (k)) (104)

to find the phases ψ(k+1).

The gradient methods are more convenient to solve the minimization problem for the
functional σ. The method of conjugated gradients [28] is the most suitable for this purpose. In
this method the next approximation of phase vector ψ = {ψn, n = 1, ...N} is calculated by the
formula

ψ(k+1) = ψ(k) + δ(k)h(k). (105)

Here
h(k) = z(k) + γ(k)h(k−1), (106)

z(k) is the gradient of σ with respect to the phases of currents in the "point" ψ(k). The

components of vector z(k) are the following

z
(k)
n = −Im{(A∗((F − s| f (k)|) exp(i arg f (k))))n · I

(k)
n }, n = 1, 2, ..., N. (107)

Parameter δ(k) is determined from minimum of σ being a function of this parameter.

In practice, it is necessary to solve the problem of discrete phase synthesis [9, 22], because the
arbitrary phase distributions cannot be realized in the array radiators. These distributions are
prescribed as a set of discrete values, which are multiple to the given phase discrete value ∆,
that is ψn = λn∆, the integers λn are unknown in this case [5, 7].

The algorithm consisting of two enclosed iterative processes is used for the solution of this
problem. The value of phase ψn is improved in the n-th step of the internal iterative process,
the phases in other radiators remain fixed. At the same time, the mean-square deviation of

the synthesized RP and function F exp(i arg f (k)), where arg f (k) is the phase RP, which is
received in the previous step of external iterative process, is minimized. The phase RP arg f is
improved in the external iterations.

The internal cycle consists of the successive improvement of phases in the separate radiators
changing their number from 1 up to N. The value of σ decreases in each step of internal cycle.

The new phase RP arg f (k+1) is calculated by the found values of {ψ} in external cycle. The
values of σ corresponding to new phase RP also decrease, what provides the convergence of
the whole algorithm. In view of the step-type behavior of ψn values, this convergence exists
not only for a sequence of σ, but also for the phase distributions. The iterative process is
considered completed, if there is no change of ψn in the internal cycle.

The problem of discrete phase synthesis is solved in two steps. In the first step, the synthesis
(with small accuracy) without the account of phase discrete values is carried out. After that,
the found phases are approximated up to the nearest discrete values. In the second step, the
described above algorithm of discrete synthesis is used. As a rule, one is enough to make
several external cycles in the latter algorithm.

3.4.3. The results of numerical modeling

The numerical results are given for the sector array. The RPs of separate radiators have a
cosine form, and mutual coupling of separate radiators is not taken into account [35]. The
number of radiators N = 32, the radiators are placed in active sector β = 90o.
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The synthesis results are shown in Fig. 8 for the bi-directional RP

F(ϕ) =

{

| sin 18ϕ, |ϕ| < 5.00,
0, |ϕ| ≥ 5.00.

(108)

The thick line corresponds to the prescribed amplitude RP F, and thin line corresponds to the
synthesized RP | f |. The prescribed F and synthesized | f | RPs coincide in the main lobe up to
level –20 dB, the level of side lobes does not exceed -20 dB (see Fig. 8a).

In the practical applications, the problem of phase scanning [35] is considered for arrays. The
array alongside with creating the amplitude RP which is more close to the desired one should
provide the moving this RP along the angular coordinate in the scanning process. This moving
is carried out by the change of the phase distribution {ψn} only; the amplitudes {|In|} of
current remain constant. In fact, the problem of phase synthesis is solved for each scanning
angle ϕs separately.

The difference between the results of continuous and discrete synthesis depends on the value
of phase discrete ∆. The smaller the difference, the smaller this value. In Fig. 8b the values
of σ for two types of synthesis are shown for the process of scanning, ϕs is changed in range
from 10 up to 90. Solid line corresponds to the case of continuous synthesis, and dashed line
correspond to the case of discrete synthesis, the value of ∆ = 22.50. This value of ∆ gives
not big difference for two types of synthesis. So, the difference between F and | f | in main
lobe of RPs does not exceed 1dB, and this difference does not exceed 10dB in the side lobes.
Such difference is satisfactory for the engineering practice. Of course, the above mentioned
difference grows if the scanning angle ϕs approaches to the left or right border of the active
sector β.

(a) the prescribed and synthesized RPs for the
angle of scanning ϕs = 00

(b) the normalized values of σ for the
continuous and discrete phase synthesis

Figure 8. Synthesis of bi-directional RP F

3.5. Investigation of branching solution

The problem of the non-uniqueness of solutions for phase synthesis problem is investigated
on the example of linear array.

The various modifications of the Newton method have been developed for solving the
nonlinear equations in [13], and have been detailed for the synthesis problems in [11].
We consider here the above approach for determination of the number of solutions and

212 Numerical Simulation – From Theory to Industry



Synthesis of Antenna Systems According to the Desired Amplitude Radiation Characteristics 23

investigation of its properties by the example of the nonlinear equation (46), corresponding to
functional κ (33).

Let the operator A describe the RP (array factor) of linear array [4].

f (ξ) = Av :=

√

c

2π

M

∑
n=−M

vn exp(icnξ), (109)

where c = ka sin α, a is the radius of array, α is the angle in which the RP F is non-zero,
N = 2M + 1 is a total number of array elements, ξ is the generalized angular coordinate. The
operator A∗acts in the following way

A∗ f =

√

c

2π

π/c
∫

−π/c

f (ξ) exp(−icnξ)dξ, (110)

In this case, the functional (33) can be presented as

κ(ψ) =

π/c
∫

−π/c

| f (ξ)|F(ξ)dξ. (111)

3.5.1. The numerical results

The numerical calculations are carried out for the prescribed amplitude radiation pattern
F(ξ) = cos(πξ/2) and are shown in Figs. 9 and 10. In Fig. 9a, the values of κ and σ are

shown for various types of initial approximation of the current’s phase ψ(0)(x). For this case,
the maximization problem of κ is equivalent in some sense to minimization problem of σ [4].

The solid lines correspond to values of κ, and the dashed lines correspond to values of σ.
The number of array elements N = 11, parameter c changes from c = 0 up to c = 2. For
the values of Nc which do not exceed Nc = 5 all types of solutions give the same values
of κ and σ. At Nc ≈ 2π the branching of solutions appears, and optimal value for κ and σ
functionals gives the solution with even phase ψ. The prescribed amplitude radiation pattern
F and synthesized | f | are shown in Fig. 9b. The amplitudes | f | in the considerable extent
differ from the amplitude F because of small value of c parameter (c = 1.6).

The optimal values of sought phase distributions ψ are shown in Fig. 10a, the given current
amplitude distribution is |I| ≡ 1. The optimal phase distributions ψ keep the parity properties
of corresponding initial approximations ψ0. The optimal values of κ and σ provide the
solution with phase distribution ψ0(x) = cos(x) (see Fig. 9).

The quality of approximation to prescribed amplitude pattern F too much depends on the
parameter c (see Fig. 10b). At c = 3.14 the κ and σ values are noticeably smaller than for
c = 1.6, although the value of N is larger in case of Fig. 9.

3.6. Synthesis of waveguide array

The mutual coupling of the separate elements of array is taken into account in the process of
solution of a direct problem (analysis problem) [7, 14].
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(a) the κ and σ values versus the array electrical
size Nc

(b) the synthesized amplitude radiation patterns
for various types of current phase, c = 1.6

Figure 9. The values of optimizing functionals and synthesized RPs for various type of solutions

(a) the optimal phase distributions (b) the desired F and synthesized | f | RPs

Figure 10. The optimal phase distributions at N = 11 (a), and synthesis results at c = 3.14 (b)

3.6.1. Statement of synthesis problem

The objective functional is formulated as [4]

σ =
∫∫

Ω

(F(θ, ϕ)− | f (θ, ϕ)|)2dθdϕ + t
N

∑
n=1

∫

Sn

|In(xn, yn)|2dxndyn, (112)

where N = 2M + 1 is a number of exciting waveguides, F(θ, ϕ) is the prescribed amplitude
RP, | f (θ, ϕ)| is the amplitude of synthesized RP, In(xn, yn) are the currents in the waveguide
apertures. Geometry of waveguide array is shown in Fig. 11.

The determination of the currents In(xn, yn) in the waveguide apertures (the solution of
analysis problem) results in solution of the integral equation system [14].

The RP (array factor) [9] of array is:

f (θ, ϕ) =
N

∑
n=1

an exp[ik(xn0 sin θ cos ϕ+yn0 sin θ sin ϕ)], (113)
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Figure 11. Geometry of plane periodical waveguide array

where xn0 and yn0 are the coordinates of central points of apertures, an is the complex
excitation coefficient for n-th waveguide.

Introducing the generalized angular coordinates ξ1 and ξ2, we receive the expression for the
RP

f (ξ1, ξ2) =
N

∑
n=1

an exp[ik(xn0 ξ1 + yn0 ξ2)], (114)

where
ξ1 = sin θ cos ϕ, ξ2 = sin θ sin ϕ, (115)

and finally

f (ξ1, ξ2) = A�a :=
N

∑
n=1

an fn(ξ1, ξ2), (116)

where�a = {a1, a2, ...aN}, fn(ξ1, ξ2) are the RPs of separate waveguides.

The expression (116) indicates that the calculation of array factor f (ξ1, ξ2) using the excitation
coefficients an is realized by the linear operator A. The coefficients an will be the optimization
parameters in the synthesis problem. Solving the synthesis problem, we minimize the
functional σt (34).

3.6.2. The modeling results

The results of numerical calculations are presented for the waveguide arrays consisting of
15 and 31 radiators; kl = 1.2, kL = 18.75, k is wavenumber, l and L are width and length
of waveguide aperture respectively. The prescribed amplitude RP is: F(θ, ϕ) = F1(θ)F2(ϕ),
where

F1(θ) =

{

1, |θ| ≤ π/20
0, |θ| > π/20

, F2(ϕ) = (cos ϕ)64. (117)

In Fig. 12, the dependence of the synthesis results on the value N of waveguides is shown. It
is easy to see, that the synthesized amplitude RP has narrower main lobe if N increases. The
level of the first sidelobe is -30.26dB and -30.71dB respectively. The low level of sidelobes
and velocity of its decrease is very important characteristic of the synthesized amplitude
RPs. As rule, one requires the level of first sidelobe not greater than -20dB and not very
slow decreasing the next sidelobes. The above mentioned characteristic for the synthesized
amplitude RP in the plane ξ2Oz are shown in Table 2. The amplitude RP | f | at N = 31 has
lower first sidelobe -30.71dB and faster decrease of the far sidelobes.
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Sidelobe: 1st 2nd 3rd 4th 5th
N = 15 −30.26 −40.43 −46.25 −50.63 −53.27
N = 31 −30.71 −40.83 −47.52 −52.45 −56.33

Table 2. The level of sidelobes (in dB) corresponding to array with various N

(a) N = 15 (b) N = 31

Figure 12. The synthesized amplitude RPs for various N

4. Conclusions

In the process of solving the amplitude-phase synthesis problem, the influence of weight
multiplier t on the synthesis results was investigated. It turned out that the mean-square
deviation of the prescribed F and synthesized | f | amplitude RPs diminishes if t decreases. At
the same time the norm ||I|| of current grows. This testify that one should take into account
the above fact in order to receive the solution with smaller mean-square deviation of the RPs
or with small norm of current. The elaborated iterative procedures guarantee convergence of
the successive approximation methods for numerical solving the arising non-linear equations.

The proposed approach for solving the synthesis problems of resonant antennas is universal,
and it provides the possibility to synthesize antennas with the arbitrary form of external
boundary. The calculation time of the RP of antenna is small enough what it is very important
in the process of solution of the synthesis problem. The used variational statement of the
synthesis problem also allows to take into account restrictions on the field at the given points
(areas) of a near zone.

The synthesis of the resonant antenna with waveguide excitation gives the possibility to take
into account the various requirements to the FRF in the operating frequency range. The
developed algorithms enable to optimize the values of FRF in the single range, as well as
in the several frequency ranges. The values of the objective parameters d and ρ, which are
received in the process of numerical calculations, are constructive characteristics of resonant
antenna and they can be directly used in the antenna design.

The variational approach for solving the phase synthesis problem can be applied effectively
for the plane, cylindrical and conical arrays. It allows to decrease the computational time,
at the same time the accuracy of determination of the array characteristics is sufficient for
practice. The branching solutions are investigated for the case of linear array. It is shown
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that one can receive the solutions with various properties starting the iterative process with
different initial approximations.

The considered optimization problems of waveguide array give the possibility to take into
account the requirements to the amplitude RP and amplitude-phase distribution of field in
the aperture of exciting waveguides. The developed algorithms enable to achieve the minimal
mean-square deviation σ of the prescribed and synthesized amplitude RPs, and to optimize
simultaneously the restrictions on the phase or amplitude characteristics of the excited fields.
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