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1. Introduction

Water is essential to all forms of life. The development of humanity is associated to the use
of water, and nowadays, the constant availability and satisfaction of water demand is a fun‐
damental requirement in modern societies. Although water seems to be abundant on our
planet, fresh water is not an inexhaustible resource and has to be managed in a rational and
sustainable way. The demand for water is dynamic and influenced by various factors, from
geographic, climatic and socioeconomic conditions, to cultural habits. Even within the same
neighbourhood the user-specific water demand is elastic to price, condition of the water dis‐
tribution system (WDS), air temperature, precipitation, and housing composition (regarding
only residential demand in this case). On top of all these factors, demand varies during the
day and the week.

Traditionally, for WDS modelling purposes, water demand is considered as being determin‐
istic. This simplification worked relatively well in the past, since the major part of the stud‐
ies on water demands were conducted only with the objective of quantifying global demands,
both on the present and on the long-term. With the development of optimal operating sched‐
ules of supply systems, hourly water demand forecasting started to become increasingly
more important. Moreover, taking in consideration all the aforementioned factors that influ‐
ence water use, it is clear that demand is not deterministic, but stochastic. Thus, more recent‐
ly, in order to guarantee the requested water quantities with adequate pressure and quality,
the studies began to focus on instantaneous demands and their stochastic structure.

© 2013 Vertommen et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
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1.1. Descriptive and Predictive Models for Water Demand

The first stochastic model for (indoor) residential water demands was proposed by Buch‐
berger and Wu [1]. According to the authors, residential water demand can be characterized
by three parameters: frequency, duration and intensity, which in turn can be described by a
Poisson rectangular pulse process (PRP). The adopted conceptual approach is relatively sim‐
ilar to basic notions of queuing theory: a busy server draws water from the system at a ran‐
dom, but constant, intensity and, during a random period of time. Residential demands
were subdivided into deterministic and stochastic servers. Deterministic servers, including
washing machines and toilets, produce pulses which are always similar. Stochastic servers,
like water taps, instead produce pulses with great variability, and their duration and intensi‐
ty are independent. The PRP process found to best describe water demand is non-homoge‐
neous, i.e., when the pulse frequency is not constant in time. Different authors used real
demand data to assess the adequacy of the non-homogeneous PRP model, achieving good
results [2]. Moreover, the PRP model was confirmed to allow the characterization of the spa‐
tial and temporal instantaneous variability of flows in a network, unlike the traditional
models that use spatial and temporal averages and neglect the instantaneous variations of
demand. One drawback to the rectangular pulse based models is the fact that the total inten‐
sity is not exactly equal to the sum of the individual intensities of overlapping pulses, due to
increased head loss caused by the increased flow [3]. This problem can however be solved
by introducing a correction factor. The daily variability of demand represents another draw‐
back to the PRP model, since it can invalidate the hypothesis that pulses arrive following a
time dependent Poisson process [2]. One possible solution to this question is to treat the
time dependent non-homogeneous process as a piecewise homogeneous process, by divid‐
ing the day into homogeneous intervals [4]. Another solution consists in using an alternative
demand model: the cluster Neyman-Scott rectangular pulse model (NSRP), proposed by Al‐
visi [5]. The model is similar to the PRP model, but the total demand and the frequency of
pulses are obtained in different ways. In the PRP model the total water demand follows a
Poisson process resulting from the sum of the single-user Poisson processes, with a single
arrival rate. In the NSRP model, a random number of individual demands (or elementary
demands) are aggregated in demand blocks. The origin of the demand blocks is given by a
Poisson process, with a certain rate between the subsequent arrivals. The temporal distance
between the origins of each of the elementary demands to the origin of the demand block,
follows an exponential distribution with a different rate. The variation of these parameters
during the day reflects the cyclic nature of demands. A good approximation of the statistical
moments for different levels of spatial and temporal aggregation was achieved; however,
the variance of demand becomes underestimated for higher levels of spatial aggregation.

The aforementioned models are mainly descriptive. More recently, Blokker and Vreeburg
[6] developed a predictive end-use model, based on statistical information about users and
end uses, which is able to forecast water demand patterns with small temporal and spatial
scales. In this model, each end-use is simulated as a rectangular pulse with specific probabil‐
ity distribution functions for the intensity, duration and frequency, and a given probability
of use over the day. End-uses are discriminated into different types (bath, bathroom tap,
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dish washer, kitchen tap, shower, outside tap, washing machine, WC). The statistical distri‐
bution for the frequency of each end-use was retrieved from survey information from the
Netherlands. The duration and intensity were determined, partly from the survey and part‐
ly from technical information on water-using appliances. From the retrieved information, a
diurnal pattern could be built for each user. Users represent a key point in the model and
are divided into groups based on household size, age, gender and occupation. Simulation
results were found to be in good agreement with measured demand data. The End-Use
model has also been combined with a network solver, obtaining good results for the travel
times, maximum flows, velocities and pressures [7].

The PRP and the End-Use model were compared against data from Milford, Ohio. The ach‐
ieved results showed that both models compare well with the measurements. The End-Use
model performs better when simulating the demand patterns of a single family residence,
while the PRP models describes more accurately the demand pattern of several aggregated
residences [8]. The main difference between the models is the number of parameters they
use: the PRP model is a relatively simple model that has only a few parameters, while the
End-Use model has a large number of parameters. However, the End-Use model is very
flexible towards the input parameters, which also have a clearer physical meaning and
hence more intuitive to calibrate. The PRP model describes the measured flows very well.
From the analytic description provided by the PRP model, a lot of mathematical deductions
can be made. Thus, one can classify the PRP model as a descriptive model with a lot of po‐
tential to provide insight into some basic elements of water use, such as peak demands
[9]and cross-correlations [10]. The End-Use model is a Monte Carlo type simulation that can
be used as a predictive model, since it produces very realistic demand patterns. The End-
Use model can be applied in scenario studies to show the result of changes in water using
appliances and human behaviour. Possible improvements to the model include the incorpo‐
ration of leakage, the consideration of demands as a function of the network pressure and
the application of the model outside the Netherlands [11]. Li [10]studied the spatial correla‐
tion of demand series that follow PRP processes. It was verified that while time averaged
demands that follow a homogeneous PRP process are uncorrelated, demands that follow a
non-homogenous PRP process are correlated, and that this correlation increases with spatial
and temporal aggregation. A similar conclusion about the correlation was achieved by
Moughton [12]from field measurements.

1.2. Uncertainty and reliability-based design of water distribution systems

The problem of WDS design consists in the definition of improvement decisions that can op‐
timize the system given certain objectives. As aforementioned, in the earliest works regard‐
ing the optimal design of water distribution systems (WDS), input parameters, like water
demand, were considered as being deterministic, often leading to under-designed networks.
A robust design, allowing a system to remain feasible under a variety of values that the un‐
certain input parameters can assume, can only be achieved through a probabilistic ap‐
proach. In a probabilistic analysis the input parameters are considered to be random
variables, i.e., the single values of the parameters are replaced with statistical information
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that illustrates the degree of uncertainty about the true value of the parameter. The out‐
comes, like nodal heads, are consequently also random variables, allowing the expression of
the networks’ reliability.

Uncertainty in demand and pressure heads was first explicitly considered by Lansey [13].
The authors developed a single-objective chance constrained minimization problem, which
was solved using the generalized reduced gradient method GRG2. The obtained results
showed that higher reliability requirements were associated to higher design costs when one
of the variables of the problem was uncertain.

Xu and Goulter [14] proposed an alternative method for assessing reliability in WDS. The
mean values of pressure heads were obtained from the deterministic solution of the network
model. The variance values were obtained using the first-order second moment method
(FOSM). The probability density function (PDF) of nodal heads defined by these mean and
variance values was used to estimate the reliability at each node. The approach proved to be
suitable for demands with small variability. Kapelan [15] developed two new methods for
the robust design of WDS: the integration method and the sampling method. The integra‐
tion method consists in replacing the stochastic target robustness constraint (minimum pres‐
sure head) with a set of deterministic constraints. For that matter it is necessary to know the
mean and standard deviation of the pressure heads. However, since pressure heads are de‐
pendent of the demands, it is not possible to obtain analytically the values for the standard
deviations. Approximations of the values of the standard deviations are obtained by assum‐
ing the superposition principle, which makes it possible to estimate the contribution of the
uncertainty in demand on the uncertainty of pressure heads. The sampling method is based
on a general stochastic optimization framework, this is, a double looped process consisting
on a sampling loop within an optimization loop. The optimization loop finds the optimal
solution, and the sampling loop propagates the uncertainty in the input variables to the out‐
put variables, thus evaluating the potential solutions.

The aforementioned optimization problems are formulated as constrained single-objective
problems, resulting in only one optimal solution (minimum cost), that provides a certain
level of reliability. More recently, these optimization problems have been replaced with
multi-objective problems. Babayan [16] formulated a multi-objective optimization problem
considering two objectives at the same time: the minimization of the design cost and the
maximization of the systems’ robustness. Nodal demands and pipe roughness coefficients
were assumed to be independent random variables following some PDF.

At this point, all the aforementioned models assume nodal demands as independent ran‐
dom variables. However, in real-life demands are most likely correlated: demands may rise
and fall due to the same causes. Kapelan [17] introduced nodal demands as correlated ran‐
dom variables into a multi-objective optimization problem. The authors verified that the op‐
timal design solution is more expensive when demands are correlated than the equivalent
solution when demands are uncorrelated. A similar conclusion was achieved by Filion [18].
These results sustain that assuming uncorrelated demands can lead to less reliable network
designs. Thus, even if increasing the complexity of optimization problems, demand correla‐
tion should always be taken into account in the design of WDS.
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The robust design of WDS has gained popularity over the last years. Researchers have been
focusing on methods and algorithms to solve the stochastic optimization problems, and
great improvements have been made in this aspect. However, the quantification of the un‐
certainty itself has not been addressed. Values for the variance and correlation of nodal de‐
mands are always assumed and no attention is being paid in properly quantifying these
parameters. The optimization problems could be significantly improved if more realistic val‐
ues for the uncertainty would be taken into account.

This work addresses the need to understand in which measure the statistical parameters de‐
pend on the number of aggregated users and on the temporal resolution in which they are
estimated. It intends to describe these dependencies through scaling laws, in order to derive
the statistical properties of the total demand of a group of users from the features (mean,
variance and correlation) of the demand process of a single-user. Being part of the first au‐
thor’s PhD research, which aims the development of descriptive and predictive models for
water demand that provide insight into peak demands, extreme events and correlations at
different spatial and temporal scales, these models will, in future stages, be incorporated in
decision models for design purpose or scenario evaluation. Through this approach, we hope
to develop more realistic and reliable WDS design and management solutions.

2. Statistical characterization of water demand

Recent studies on uncertainty in water distribution systems (WDS) refer that nodal demands
are the most significant inputs in hydraulic and water quality models [19]. The variability of
water demand affects the overall reliability of the model, the assessment of the spatial and
temporal distributions of the pressure heads, and the evaluation of water quality along the
different pipes. These uncertainties assume a different importance depending on the spatial
and temporal scales that are considered when describing the network. The degree of uncer‐
tainty becomes more relevant when finer scales are reached, i.e., when small groups of users
and instantaneous demands are considered. Thus, for a correct and realistic design and
management, as well as simulation and performance assessment of WDS it is essential to
have accurate values of water demand that take into account the variability of consumption
at different scales. For that matter, the thorough description of the statistical properties of
demand of the different groups of customers in the network, at specific temporal resolu‐
tions, is essential.

For a better understanding of this aspect, let us consider the distribution of the customers in
a network. Figure 1 shows the network of a small town where the customers can be classi‐
fied mainly as residential.
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Figure 1. Spatial variability of customers in a real distribution network, from Magini et al. [25]. The number of custom‐
ers is outlined at various locations.

The most peripheral pipe serves the inhabitants of one single building. When moving up‐
wards in the network, the number of customers increases reaching a maximum of 1258 cus‐
tomers near the tank. Obviously, as a consequence, the mean flow increases from the
peripheral building to the tank. The increase of the variance of the flow is, however, less ob‐
vious. For larger networks and more densely populated towns, the difference between the
number of customers that are close and far from the tank, and consequently, the variations
of the mean and variance of the flow is even more pronounced.

Another important aspect when modelling a network is the choice of the adequate temporal
resolution. This choice depends on the characteristics of the available measurement instru‐
ments and on the type of analysis to perform. When modelling the peripheral part of a net‐
work, characterized by a significant temporal variation of demand, it is important to adopt
fine temporal resolutions, i.e., in the order of seconds. For the estimation of peak flows in
design problems Tessendorff [20] suggests the use of different temporal resolutions on dif‐
ferent sections of the network: the author suggests the use of a 15 second time interval for
customer installation lines, two minutes for service lines, 15 minutes for distribution lines,
and 30 minutes for mains and secondary feeders. The statistical properties of water demand
are affected by the considered temporal resolution. The use of longer sampling intervals
causes an inevitable loss of information about the signals, resulting in lower estimates for
the variance [21, 22]. This aspect is particularly relevant at the peripheral pipes of the net‐
work that, as aforementioned, are characterized by large demand fluctuations. Therefore,
understanding the spatial and temporal scaling properties of water demand is essential to
build a stochastic model for water consumption.

Water demand can be described by a stochastic process in which q(i, t)represents the de‐
mand of water of the single-user iat time instantt . In order to estimate the statistical proper‐
ties of water demand, it is necessary to have a historical series of observations, extended to
sufficiently wide number of users of each type. From this data it is then possible to estimate
the mean and variance of the process.
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If the consumers are assumed to be of the same type, the properties of demand can be con‐
sidered to be homogeneous in space, this is, they are independent of the particular consum‐
er that is taken into consideration. Regarding the temporal variability, the stochastic process
can only be assumed to be stationary in time intervals during which the mean stays con‐
stant. Once the length of this time interval, T , is established, it is possible to determine the
temporal mean, μ1, and variance,σ1

2 , of the demand signal of the single-useri, as followed:

μ1 = 1
T ∫0

T q(i, t)dt (1)

σ1
2 = 1

T ∫0
T q(i, t) - μ1

2dt  (2)

For homogeneous and stationary demands, the expected values for the mean and variance,
E μ1 andE σ1

2 , obtained from N observations, provide the mean and variance of the process.

2.1. Correlation between consumers

The definition of the mean and variance for each type of consumer is not enough for a com‐
plete statistical characterization of demand. In order to obtain a realistic representation of
the demand loads at the different nodes in a network; essential for the assessment of the net‐
work performance under conditions as close as possible to the actual working conditions,
the correlation between nodal demands cannot be ignored. This correlation can be expressed
through the cross-covariance and cross-correlation coefficient functions.

The cross-covariance,covAB , and cross-correlation coefficient,ρAB , between user iof group A
and user jof groupB, during the observation periodT , are expressed, respectively, as fol‐
lowed:

covAB = 1
T ∫0

T
qA(iA, t)−μA qB( jB, t)−μB dt (3)

ρAB =
covAB

σA ⋅ σB
(4)

As known, the WDS need to guarantee minimum working conditions, this is, the minimum
pressure requirements have to be satisfied at each node even under maximum demand
loading conditions. If all the consumers in the network are of the same type, it seems reason‐
able to assume a perfect correlation between demands, and to simplify the analysis of the
network by assigning the same demand pattern to all the consumers. The synchronism of
demands is the worst scenario that can occur on a network, causing the widest pressure
fluctuations at the nodes. The assumption of a perfect correlation for design purposes results
in reliable networks, but it also requires the increase of the pipe diameters, which conse‐
quently increases the networks cost. In fact, as mentioned earlier, each consumer has his
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own demand pattern based on specific needs and habits, without knowing what other con‐
sumers are doing at the same time. This means that demand signals in real networks are cor‐
related, but are not synchronous. Thus, in order to obtain the optimum design of a network,
it is essential to estimate the accurate level of correlation between the consumers. On the
other hand, to estimate accurately the spatial correlation between demands, it is necessary to
collect and analyse historical series, resulting in additional costs in the design phase. How‐
ever, these additional costs will most certainly be compensated by the achieved reduction of
the following construction costs.

2.2. The scaling laws approach in modelling water demand uncertainty

Water demand uncertainty is made of both aleatory or inherent uncertainty, due to the natu‐
ral and unpredictable variability of demand in space and time, and epistemic or internal un‐
certainty, due to a lack of knowledge about it. Hutton [23] distinguishes epistemic
uncertainty in two types. The first type concerns the nature of the demand patterns, and the
lack of knowledge about this variability when modelling WDS both in time and space. This
uncertainty is defined as ‘two-dimensional’ uncertainty since it is composed by both aleato‐
ry and epistemic uncertainty. It can be reduced with extended and expensive spatial and
temporal data collection or through the employment of descriptive and predictive water de‐
mand models. The second type of epistemic uncertainty takes the spatial allocation of water
demand into account when modelling WDS [24].

Dealing with the ’two-dimensional’ uncertainty when modelling WDS, requires not only a
complete statistical characterization of demand variability, but also the determination of the
correlation among the different users and groups of users. The natural variability of demand
can be expressed using probability density functions (PDF). A PDF is characterized by its
shape (e.g. normal, exponential, gamma, among others) and by specific parameters like the
population mean and variance. Thus, in order to represent uncertain water demand using a
PDF, it is necessary to identify and estimate the values of these parameters. The considera‐
tion of different spatial and temporal aggregation levels induces changes in the PDF param‐
eters, often leading to a reduction of the uncertainty. The auto-correlation and cross-
correlation that characterize the water demand signals affect the extent to which the PDF
parameters vary, and can introduce an additional sensitivity to the specific period of obser‐
vation in question.

In order to understand the effects of spatial aggregation and sampling intervals on the statis‐
tical properties of demand, it is possible to develop analytical expressions for the moments
(mean, variance, cross-covariance and cross-correlation coefficient) of demand time series, at
a fixed time sampling frequency∆ t , of naggregated users as a function of the moments of
the single-user series sampled in the observation period T. These expressions are referred to
as “Scaling Laws”, and can be expressed as:

E m∆t ,T (n) = E m∆t ,T ⋅n α ⋅ f (∆ t , T ) (5)
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WhereE m∆t ,T (n)  is the expected value of the moment mfor nusers for the time intervalT ;
E m∆t ,T  is the expected value of the moment mfor the single-user for the same time interval;
αis the exponent of the scaling law; and f (∆ t , T )is a function that expresses the influence of
both sampling rate and observation period.

The development of the scaling laws is based on the assumption that the demand can be de‐
scribed by a homogeneous and stationary process, which implies that the naggregated users
are of the same type (residential, commercial, industrial, etc.), and that the statistical proper‐
ties of demand, mean and variance, can be assumed constant in time. The scaling laws for
the mean, variance, and lag1 covariance were derived by Magini [25]. The expected value of
the total mean demand q(n, t)can be expressed as followed:

E μ∆t ,T (n) = E 1
T ∫0

T ∑
j=1

n
q( j, τ)dτ = 1

T ∫0
T ∑

j=1

n
E q( j, τ) dτ =n ⋅E μ1 (6)

Where E μ1  is the expected demand value for the single user or ‘unit mean’. This expres‐
sion shows that the mean demand increases linearly with the number of users according to a
factor of proportionality equal to the expected value of the single user and is independent of
the sampling rate and observation period.

In order to estimate the expected value of the demand variance it is necessary to consider
the covariance function cov(s, τ)of the single-user demand at the spatial and temporal lags,
s = j1 - j2andτ =τ1 - τ2, respectively. The following expression is obtained (see [26] for the
mathematical passages):

E σΔt ,T
2 (n) =

1
T 2 ∫0

T ∫0
T
∑
i1=1

n
∑
i2=1

n
covΔt(s,0)−covΔt(s, τ) dτ1dτ2

=∑
i1=1

n
∑
i2=1

n
covΔt(s,0)−

1
T 2 ∫0

T ∫0
T

covΔt(s, τ)dτ1dτ2

(7)

Where cov∆t(s, 0) is the covariance function at lags =0, and cov∆t(s, τ) is the space-time cova‐
riance function. This expression shows that the expected value for the sample variance of
the n-users process depends on the correlation structure of the single-user demands. The

term 1
T 2 ∫0

T ∫0
T cov∆t(s, τ)dτ1dτ2 decreases as the period of observation T increases, becoming

negligible whenT > >θ, being θ a parameter, connected to the cross-correlation of the de‐
mands and similar to the scale of fluctuation for the auto-correlation of a single signal.

The term cov∆t(s, 0) is independent from τ1 andτ2, and assumes the following values:

covΔt(s,0)= {covΔt(s) j1≠ j2
σ1,Δt

2 j1 = j2
(8)
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Where cov∆t(s) is the spatial cross-covariance between different single-user demands, and

σ1,∆t
2  the variance of the single user. For large values ofT , equation (7) can be simplified into:

E σΔt ,T
2 (n) =∑

j1=1

n
∑
j2=1

n
covΔt(s,0)=∑

j1=1

n
∑
j2= j1

covΔt(s,0) + ∑
j1=1

n
∑
j2≠ j1

covΔt(s,0)

=n ⋅σ1,Δt
2 + n ⋅ (n −1)⋅covΔt(s)

(9)

This equation represents the scaling law for the variance, neglecting the bias that can be
caused when using small the demand series (short observation periods).

Introducing the Pearson cross-correlation coefficient given byρ =
cov xy

σxσy
, and considering ρΔt

as the cross-correlation coefficient between each couple of single-user demands, the spatial
covariance can be expressed ascovΔt =ρΔT σ1,Δt

2 , and Equation (9) becomes:

E σ∆t
2 (n) =n 2⋅ρ∆t ⋅σ1,∆t

2 + n ⋅ 1 - ρ∆t ⋅σ1,∆t
2 (10)

If demands are perfectly correlated in space then ρ∆t  is equal to one, and equation (10) is
simplified into:

E σ∆t
2 (n) =n 2⋅σ1,∆t

2 (11)

If demands are uncorrelated in space then ρΔtis equal to zero, and equation (9) is simplified
into:

E σ∆t
2 (n) =n ⋅σ1,∆t

2 (12)

Since the cross-correlation coefficient can assume values between 0 and1, equations (10) and
(11) represent the maximum and minimum expected values for the variance. Equation (9)
can be simplified into a more generic form given by:

E σ∆t
2 (n) =n α ⋅σ1,∆t

2 (13)

Where1≤α ≤2.

In conclusion, it can be stated that the variance in the consumption signal of a group of users
n, homogeneous in type, is proportional to the mean variance of the single-user according to
an exponent, which varies between 1 and 2. The value of the scaling exponent depends on
the structure of the spatial correlation, i.e., the correlation that exists between the different
consumptions during the observation period: if demands are uncorrelated in space, the scal‐
ing law is linear, if demands are perfectly correlated in space, the scaling law is quadratic.
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The variance function, γ(Δt), measures the reduction of the variance of the instantaneous
signal when the sampling interval Δtincreases [27], as followed:

σ1,∆t
2 =σ1

2⋅γ(Δt) (14)

Where σ1
2 is the variance of the instantaneous signal for the single user. Introducing the var‐

iance function in equation (13), the following is obtained:

E σ∆t
2 (n) =n α ⋅σ1

2⋅φ(∆ t) (15)

Similarly, the expected value of the cross-covariance is given by:

E covAB,Δt(na, nb) = 1
T 2 ∫0

T ∫0
T
∑
i=1

na

∑
j=1

nb

covAB,Δt(s,0)−covAB,Δt(s, τ) dτ1dτ2

=∑
i=1

n
∑
j=1

n
covAB,Δt(s,0)−

1
T 2 ∫0

T ∫0
T

covAB,Δt(s, τ)dτ1dτ2

(16)

Neglecting the term 1
T 2 ∫0

T ∫0
T cov AB,∆t(s, τ)dτ1dτ2, the expected value of the cross-covariance

between the demands of na aggregated users of group A and nb aggregated users of group B

is given by:

E cov AB,∆t(na, nb) =na ⋅nb ⋅E ρab,∆t ⋅E σa,∆t ⋅E σb,∆t (17)

Where, E ρab,∆t  is the expected Pearson cross-correlation coefficient between the single-user

demands of the two groups; and σa,∆t  and σb,∆tare the standard deviations of the single-user

demands of groups AandB, respectively, at the sampling rate∆ t . The expected value of the
cross-covariance increases according to the product between the number of users of each
group. In the particular case in which both groups have the same statistical properties, i.e.,
they belong to the same process, and assuming thatna =nb, the scaling law of the cross-cova‐

riance becomes quadratic.

As a consequence, the expected value of the Pearson cross-correlation coefficient between
the demands of na aggregated users of group A and nb aggregated users of group B, is given

by:

E ρAB,∆t(na, nb) =
E Cov AB ,∆t (na, nb)

E σA,∆t (na) ⋅ E σB ,∆t (nb)
=

na ⋅ nb ⋅ E ρab,∆t

na(1 + E ρa,∆t ⋅ na - 1 ) ⋅ nb(1 + E ρb,∆t ⋅ nb - 1 )  (18)
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This equation shows that this coefficient depends separately on the spatial aggregation lev‐
els of each group, na and nb, and not only on their product as happens for the cross-cova‐
riance. If na = nb = n equation [18] becomes:

E ρAB,∆t(n) =
n ⋅ E ρab,∆t

1 + (n - 1) ⋅ E ρa,∆t 1 + (n - 1) ⋅ E ρb,∆t

(19)

From equation (19) it is possible to observe that the expected value E ρAB,∆t(na, nb) increases
with the number of users, naandnb, reaching the following limit value:

E ρAB,Δt(na, nb) = lim
na→∞

nb→∞

E ρAB,Δt(na, nb) =
E ρab,Δt

(E ρa,Δt ⋅ E ρb,Δt ) (20)

Since by definitionE ρab,Δt ≤1, the maximum value that the expected value of the cross-cor‐
relation coefficient between the single-user demands of group Aand Bcan assume is:

E ρAB,∆t max = (E ρa,∆t ⋅E ρb,∆t ) (21)

From equation (21) it is also possible to observe that the Pearson cross-correlation coefficient
between the na aggregated users of group Aand the nb aggregated users of group Bdepends
on both the cross-correlations inside each group and the cross-correlation between the
groups. Therefore, it seems interesting to investigate the way in which these two aspects,
one at a time, affect the expected value of the cross-correlation when the number of aggre‐
gated users increases and for a fixed sampling rate∆ t . In order to do so let us first consider a
fixed value of ρab and varying values of ρa andρb. Figure 2 shows the graphical results for
ρab =0.1 and different pairs of ρa andρb.

As expected, all the curves have a common starting point, since ρab is fixed. According to
equation (19) a gradual flattening of the curves and a reduction of the shape ratio ρAB,lim / ρab

can be noticed when the product ρa ⋅ρb increases. Let us now consider a different case in
which ρa and ρb are fixed and ρabvaries. The results are shown graphically in figure 3. The
curves have now different starting points and equal shape ratiosρAB,lim / ρab. Increasing ρab

produces only an upward shift of the curves, extending their transient.
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Figure 2. Scaling laws ofE ρAB(n) , for different values ofρa ⋅ρb.

Figure 3. Scaling laws ofE ρAB(n) , for different values ofρab.

In the particular case in which both groups of users have the same statistical properties, i.e.,
they belong to the same process, and assumingna =nb =n, the scaling law for the cross-corre‐
lation coefficient, considering no differences in the sampling time intervals, is:

E ρAB,∆t(n) =
n ⋅ E ρ∆t

1 + (n - 1) ⋅ E ρ∆t

(22)

From equation (22) it is clear that the cross-correlation coefficientincreases with the number
of aggregated users, tending to one. This limit value is reached as sooner as the cross-corre‐
lation coefficient, E ρ∆t , between the single-user demands is higher.
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3. Validation of the Analytical expressions

3.1. Synthetically generated signals: scaling laws for the mean and the variance

In order to confirm the analytical development reported in the previous paragraph, the scal‐
ing laws were derived for groups of synthetically and simultaneously generated consump‐
tion signals. At this aim the Multivariate Streamflow model [28], with a normal probability
distribution, was used. Each group was assumed to contain 300 consumption signals with
3600 realizations each, distinguished by different values of the cross-correlation coefficient
between them. The correctness of the procedure used to generate each demand series was
tested by checking that the mean, the variance and the cross-correlation coefficient of the
generated signals were equal to the input parameters of the model. Only little differences
were observed (Table 1), which are explained due to the fact that the generated demand ser‐
ies are realizations of a stochastic process and, consequently, their moments necessarily dif‐
fer from the theoretical ones.

Once the single consumption signals of each group were generated, they were aggregated
randomly selecting one at a time, until a maximum of 100 aggregated consumption signals
was reached. The first and second order moments, mean and variance, were calculated for
each aggregation level. In order to obtain a result as general as possible, the same procedure
has been repeated 50 times, aggregating each time different users [25]. The obtained results
are summarized in Table 1 and 2, with reference to equation 5.

Cross-correlation

coefficient

E[mT] α

Theoretical Experimental Theoretical Experimental

0 0.70 0.7003 1.00 0.9996

0.001 0.70 0.7017 1.00 0.9993

0.010 0.70 0.6971 1.00 1.0001

0.025 0.70 0.7020 1.00 0.9989

0.050 0.70 0.7096 1.00 1.0004

0.10 0.70 0.7063 1.00 1.0009

0.20 0.70 0.7086 1.00 0.9994

0.30 0.70 0.7032 1.00 1.0008

0.40 0.70 0.6923 1.00 1.0003

0.50 0.70 0.6942 1.00 0.9985

0.60 0.70 0.6857 1.00 1.0002

0.70 0.70 0.6874 1.00 1.0011

0.80 0.70 0.6852 1.00 0.9998

0.90 0.70 0.6789 1.00 1.0009

0.99 0.70 0.7050 1.00 0.9997

Table 1. Theoretical and experimental values of the scaling law for the first order moment for different values of the
cross-correlation.
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Cross-correlation

coefficient
E[mT] α

0 3.9808 1.0004

0.001 3.5205 1.0541

0.010 1.9864 1.3079

0.025 1.4498 1.4984

0.050 1.2702 1.6403

0.10 1.2940 1.7686

0.20 1.5621 1.8675

0.30 1.8879 1.9139

0.40 2.1713 1.9379

0.50 2.4485 1.9570

0.60 2.7685 1.9692

0.70 3.0803 1.9804

0.80 3.4051 1.9888

0.90 3.6567 1.9945

0.99 3.9960 1.9985

Table 2. Experimental values of the scaling law for the second order moment for different values of the cross-
correlation.

Results confirm the linear scaling for the first order moment and show that the variance in‐
creases with the spatial aggregation level according to an exponent that varies between 1
and 2. In theory, for spatially uncorrelated demands the scaling laws is linear and for per‐
fectly correlated demands the scaling law is quadratic.

3.2. Synthetically generated signals: scaling laws for the cross-covariance

In this case pairs of aggregated consumption series, A and B, were obtained by randomly
selecting among pairs of the previously generated groups of signals. Different values of the
productna ⋅nb, where na is the number of signals in group A and nb the same number in
group B, were considered, up to the maximum valuena ⋅nb =500. Each aggregation process
was characterized by the cross-correlation value between the single signals in the same
group and the cross-correlation value between the single signals of the two native groups.
The cross-covariance was computed for the different aggregation levels and the scaling law
were derived for each process. The results are summarized in Table 3 with reference to
equation 17, considering Coeff = E ρab,ΔT ⋅E σa,ΔT ⋅E σb,ΔT and α as the exponent of the
product na ⋅nb.
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Cross-correlation coefficient Coeff α

ρa ρb ρab theoretical experimental theoretical experimental

0.10 0.10 0.10 0.3754 0.3747 1.00 0.9998

0.20 0.10 0.10 0.3880 0.3907 1.00 0.9982

0.40 0.10 0.10 0.3676 0.3624 1.00 1.0020

0.40 0.20 0.10 0.3463 0.3440 1.00 1.0003

0.80 0.60 0.10 0.3939 0.3908 1.00 1.0009

0.50 0.50 0.10 0.3545 0.3541 1.00 0.9993

0.50 0.50 0.20 0.7449 0.7401 1.00 1.0007

0.50 0.50 0.30 1.0999 1.0923 1.00 1.0004

0.50 0.50 0.40 1.4643 1.4605 1.00 0.9999

0.50 0.50 0.50 1.8408 1.8504 1.00 0.9986

Table 3. Theoretical and experimental values of the scaling law for the cross-covariance for different values of the
cross-correlation coefficients in, ρa and ρb, and between A,B, ρab.

Results confirm that α is always equal to one. However, in this case the scaling does not con‐

sider the number of aggregated users, but their product, and thus the law is not linear but

quadratic. A similar approach was also applied in the particular case in whichρa =ρb =ρab,

andσa =σb, that is, when all the consumptions are homogeneous, and withna =nb.

Cross-correlation Coeff α

coefficient theoretical experimental theoretical experimental

0.10 0.40 0.4000 2.00 1.9998

0.20 0.80 0.7914 2.00 1.9997

0.30 1.20 1.2160 2.00 2.0008

0.40 1.60 1.6009 2.00 1.9985

0.50 2.00 2.0059 2.00 1.9992

0.60 2.40 2.3955 2.00 2.0003

0.70 2.80 2.7934 2.00 2.0000

0.80 3.20 3.2043 2.00 1.9999

0.90 3.60 3.6057 2.00 1.9999

0.99 3.96 3.9408 2.00 2.0003

Table 4. Theoretical and experimental values of the scaling law for the cross-covariance between homogeneous
groups of consumptions and different values of the cross-correlation coefficient.
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Equation 17 then becomes E cov AB,T (na, nb) =n 2⋅E ρab,∆t ⋅E σ∆t
2 .The results for different

values of the cross-correlation coefficient are described in Table 4. They confirm the theoreti‐
cal quadratic scaling for cross-covariance.

3.3. Real consumption data: scaling laws for the mean and the variance

The parameters of the scaling laws were also derived for a set of real demand data. The in‐
door water uses demand series of 82 single-family homes, with a total of 177 inhabitants, in
a building belonging to the IIACP (Italian Association of Council Houses) in the town of
Latina were considered [29, 30]. The apartments are inhabited by single-income families, be‐
longing to the same low socioeconomic class.The daily demand series of four different days
(4 consecutive Mondays) of the 82 users were considered [25]. For each user the different
days of consumptions can be considered different realizations of the same stochastic proc‐
ess. In this way the number of customers was artificially extended to about 300, preserving
at the same time the homogeneity of the sample. The temporal resolution of each time series
is 1 second.

Time
E [μ1] E [σ2 1] αvar

(L/min) (L /min)2 -

6-7 0.468 1.994 1.2288

7-8 1.066 6.678 1.114

8-9 0.988 7.401 1.0435

9-10 0.891 6.205 1.0756

10-11 0.735 4.336 1.113

11-12 0.791 4.782 1.089

12-13 0.68 4.452 1.092

13-14 0.807 5.322 1.065

14-15 0.827 5.338 1.0688

15-16 0.704 3.857 1.1311

16-17 0.512 2.266 1.1739

17-18 0.634 3.112 1.1666

18-19 0.667 3.594 1.1412

19-20 0.707 5.445 1.0384

20-21 0.68 3.702 1.1253

21-22 0.635 3.412 1.099

22-23 0.397 1.958 1.0771

mean 0.717 4.344 1.1084

confidence limits 95% 0.082 0.759 0.024

Table 5. Estimated parameters of the scaling laws for the experimental data set of Latina (see [25]).
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The series were divided into time periods of 1 hour to guarantee the stationarity of the proc‐
ess. In Table 5 the estimated values of the expected values of the mean and the variance of
the unit user and the exponent α for the scaling law of the variance are reported. The same
exponents for the mean were always trivially equal to 1. In these results the first six hours
of the day and the last one were excluded because, during the night hours consumptions
are very small and therefore their statistics have a poor significance. It was observed that
the mean scales linearly with the number of customers. Differently, the variance shows a
slight non-linearity with the number of users. It must be underlined that the average dai‐
ly value of the exponent α is 1.1, showing that there is a very weak correlation between
the considered users.

3.4. Real consumption data: scaling laws for the cross-covariance andcross-correlation
coefficient

Considering the consumption signals belonging to homogeneous users, equation 23 is valid
and a quadratic scaling law for the cross-covariance should be expected. This behaviour was
confirmed by the measured data for all the time intervals considered. In Figure 4 the scaling
law of the consumption signals between 11:00 and 12:00 am is graphically reported.

Figure 4. Scaling law for the cross-covariance between 11:00 and 12:00am.

The obtained cross-correlation coefficient between the single user signals was low, being al‐
ways less than 0.05, but increased noticeably when the number of aggregated users in‐
creased, as expected according to equation 22. For groups of 150 aggregated users the cross-
correlation coefficient reached the values shown in Table 6. These results enhance the
importance of evaluating the cross-correlation degree at different levels of spatial aggrega‐
tion. Even if the cross-correlation between single-user demand signals is relatively low and
less likely to significantly affect the performance of a network, it can largely increase with
the spatial aggregation of users, becoming not negligible at those larger scales.
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Time ρ150users Time ρ150users

0-1 0.56 13-14 0.49

1-2 0.6 14-15 0.5

3-4 0.5 15-16 0.42

4-5 0.58 16-17 0.49

5-6 0.36 17-18 0.5

6-7 0.48 18-19 0.39

7-8 0.71 19-20 0.51

8-9 0.61 20-21 0.52

9-10 0.39 21-22 0.39

10-11 0.46 22-23 0.47

11-12 0.57 23-24 0.61

12-13 0.48 - -

Table 6. Estimated values of the mean cross-correlation coefficients between groups of 150 aggregated user from the
experimental data set of Latina.

4. Stochastic simulation of a network

To illustrate the effect of the uncertainty of water demands on the performance of a net‐
work, particularly, the effect of the level of correlation between consumptions on the out‐
come pressure heads, a simple network simulation was performed. The water distribution
network of Hanoi (Fujiwara and Khang, 1990) was considered for this matter (Figure 5).

Figure 5. Water distribution network of Hanoi [31].
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The data for the Hanoi network were taken from the literature (Fujiwara and Khang, 1990),
and the pipe diameters were assumed to be the ones obtained by Cunha and Sousa (2001).
The demand data from the literature was used to estimate the number of users at each node,
assuming a single-user mean demand of 0.002 l/s. All the users in the network were as‐
sumed to be residential and having the same characteristics. The standard deviation of de‐
mand was assumed to be 0.06 l/s. The Multivariate Streamflow model [28] was used to
generate synthetic stochastic demands with different levels of cross-correlation between the
single-users. The nodal demands were then introduced in the network and the performance
of the network was simulated using EPANET [32]. For each considered degree of cross-cor‐
relation between demands, 100 simulations were performed, resulting in series of pressure
heads for each node and for each correlation level.

The first aspect that emerges from the simulations, is that the number of nodes that fail, i.e.,
which do not satisfy the minimum pressure requirements, increase when the cross-correla‐
tion degree increases. Higher correlations imply more synchronous consumptions, leading
to pressure failures. Figure 6 illustrates this result.

Figure 6. Total number of nodes that do not satisfy minimum pressure requirements in 100 simulations.

Observing Figure 6 it is clear that the cross-correlation between demands significantly af‐
fects the outcome pressure heads. The number of nodes that do not satisfy the minimum
pressure requirements in the network increase from 194 nodes (total nodes in the network
that fail in 100 simulations) when the cross-correlation between demands is equal to 0.001,
to a total of 543 nodes when the cross-correlation between demands is 0.999. In other words,
the probability of failure increases from 6.3% to 17.5% between the minimum and maximum
levels of cross-correlation that were considered.
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Another aspect that emerges from the simulations is the increase of standard deviation of
the pressure heads at each node of the network, which is illustrated in Figure 7.

Figure 7. Standard deviation of the pressure heads vs the cross-correlation coefficient between the demands.

The standard deviation of the pressure head verified at each node increases when the cross-
correlation between demands increases. The average standard deviation of the pressure
heads along the network when the cross-correlation between demands is equal to 0.01 is
1.35m, while the average standard deviation of the pressure heads when the cross-correla‐
tion is 0.99, is 5.75m. This means that the cross-correlation increases from 0.01 to 0.99 the
standard deviation of the pressure heads increases more than 4 times.

The obtained results clearly show that the level of cross-correlation between demands signif‐
icantly affects the performance of a network and should, therefore, not be ignored when de‐
signing and managing WDS.

5. Conclusions

Understanding and modelling the stochastic nature of water demand represents a challeng‐
ing field for researchers. Stochastic modelling faces difficulties like scarce availability of data
for calibration purposes, high computational efforts associated to simulations, and the com‐
plexity of the problem itself. Moreover, the statistical properties of water demand change
with the spatial and temporal scales that are used, which makes it even more difficult to ac‐
curately model the stochastic structure of demand. The proposed scaling laws represent a
step forward in understanding the relation between the parameters that describe probabilis‐
tic demands and the spatial and temporal scales in which demands are measured and in
which they should be modelled for WDS design or management purposes. The use of scal‐
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ing laws allow a more accurate quantification of the statistical parameters, like variance and
correlation, based on the real demand patterns, number of users at each node and the sam‐
pling time that is used. The scaling laws also allow to easily change the scale of the problem,
since the statistical parameters and levels of uncertainty can be derived for any desired time
or spatial scale.

The scaling laws were derived analytically and validated using synthetically generated sto‐
chastic demands and real demand data from Latina, Italy. A good agreement was found be‐
tween the theoretical expressions, the synthetic demand data and the real demand data.
Results show that the mean increases linearly with the number of aggregated users. The var‐
iance increases with spatial aggregation according to an exponent that varies between 1 and
2. In theory, for spatially uncorrelated demands the scaling laws is linear and for perfectly
correlated demands the scaling law is quadratic. This aspect is clearly verified by the syn‐
thetic data. The scaling law for the covariance between 2 groups of users increases according
to the product between the numbers of users in each group. The cross-correlation coefficient
depends separately on the number of users in each group, and increases towards a limit val‐
ue. Even for small values of cross-correlation between single-user demands, this parameter
cannot be ignored since it significantly increases with the aggregation of consumers.

The performed network simulation considering stochastic demands with different pre-de‐
fined levels of correlation show a clear influence of the degree of correlation on the outcome
pressure heads: higher levels of correlation lead to larger fluctuations of the pressure heads
and to more frequent pressure failures. At this point, the stochastic correlated demands
were only used for simulation purposes. However, in future work a similar approach, can
be used for design and management purposes. The consideration of correlated stochastic de‐
mands will result in more realistic and reliable water distribution networks.
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