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1. Introduction 

The heat generation in the cutting zone occurs as a result of the work done in metal 
cutting process, which is consumed in plastic deformation of the cutting layer and 
overcoming of friction, that occurs on the contact area of the cutting tool (i.e. cutting 
insert) and work material (i.e. workpiece). The heat generated in the chip forming zone 
directly influences the quality and accuracy of the machined surface. The negative 
occurrences in the metal cutting process, such as: Built Up Edge (BUE) formation, work-
hardening, plastic deformation of the cutting edge, deformation of the workpiece, etc. are 
also dependent on the heat.  

Modelling of temperature in the metal cutting process is very important step in 
understanding and analysis of the metal cutting process. In order to model the temperature 
which occurs in the chip forming zone, large number of experiments must be carried out at 
different cutting conditions, synchronously measuring the chip’s top temperature using the 
infrared camera. The infrared method gives a relatively good indication of the measured 
temperature, comparing with other methods for temperature measurement, such as: 
thermocouples, radiation methods, metallographic methods etc. 

In recent years the research in the area of process modelling is directed on the use of 
systems based on artificial intelligence: artificial neural networks, fuzzy logic systems, 
genetic algorithms, as well as combination of mentioned systems. Results obtained in the 
first phase will be used for modelling of the cutting temperature using the response 
surface methodology model (RSM model), feed forward artificial neural networks (ANN 
model), radial basis function network (RBFN model), generalized regression neural 
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network (GRNN model) and adaptive neuro-fuzzy system (NF model). The accuracy of 
the proposed models will be presented, as well as their suitability for use in concrete 
problems. 

Analysis and modelling of the metal cutting process can be very useful in determining of the 
optimal values of input process parameters (cutting speed, depth of cut and feed rate). 
Positive effects could be many. The quality of the machined surface can be enhanced and 
tool life can be extended, leading to advancement of the production economy. 

2. Metal cutting process temperature 

Cutting temperature affects changes in the workpiece material, and consequently, the 
quality of the machined surface. It also influences changes in cutting tool material and plays 
an important role in tool wear. Chip temperature might be used to investigate the friction 
behaviour of cutting tools, because this temperature is dependent on the friction energy 
which is entering the chip at the rake face. 

The amount of the heat generated in the metal cutting process is expressed through the 
work done in the process and the mechanical equivalent of the heat (Arshinov & Alekseev, 
1979), in the form:  

 zF v
Q

E
  (1) 

where: Q – amount of the heat generated in the metal cutting process, Fzv – work done in the 
process, E – mechanical equivalent of heat 

The heat balance during the metal cutting process can be expressed as follows:  

 1 2 3 4Q Q Q Q Q     (2) 

where: Q – total amount of heat generated in cutting, Q1 – amount of heat carried away in 
the chips, Q2 – amount of heat remaining in the cutting tool, Q3 – amount of heat passing 
into the workpiece, Q4 – amount of heat radiated to the surrounding air 

According to the empirical investigations, 60-86% of the heat is carried away in the chips 
and grows with increase in cutting speed. For lathe operations this proportion is as follows: 
50-86% of the heat is removed in the chip, 10-40% remains in the cutting tool, 3-9% left in the 
workpiece and about 1% radiates into the surrounding air. 

A large number of factors affect the quantity of heat generated. The most important ones 
are: the cutting speed and the cutting depth (Tanikić et al., 2010a). It is also noticed that 
there is more heat transferred into the workpiece in the finishing turning than in the rough 
turning. Theoretically, there are three zones of the heat generation that can be identified 
during turning (Fig. 1.) (Tanikić et al., 2010b): 
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 cutting zone 
 tool-chip contact zone 
 tool-workpiece contact zone 

 
Figure 1. Heat generation zones during metal cutting process 

The temperature of the various points of cutting tool, chip and workpiece are different, as 
shown in Fig. 2. (Arshinov & Alekseev, 1979). Temperature of the layers close to the cutting 
tool surface is higher than those away from it. The highest temperature, as expected, occurs 
at the point of cutting tool – workpiece contact (denoted with T on Fig. 2.), while the 
temperature of the other points are given as proportion of this temperature. 

 
Figure 2. Temperature distribution in the cutting tool, chip and workpiece 

2.1. Factors influencing cutting temperature  

Factors which directly influence cutting temperature, as well as chip temperature, during 
metal cutting process are: type of workpiece material, cutting regimes (cutting speed, feed 
rate and depth of cut), dimensions and geometric characteristics of cutting tool, quantity and 
pressure of the coolant fluid etc. Recent investigations show that bar diameter also 
influences cutting temperature (Boud, 2007). 
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Workpiece material – In general, the greater amount of heat is generated during cutting 
steels when compared to cast iron. Cast irons also have lower thermal conductivity than 
steels. The high pressure on the peak of cutting tool during cutting cast iron causes short 
and broken chips. Mechanical properties of the workpiece material affect cutting 
temperature significantly. The higher the tensile strength and hardness of the workpiece, the 
greater the resistance force that must be overcomed during cutting, i.e. the more work is 
required to be done, resulting in higher cutting temperatures. On the other hand, the higher 
thermal conductivity and heat capacity of the workpiece, the higher the level of the heat 
transfered from the place where it is generated into the chip and the workpiece. At the same 
time there is lower temperature in the surface layers of the tool. 

Cutting regimes – The cutting forces disproportionally decrease with an increase in the 
cutting speed (Tanikić et al., 2009a). For example, increasing in cutting speed by 
approximately 500% causes decreasing in the cutting force of about 21% (O’sullivan & 
Cotterell, 2001). The amount of the heat generated during the metal cutting process depends 
on both factors: the cutting speed and the cutting force. Generally, the higher temperature is 
generated with increasing the cutting speed. The cutting force, as stated previously, 
increases disproportionally with an increase in the feed rate and therefore the cutting 
temperature increases, too. Increase of the cutting force and the cutting temperature is 
slower than the feed rate increase. Results of many experiments show that the cutting 
temperature depends on a large number of factors, which can be expressed by the following 
equation (Radovanović, 2002):  

 fTaT vT
kk k

TT C a f v  (3) 

where: T [K] – cutting temperature, a [mm] – depth of cut, f [mm/rev] – feed rate, v[m/min] – 
cutting speed, CT – general coefficient, kaT, kfT, kvT – exponents 

General coefficient CT and exponents: kaT, kfT, kvT depend on the workpiece and the tool 
material characteristics, tool geometry, type of coolant etc… 

Tool geometry – Cutting temperature directly depends on the cutting tool angles as well as 
the nose radius. The cutting tool angles define the size and the position of the maximum 
heated area. The larger the nose radius, the greater the resistance force and the cutting 
temperature. Increasing the nose radius also has a positive effect, such as increasing the 
active cutting edge, i.e. the area which is in the focus of deformation. In that way, better heat 
conduction through the tool and the workpiece is provided. 

Type of coolant – Using the coolant fluids the temperature is reduced in two ways. 
Firstly, an amount of generated heat is carried away directly with the cutting fluid. The 
second one is the positive influence on the lubrication and the reduction of the friction 
between the tool and the workpiece. The coolant fluid jet must be directed to the contact 
point of the tool and the workpiece, while the quantity of the used fluid depends on the 
cutting speed. 
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2.2. Methods for temperature measuring in metal cutting process 

A large number of temperature measurement methods in the metal cutting have been 
developed in the past years. This section gives a brief history of these methods. 

Thermocouples – Thermocouples are frequently used transducers in temperature 
measuring because they are rugged, they cover a wide temperature range and they are 
relatively inexpensive (O’sullivan & Cotterell, 2001). When two dissimilar metals touch 
each other, the contact point produces a small open circuit voltage, which is proportional 
to the temperature difference of the connected metals. If these two metals are the tool and 
the workpiece, this thermocouple is then called a “tool-work thermocouple”, or “tool-
chip” thermocouple. These kind of thermocouples are used for temperature 
measurements in the contact area of the tool and the chip. The cutting zone forms, so 
called, a “hot junction”, which produces thermo-electric emf (electro magnetic force), 
while the cutting tool and/or the workpiece form, so called, a “cold junction”. This 
technique is usually used for measuring the average temperature of the whole contact 
area. It is almost impossible to measure any brief variations of temperature with this 
method. An error occurs in temperature measurement when a BUE is formed during the 
cutting process. A drawback of this method is the fact that a coolant fluid cannot be used 
during the measurement. The cutting tool and the workpiece must be built from an electro 
conductible material and the system calibration is necessary on every single setup. The 
constraint of this method is also in the type of workpiece material, which can’t be made 
from an easily melted material. 

Inserted thermocouples – In order to improve the performance of the earlier mentioned 
system, thermocouples are inserted into the cutting tools in a special way which allows 
them to measure the temperature in a single or several points at the same time (Childs et al., 
2000). The negative side of this method is that it requires drilling a few holes in the tool or in 
the workpiece, where the thermocouples are nested, very closely to the place where 
temperature is measured, in order to ensure accuracy. This method was used for measuring 
cutting temperatures in cutting steels, and cutting various alloys, on the lathes and on the 
milling machines (Kitagawa et al., 1997). 

Radiation methods – This category includes methods for measuring temperature at a 
single point, or measuring temperature field, without the direct contact between the 
measuring instrument and the object. In the single point temperature measurements an 
infrared pyrometer is used, while in the measuring temperature field (infrared 
thermograph) specially made infrared cameras sensitive to radiation of the body which is 
heated are used (Abukhshim et al., 2006). Radiation methods have a large number of 
conveniences with respect to conduction methods. The most important are: faster 
response of the system, i.e. possibility of measuring brief variations of the temperature, 
there is no negative influence on the tool and the work material, there is no physical 
contact between the measuring system and the object, remote temperature measuring for 
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inaccessible objects etc… During temperature measurement process using the infrared 
camera, there is a possibility that unwanted hiding of the measuring point with the chip 
may happen, which implies obtaining faulty data (Young, 1996). The other negative side 
of this method of temperature measurement is the fact that it requires knowledge of the 
exact value of the coefficient of emission for precise measuring. In order to overcome this 
problem, the area of interest can be painted with the paint with known coefficient of 
emission. Coefficient of emission depends on the clarity of the target area, presence of the 
oxidation covering, the wave length etc. Any of the above mentioned factors have an 
influence on the distraction of measured data. 

Metallographic techniques – This method involves analysis of microstructure and/or micro 
hardness of the heat affected zones. It requires calibration curves which show the level of 
dependence of the material hardness in terms of the known temperatures and the time of 
heating. The usual accuracy of this method is 25 (Wright, 1978). These methods are mainly 
used for temperature measurements of the cutting tools made from high speed steels, 
because they show structural changes, and/or hardness, in the temperature range of 600-
1000 C. 

Other methods – These methods include methods for temperature measurement using 
thermo-sensitive paints, liquid crystals, fine powders etc. and are mainly limited to 
measurement of the visible areas in the special laboratory conditions (Ay & Yang, 1998). 

Generally, there are no strictly defined rules to determine which method is the most 
adequate one in a given situation. On the other hand, high complexity of the process itself 
does not always permit to compare results obtained by different methods. The best 
illustration of the above mentioned is the fact that even the results obtained by the same 
method in completely identical experiment conditions can be different, which is another 
proof of complexity of temperature measurement in the metal cutting process. 

3. Experimental research 

The lathe, which was used for examining and measuring, is located in the Laboratory for 
Production Engineering, at the Mechanical Engineering Faculty in Niš, Serbia. The 
workpiece material used is steel, with AISI designation 4140. This steel belongs to the group 
of doped, decent, cold drown steels, with strength of Rm=1050 [N/mm2]. Four thermally 
treated metal specimens, with measured hardness of HRC 20, 36, 43 and 55, were machined. 
The dimensions of the workpieces are 45x250 [mm]. 

Fig. 3. shows the component relations and information flow of the material handling system, 
and linked information system, which processes the obtained data. 

SANDVIK Coromant cutting tool has been chosen, which consists of two parts: tool holder 
PCLNR 32 25 P12 in combination with cutting insert CNMG 12 04 08 (grade 235), according 
to the recommendations of the manufacturer and the empirical knowledge. 
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Figure 3. Schematic representation of the information flow in the system 

Jenoptik Varioscan 3021-ST infrared camera has been used for temperature measurement. 
Varioscan high resolution is scanning thermovisics measured system, for wave lengths 
outside of the vision spectrum, from 8m to 12m, i. e. in the area of infrared emission. 
Signal from this spectrum is amplified, digitalized with 16 bites and visualized. Every 
color on the shown thermagram (Fig. 4.) represents particular temperature. Temperature 
resolution of this system is 0.03C, while operating range of the camera is -40C to 
+1200C.  

 

 

Figure 4. Experiment setup and thermagram (v=125[m/min], f=0.196[mm/rev] and t=2[mm]) 

The most important temperature, from the metal cutting process point of view, is maximum 
temperature of the cutting tool. This temperature directly affects cutting characteristics of 
the tool, tool and workpiece deformation as well as the quality of the machined surface. It is 
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obvious that measuring of the rake face of the cutting insert, where maximum temperature 
occurs, is not possible using mentioned infrared camera, because of continual presence of 
the chip which covers the area of interest. With known values of chip’s top temperature, 
cutting depth and physical properties of the workpiece it is possible (using, for example, 
finite-difference model or FEM analyses) to calculate maximum cutting tool temperature. 
However, the primary goal of this work is exploring the possibility of using the means of 
artificial intelligence in modelling cutting temperature (and not measuring the exact value of 
maximum cutting temperature), and that’s the reason why chip’s top temperature is 
adopted as relevant parameter. 

In the beginning of the metal cutting process temperature rises, until it reaches the 
maximum value. That’s the reason why the measurement should be performed a small 
period of time after the beginning of the process (Kwon et al., 2001). After observing rise in 
the temperature and its distribution at the beginning of the process with an infrared camera, 
it is concluded that a period of about 60 seconds is enough for stabilizing the measured 
temperature. The pictures (Fig. 4.) are submitted to a PC memory card, and later analysed. 
The maximum cutting temperature which occurs on the chip’s top is used for temperature 
modelling in the next phase of this work. 

3.1. Measured results and discussion 

Modelling of the chip’s top temperature requires a large number of experiments with 
different cutting regimes. As mentioned, in addition to the recommended data obtained 
from the appropriate literature, the empirical knowledge is of crucial importance in making 
a proper choice of cutting regimes. The adopted variable process parameters are: 

- Material’s hardness  HRC  (values: HRC 20; 36; 43 and 55) 
- Cutting speed v[m/min]  (values: 80; 95; 110; 125 and 140 [m/min]) 
- Feed rate   f [mm/rev]  (values: 0.071; 0.098; 0.196 and 0.321 [mm/rev]) 
- Depth of cut   t [mm]   (values: 0.5; 1; 1.5 and 2 [mm]) 

Results of the temperature measurement are given in Fig. 5.a. to 5.d. From the presented 
figures, it can be concluded that, with increasing the cutting speed (while other parameters 
remain constant) the resistance force of the cutting increases too, resulting in the increase in 
the chip temperature. It is also obvious that larger values of temperature occur in machining 
of the hardened workpiece materials. The chip temperature increases with increasing the 
depth of cut, too (with constant values of feed rate and cutting speed). The feed rate also has 
influence on changes in the cutting temperature, which is particularly apparent at low 
cutting speeds. 

The irregularities in the following figures (the peaks in the diagrams of the chip's top 
temperature) can be interpreted as measuring errors. Anyway, the correlations among 
cutting regimes and corresponding temperature (trendlines of chip's top temperature) can 
be achieved. 
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Figure 5. a) Chip temperature variation for the workpiece with hardness HRC 20; b) Chip temperature 
variation for the workpiece with hardness HRC 36; c) Chip temperature variation for the workpiece 
with hardness HRC 43; d) Chip temperature variation for the workpiece with hardness HRC 55 
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Overall number of experiments carried out is 316, and obtained values can be used for 
modelling and simulation using various methodologies and FEM analysis. In recent years 
the research is directed on the use of systems based on artificial intelligence: artificial neural 
networks, fuzzy logic systems, genetic algorithms, as well as combination of mentioned 
systems (Tanikić & Marinković, 2011, 2012), (Manić et al., 2005, 2011), (Devedžić et al., 2010), 
(Tanikić et al., 2008, 2009b). 

4. Modelling of the cutting temperature 

In this section, results obtained in the first phase are used for modelling of the cutting 
temperature using response surface methodology, feed forward artificial neural networks, 
radial basis function network, generalized regression neural network and adaptive neuro-
fuzzy system. A comparative study of proposed models is given, and testing of the 
models was performed on the set of measured data which was not used in the modelling 
phase. 

4.1. Modelling using Response Surface Methodology (RSM model) 

Response Surface Methodology (RSM) is a tool for understanding the quantitative 
relationship between multiple input variables and one output variable. It is the process of 
adjusting predictor variables to move the response in a desired direction and, iteratively, to 
an optimum. RSM model is formulated as following polynomial function (Erzurumlu & 
Oktem, 2007): 

 0
1 1 1

...
n n n

i i ij i j
i i j

f a a x a x x i j
  

        (4) 

where: a0, ai, aij... – tuning parameters, n – number of model parameters 

Four different models are created from the set of 316 measured data. First model uses only 
constant and linear terms (Linear model), second model uses constant, linear and squared 
terms (Pure quadratic model), third model uses constant, linear and cross product terms 
(Interactions model) and fourth model uses constant, linear, squared and cross product 
terms (Full quadratic model). The coefficients of the proposed models are shown in Table 
1. This method is simpler than standard nonlinear techniques for determining optimal 
designs. 

The set of 122 measured data (testing set), which was not used in the modelling phase was 
used for models testing. Some of the calculated temperatures with different RSM models are 
shown in Fig. 6. (32 data sets obtained during machining workpiece with hardness HRC 20). 
The conclusion is that Full quadratic model has the best characteristics (the least values of 
maximum as well as mean error), and that model will be compared with the other models, 
which will be created in the next sections. 
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Model const. H v f t Hxv Hxf Hxt vxf vxt fxt H2 v2 f2 t2 

Linear -74.33 6.472 1.671 227.7 102.0           

Pure 

quadratic 
69.13 -7.825 3.248 252.1 109.7       0.193 -0.007 -45.53 -2.692 

Interactions -344.7 12.60 3.860 742.1 83.73 -0.050 -6.597 0.396 -2.076 0.067 -26.65     

Full 

quadratic 
-190.0 -1.888 5.416 727.9 85.90 -0.051 -5.806 0.519 -2.199 0.048 -8.203 0.193 -0.007 -46.12 -2.711 

Table 1. The coefficients of the proposed RSM models 

 

 
Figure 6. Predicted temperatures with different RSM models 

The maximum and mean errors of the proposed models are presented in Table 2. 

 Linear model 
Pure quadratic 

model 

Interactions 

model 

Full quadratic 

model 

Max. error 

[%] 
23.555 25.247 25.078 18.343 

Mean error 

[%] 
8.193 7.218 7.609 6.901 

Table 2. The errors of the different RSM models 

T [C] 

Number of testing set 
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4.2. Modelling using Artificial Neural Networks (ANN model) 

Artificial Neural Network (ANN) is a structure which is able to receive input vector I=[i1, i2, 
… , in], and generate appropriate output vector O=[o1, o2, … , om] (Santochi & Dini, 1996). The 
ANN contains several connected elementary calculation units, which are called neurons. 
Fig. 7. shows a schematic representation of an artificial neuron with input vector (with r 
elements) and characteristic structure of the feed forward ANN with k hidden layers. 

Each of the input elements x1, x2, ..., xr is multiplied with the corresponding weight of the 
connection wi,1, wi,2,..., wi,r. The neuron sums these values and adds a bias bi (which is not 
present in all networks). The argument of the function (which is called transfer function) is 
given as follows: 

 ai = x1wi,1 + x2wi,2 +...+ xrwi,r + bi (5) 

while neuron produces output: 

   ,
1

r

i i j i j i
j

y f a f x w b


 
   
 
 
  (6) 

This output represents an input to the neurons of another layer, or an element of the output 
vector of the ANN. 

In this particular case, input layer of all created ANNs has four neurons: (1) Material 
hardness, (2) Cutting speed, (3) Feed rate and (4) Depth of cut, and only one output neuron 
for predicting chip’s top temperature. 

 
Figure 7. Artificial neuron and the structure of the feed forward artificial neural network 
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The artificial neural networks, as known, can have random number of layers and random 
number of neurons in them. Performance of ANN depends on the number of layers, number 
of neurons, transfer function, presence of a bias as well as on the way the neurons are 
connected. Unfortunately, there are no formal rules for proper choice of mentioned 
parameters. In principle, determining all of these parameters is done using personal skills 
and experience. In the present work six different neural networks with different number of 
layers and neurons are created in order to achieve minimum error on the one side and avoid 
overfitting (the situation when the network has a low capability of generalization) on the 
other side. The structure of the proposed networks are: ANN 4-3-1 (one hidden layer with 3 
neurons); ANN 4-5-1 (one hidden layer with 5 neurons); ANN 4-10-1 (one hidden layer with 
10 neurons); ANN 4-2-2-1 (two hidden layers with 2 neurons in each layer); ANN 4-5-3-1 
(two hidden layers with 5 and 3 neurons, respectively) and ANN 4-10-5-1 (two hidden 
layers with 10 and 5 neurons, respectively). The main goal is to minimize the performance 
function, in this case mean squared error (mse) function, which can be calculated as: 

       22

1 1

1 1Q Q

k k

mse e k t k y k
Q Q 

     (7) 

where: Q – number of experiments, e(k) – error, t(k) – target values, y(k) – predicted values  

The training algorithm used in all cases is Levenberg-Marquardt algorithm which provides 
the best convergence in the cases of approximation of an unknown function (function 
prediction), and the number of training cycles is 500. The neurons in input and hidden 
layers of ANNs have sigmoid transfer function, while the neurons of the output layer have 
linear transfer function. Minimization of the mse, depending on number of training cycles, 
for various ANNs configurations is shown in Fig. 8. 

 
Figure 8. mse performance function depending on the number of training cycles 
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After the training phase, the ANNs were tested. The set of 122 measured data (which was 
not used in the training phase) was used for testing the ANN models. Maximum and mean 
error of all proposed networks is given in Table 3. 

 ANN 4-3-1 ANN 4-5-1 ANN 4-10-1 ANN 4-2-2-1 ANN 4-5-3-1 ANN 4-10-5-1 

Max. error [%] 15.001 14.345 14.461 22.504 24.218 14.236 
Mean error [%] 4.387 3.623 3.602 5.615 4.114 3.229 

Table 3. The errors of the different ANN models 

The ANNs prediction, for the set of 32 measured data (obtained by measuring chip’s top 
temperature while machining workpiece with hardness HRC 20) is shown in the Fig. 9. 
From given figure and table 3, it can be concluded that ANN 4-10-5-1 shows the best 
performance, and this network will be used for comparison with other models. 

 

 
Figure 9. Predicted temperatures with different ANNs architectures 

4.3. Modelling using the Radial Basis Function Network (RBFN model) 

Radial basis function network (RBFN) employs local receptive fields to perform function 
mappings (Chen et al., 1991). Fig. 10. shows radial basis neuron and characteristic structure 
of RBFN. The output of the i-th receptive field unit (hidden unit) is expressed as: 

     , 1,2,...,i i i ia R n R x w b i H   
  

 (8) 

where: x


 – input vector, iw


 – weight vector (the same dimensions as x


 vector), b – bias,    
H – number of receptive field units, Ri() – i-th receptive field response with a single 
maximum at the origin 

T [C] 

 

Number of testing set 
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Figure 10. Radial basis neuron and characteristic structure of the radial basis function network 

The transfer function for radial basis neuron has output 1 when its input is 0. As the distance 
between x and wi decreases, the output increases. The radial basis neurons with weight 
vectors quite different from the input vector x


 have outputs near zero and these small 

outputs have only a negligible effect on the overall output. In contrast, a radial basis neuron 
with a weight vector close to the input vector x


 produces a value near 1. Typical transfer 

function of radial basis neuron is: 

   2n
iR n e


 (9) 

The output of the radial basis function network can be computed as follows: 

    
1 1

H H

i i i i
i i

f x f a f R n
 

   
 (10) 

In this case, set of 316 measured temperature data (and corresponding cutting regimes) was 
used for creating a radial basis function network, while the rest 122 data (testing set) was used 
for RBFN model testing. Maximum and mean errors of this model are 44.142% and 8.801% 
respectively. The prediction of the chip’s top temperature of this model is given in the Fig. 11. 

4.4. Modelling using the Generalized Regression Neural Network (GRNN 

model) 

A General Regression Neural Network (GRNN) is a special type of neural network with 
radial basis function which is usually used for function approximation. It has two layers: 
radial basis layer (which is identical with radial basis layer in RBFN), and second, special 
linear layer (Wasserman, 1993). The number of neurons in radial basis layer is equal to the 
number of input/output data pairs. The argument of the radial basis function is a product of 
the weighed input (distance between the input vector and its weighted vector) and bias b. If 
a neuron's weight vector is equal to the input vector (transposed), its weighted input will be 
0, and its output will be 1.The second layer also has same number of neurons as the number 
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of input/output vectors. Given a sufficient number of hidden neurons, GRNNs can 
approximate a continuous function to an arbitrary accuracy. Generally, GRNN is slower to 
operate because it uses more computation than other kinds of networks to do their function 
approximation, but, taking in consideration the speed of the modern computers, this 
disadvantage became minor. 

The same set of 316 training vectors was used for GRNN modelling, and testing was 
performed on the set of remaining 122 input/target vectors. The maximum error which 
GRNN produced is 16.907%, while the mean error is 2.827%. The graphic representation of 
the prediction of this network is given in the Fig. 11. 

4.5. Modelling using hybrid, Neuro-Fuzzy system (NF model) 

Adaptive Neuro-Fuzzy (NF) systems represent a specific combination of artificial neural 
networks and fuzzy logic, so they combine the ability of learning of artificial neural 
networks with the logical interpretation of fuzzy logic systems (Sick, 2002). The basic rule of 
the adaptive networks learning is based on a descent gradient method which was proposed 
in the 70s of the previous century (Werbos, 1974). Adaptive neuro-fuzzy network consists of 
many layers of nodes (neurons), each of which performs a particular function (node 
function) on incoming signals as well as a set of parameters pertaining to this node. The type 
of the function which the node performs may vary from node to node, and the choice of 
node function depends on overall input-output function that network simulates (Jang, 1993). 

This system represents the way for adjusting existential base of rules, using the learning 
algorithm which is based on the assembly of input-output pairs, used for training. Taking into 
consideration some constraints, the architecture of the adaptive neuro-fuzzy system (ANFIS – 
Adaptive-Network-based Fuzzy Inference System) is equivalent to radial basis function 
networks. The characteristic architecture of the adaptive neuro-fuzzy system is shown in Fig. 12. 

For simplicity, suppose that system has only two input values x and y (Level 1), and one 
output value z (Level 5). In the case shown in Fig. 12., the rule base consists just of two fuzzy 
IF-THEN rules (Takagi-Sugeno type), as shown in Level 2:  

Rule 1: IF x is A1 AND y is B1, THEN f1 = p1x + q1y + r1 

Rule 2: IF x is A2 AND y is B2, THEN f2 = p2x + q2y + r2 

First part of fuzzy rule (after the IF part of the rule) is called premise, while the second part 
of the rule (after the THEN part of the rule) is called consequent. From the ANFIS system 
architecture it is obvious that for the given values of premise parameters, the output value 
can be presented as linear combination of the consequent parameters. Mathematically, this 
can be presented as:  

 

           

1 2
1 2 1 1 2 2

1 2 1 2

1 1 1 1 1 1 2 2 2 2 2 2

w w
f f f w f w f

w w w w

w x p w y q w r w x p w y q w r

    
 

     
 (11) 
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Figure 11. Measured and predicted temperatures with various models 
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Figure 12. Characteristic structure of the neuro-fuzzy system 

The adopted input and output parameters are the same as in other models. All the rules 
have unity weight, and all output membership functions are of the same type. The number 
of output membership functions is equal to the number of rules. After the extensive research 
of the various architectures of the NF systems, and their suitability for the proposed 
problem, the following parameters are adopted: the number of membership functions of 
each input is set to 3, the input membership functions are bell shaped, the hybrid 
optimization method is used, and number of training epochs is 300. A set of 316 measured 
data is used for training and the rest 122 data sets are used for model testing. 

After the successfully finished learning phase, the neuro-fuzzy system accomplished data 
generalization, and in the modelled field, the value of the chip’s top temperature can be 
predicted without any measurement. 

 
Figure 13. Chip’s top temperature depending on two input variables 

Graphical representation of the predicted temperature depending on two input variables is 
shown in Fig. 13 (the input variables combination is arbitrarily). Maximum error achieved in 
the model testing is 13.439%, while the mean error is 4.319%. The results of the tentative 
work of the NF system is shown in Fig. 11. 
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5. Results and comparison of the proposed models 

This section presents a comparative study of the proposed models. Testing set of 122 
input/target (measured) vectors, not used in the modelling phase was used for checking the 
accuracy of created models. 

The percentage error is defined as follows: 

      
 [%] 100

t k y k
e k

t k


   (12) 

where: e(k) – error of the k-th experiment, t(k) – measured value of the k-th experiment and 
y(k) – predicted value of the k-th experiment 

Maximum and mean errors can be calculated as follows:  

 Max. error  [%] max , 1,2,...,e k k n   (13) 

 Mean error 
 

1[%]

n

k

e k

n



 (14) 

where: n – total number of experiments 

Response Surface Methodology includes experimental investigations, mathematical 
methods and statistical analysis.  

The advantage of this methodology is in the fact that parameters of the RSM model have 
meaning, i.e. the coefficient which multiplies some input variable provides some 
information regarding the influence of that variable on the output value, which is not the 
case when using the artificial intelligence based models. 

The disadvantage of this methodology is the fact that they can be very complex, demanding 
significant time for data gathering, calculation of all the relevant factors and parameters, and 
analyzing their influence on the objective. 

Artificial neural networks may be considered as parametric functions, and their training 
involves parameter estimation or fitting process. 

The main advantage of the ANNs is that there is no need to explicitly formulate the 
problem, the solution algorithm, or to be familiar with computer programming. They can 
also manage noisy or incomplete data, as well as experimentally obtained data, with very 
complex (or unknown) representation, like in the case presented in this chapter. 

The drawback of this methodology is the lack of the principles for determining the optimal 
network architecture, i.e. the number of layers and the number of neurons in them, as well 
as the type of their transfer functions. This process can be very complex and time 
consuming. The principle used in this work implies starting with the minimum number of 
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layers and neurons, creating and training the ANN (tracing the convergence and error), and 
testing it at the end. After that, the number of neurons and/or layers is raised, and the whole 
procedure is repeated until the test results became acceptable. As it can be seen, the whole 
process is highly individual. Finally, the serious drawback of the ANNs is that the resulting 
performance of the adopted model in an application can’t be guaranteed. 

Radial basis function networks are successfully used in prediction problems, especially 
when large number of input variables are present and corresponding output vectors are 
available, which was exactly the case in our study. 

The disadvantage of this model is that they need more neurons and slightly more 
computational time than standard feed-forward backpropagation networks. Considering the 
overall operating time of proposed models, this disadvantage becomes irrelevant.  

Generalized regression neural network is a special type of RBFN, specialized for function 
prediction. It can be concluded that maximum and minimum values of Mean errors were 
obtained using RBFN and GRNN models, respectively. Both networks have the same first, 
radial basis layer. However, the second, special linear layer (which is present in GRNN 
model) obviously plays very important role, resulting in the best prediction capabilities 
among all of the presented models. 

Neuro Fuzzy modelling provides a method for the fuzzy modelling procedure to learn 
information about a data set. 

Some of the constraints of the ANFIS are that it must be first or zeroth order Sugeno-type 
system with a single output, obtained using weighted average defuzzification. Although 
this can be rectified, in this particular case it was irrelevant since only one output variable 
(chip temperature) was modelled. 

Fig. 11 shows the measured and predicted values of all created models, while Table 4. shows 
their Maximum and Mean errors. Considering the Maximum error, it is obvious that 
Adaptive Neuro Fuzzy Inference System has the least value, while Generalized Regression 
Neural Network is the most accurate when considering the Mean error. The time needed for 
modelling is very similar for all models. The similar results were obtained when training 
and testing time were considered. The performances of the present computers make that 
differences negligible. 

All of the proposed models, except RSM model, are black boxes, i.e. the influence of any 
input variable on the objective is unknown at all, and this fact is one of the main drawbacks 
of many artificial intelligence techniques. 

 RSM ANN RBFN GRNN ANFIS 

Max. error [%] 18.343 14.236 44.142 16.907 13.439 
Mean error [%] 6.901 3.229 8.801 2.827 4.319 

Table 4. Maximum and mean errors of the created models 
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The methodologies that are presented in this chapter demonstrate both advantages and 
disadvantages when compared to each other. The most suitable model for the task under 
consideration seems to be the Generalized Regression Neural Network and Adaptive Neuro 
Fuzzy Inference System. 

6. Conclusion 

The primary goal of this work is examination the possibility of using various models (most 
of them based on artificial intelligence) in metal cutting temperature modelling. The 
maximum chip’s top temperature was adopted as relevant factor. The infrared method, used 
in this work, gives a relatively good indication of the measured temperature.  

Relationships among the input and corresponding output variables are established from the 
measured data, as well as trends of temperature changing with cutting regimes and material 
property changes. Furthermore, modelling of the measured data was performed using the 
response surface methodology, various types of artificial neural networks and hybrid, 
neuro-fuzzy system. Almost all of the proposed models can be used for temperature 
prediction with relatively good accuracy. 

Proper selection of the cutting tool, main and auxiliary equipment as well as cutting regimes 
is of the crucial importance in metal cutting process. Modelling of the main process 
indicators (such as cutting temperature) can be very useful, and it can help machine shops to 
machine under optimum conditions, and in that way to reduce the production costs, which 
is the main goal of any manufacturing production. 
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