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1. Introduction 

In order to assure the precise utilization of genetic information, gene expression is regulated 

at the level of transcription as well as multiple post-transcriptional levels including splicing, 

transport, localization, mRNA stability, and translation [1],[2],[3],[4],[5],[6],[7]. During 

evolution, cells developed precise mechanisms to ensure that each transcript is 

appropriately stored, modified, translated or degraded, depending on the need for the 

mRNA or encoded protein by the cell. Steady-state protein levels within a cell correlate 

poorly with steady-state levels of mRNA, leading scientists to hypothesize that the gene 

expression is regulated at post-transcriptional levels [8]. Work over the past quarter century 

has resulted in the identification of unifying concepts in post-transcriptional regulation. One 

unifying concept states is that post-transcriptional regulation is mediated by two major 

molecular components: cis-acting regulatory sequence elements and trans-acting factors. Cis-

acting regulatory sequence elements are sub-sequences contained in the 5’ untranslated 

region (UTR), coding region, and 3’UTR of mRNA that are selectively recognized by a 

complementary set of one or more trans-acting factors to regulate post-transcriptional gene 

expression.  Trans-acting factors include RNA-binding proteins (RBPs) and microRNAs 

(miRNAs) which are able to influence the fate of  mRNA by controlling processes such as 

translation and mRNA degradation  (reviewed in references [9],[10],[11],[12]). The 

combinatorial interplay between various miRNAs and RBPs binding to a given mRNA 

allows for the transcript specific regulation critical to many cellular decisions during 

development [13],[14],[15],[16] and in response to environmental stimuli (reviewed in 

references [17],[18],[19],[20],[21],[22]).  

Various experimental approaches have been developed to understand the interaction 

between RBPs and the network of transcripts that they regulate.  One of the most widely 

used techniques involves immunopurification of specific RNA-binding proteins from 
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cellular extracts followed by high-throughput analysis of the co-purified RNA species [23].  

The coupling of this technique to powerful bioinformatic analysis methods has lead 

researchers to understand the binding specificity of a wide-variety of RBPs.  The advent of 

new technology such as next generation sequencing and chemical cross-linking procedures 

have improved these methodologies and allowed for the fine-scale mapping of RBP binding 

sites, as well as the refinement of RBP binding motifs.  Microarray-based studies that 

evaluated mRNA decay rates on a global basis have also provided valuable information 

about the role of post-transcriptional regulation of a wide variety of transcripts that have 

important physiological functions  [24],[25],[26],[27],[28],[29].   

This chapter focuses on the role of CELF1 (CUGBP and embryonically lethal abnormal 

vision-type RNA binding protein 3-like factor 1) in the regulation of posttranscriptional 

gene expression.  CELF1 functions to regulate posttranscriptional gene expression by 

binding to RNA sequences known as GU-rich elements (GREs).  Genome-wide 

measurements of mRNA decay and bioinformatic sequence motif discovery methods were 

used to identify the GRE as a highly conserved sequence that was enriched in the 3’UTR of 

mRNA transcripts with short half lives in primary human T lymphocytes [30].  This 

sequence resembled previously characterized binding sites for CELF1 [31],[32], and CELF1 

was found to bind with high affinity to GRE sequences and mediate mRNA degradation 

[30].  This chapter reviews how CELF1 and its target transcripts function as an 

evolutionarily conserved posttranscriptional regulatory network which plays important 

roles in health and disease. 

2. Evolutionary conservation of CELF proteins  

The CELF protein family is an evolutionarily conserved family of RNA-binding proteins 

that play essential roles in post-transcriptional gene regulation [28],[33]. These proteins 

contain three highly conserved RNA-Recognition Motifs (RRM) with the 2 N-terminal RRMs 

and the C-terminal RRM being separated by a highly divergent linker domain [34].  The 

RRMs confer RNA binding activity, and it is postulated that the divergent linker domain is 

an important site for functional regulation.  Six members of the CELF family have been 

identified in humans and mice:  CELF1 (CUGBP1) and CELF2 (CUGBP2) proteins are 

expressed ubiquitously and play vital role in embryogenesis [35],[36],[37],[38],[39], whereas 

CELF proteins 3-6 are restricted to adult tissues and found almost exclusively in the nervous 

system [40],[41].  CELF proteins often serve multiple functions in both the cytoplasm and 

the nucleus [42],[43]. Human CELF1 and its orthologs  in Gallus gallus, Zebrafish, Xenopus, 

Drosophila and C. elegans have been known for many years to regulate gene expression at 

posttranscriptional levels and to control important developmental processes 

[31],[44],[45],[46],[47],[48],[49].   

CELF1 function is conserved across evolution at the level of biochemical mechanism as well 

as its function in regulating development.  Transcript deadenylation is often the first step in 

the mRNA degradation process, and CELF1 has been shown to promote transcript 

deadenylation in diverse species [28],[50]. In Xenopus embryos the CELF1 homologue 
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Embryo Deadenylation Element Binding Protein (EDEN-BP), which is 88% identical to 

CELF1, regulates transcript deadenylation, and human CELF1 was able to functionally 

replace the deadenylation function of EDEN-BP in Xenopus extracts [51]. In HeLa cell 

extracts CELF1 also promotes transcript deadenylation and was shown to recruit PolyA 

Ribonuclease (PARN) [52].  In addition to the evolutionary conservation of the biochemical 

function of CELF1, the developmental programs regulated by CELF1 may also be 

conserved.  For example, CELF1 appears to be an important factor in muscle development in 

diverse species.  Studies investigating the function of CELF1 in Drosophila, Xenopus and mice 

have shown that CELF1 is critical for regulating the muscle developmental program [45], 

[53], [54]. More recent work suggests that CELF1 is a crucial factor in the regulation of 

mRNA degradation in mouse myoblasts [55].  Thus, in addition to the conservation of its 

biochemical function as a regulator of deadenylation, the role of CELF1 in muscle 

development may also be conserved.   

As described below, CELF proteins from diverse species bind to RNA preferentially at GU-

rich sequences and thereby regulate post-transcriptional processes such as mRNA splicing, 

translation, deadenylation and mRNA degradation. The structure and biochemical 

properties of CELF family members suggest functional redundancy [56], yet each CELF 

protein targets specific sub-populations of RNA transcripts and appears to have distinct 

functions  [57]. We are starting to understand the mechanisms by which an individual CELF 

protein can serve multiple biochemical functions to coordinately regulate gene expression at 

posttranscriptional levels [30]. 

3. Biochemistry of binding by CELF proteins to target mRNA   

CELF 1 and 2 proteins were first isolated and characterized as novel heterogeneous nuclear 

ribonucleoproteins (hnRNPs). Timchenko et.al. demonstrated that these proteins bound to 

RNA containing the sequence (CUG)8  within the 3'UTR of  myotonin protein kinase mRNA 

in vitro [58],[59]. Subsequent searches for the RNA-binding specificities of CELF1 and CELF2 

used systemic evolution of ligands exponential enrichment (SELEX), revealing that CELF1 

and CELF2 both bound preferentially to GU-rich RNA sequences [60]. Binding by CELF1 to 

GU-rich sequences in vitro and in vivo was abrogated by mutation of G nucleotides to C 

[30],[61]. Takanashi et. al. used a yeast three hybrid system for evaluating RNA-protein 

interactions, and found CELF1 bound preferentially to UG repeats rather than to CUG 

repeats [32]. CELF1 bound with high specificity to (UG)15 based on a surface plasmon 

resonance (SPR) quantitative binding assay [62].  Orthologues of CELF1 in other species also 

appear to have preferences for binding to GU-rich sequences.  In Xenopus, the CELF1 

orthologue EDEN-BP (embryo deadenylation element binding protein) binds to the GU-rich 

EDEN element, which contains the sequence (UGUA)12, and functions as a deadenylation 

signal in Xenopus embryos after fertilization [31],[51]. In Drosophila, the CELF1 orthologue 

Bru-3 was found to bind specifically to (UG)15 repeats and also was able to bind to the 

Xenopus  EDEN element [46]. The Zebrafish protein Brul, a homologue of EDEN-BP with 81% 

identity, was also shown to preferentially bind to GU-rich RNAs [63]. EDEN-BP and Bru-3 

can bind to GRE-RNA as dimers [64],[65] and may require GU-rich sequences of sufficient 
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length to allow dimer formation [66].  In addition to the primary GU-rich sequence, adjacent 

sequence elements may also be important for assembly of CELF proteins on RNA by 

allowing optimal secondary structure to facilitate the formation of RNA-protein complexes 

[67],[68].  

Structural studies have provided valuable insight into the mechanisms underlying the RNA- 

binding activity of CELF1.  CELF proteins all contain two N-terminal and one C-terminal 

RNA recognition motifs (RRMs), separated by a 160-230 residue divergent domain [69],[70]. 

The highly conserved RRMs bind to RNA in a sequence-specific manner [69],[71]. Nuclear 

Magnetic Resonance spectroscopic (NMR)-based solution studies demonstrated that both 

RRM1 and RRM2 each contribute to binding to a 12-nt target RNA containing two UUGUU 

motifs. The tandem RRM1/2 domains together show increased affinity compared to the 

binding by each domain separately to an RNA sequence with two sequential UUGU(U) 

motifs, thus indicating binding cooperativity between the two RRMs [34],[72]. 

Crystallographic studies showed that both RRM2 and RRM1 bind to GRE-RNA, and RRM1 

is important for crystal-packing interactions [73].  

In addition to RRM1 and RRM2, RRM3 also has RNA-binding activity.  According to NMR 

analysis, RRM3 specifically recognizes the UGU trinucleotide segment of bound (UG)3 RNA 

through extensive stacking and hydrogen-bonding interactions within the pocket formed by 

the beta-sheet and the conserved N-terminal extension [71]. Experiments investigating 

CELF1 function through a yeast three hybrid system suggested that deletion/mutation of 

RRM1 or RRM2 does not abrogate binding to GU-rich RNA, suggesting that RRM3 may 

recognize GU-repeats more avidly than RRM1 or RRM2 [62].  Additionally, it has been 

reported that RRM3 is able to recognize a poorly defined G/C-rich sequence from the 5’UTR 

of Cyclin D1 when combined with the divergent domain [65]. The divergent domain also 

appears to be important for RNA-binding since the presence of divergent domain within 

recombinant CELF1/CELF4 chimeric proteins increased RNA-binding affinity, perhaps by 

conveying important conformational changes necessary for RNA-binding [32],[62],[70].  The 

divergent domain may also facilitate CELF:CELF homotypic interactions [64] which may 

influence its activity.  For example, CELF:CELF interactions appear to activate RNA 

deadenylation in Xenopus extracts [66].   

3.1. Regulation of CELF1 function through phosphorylation 

CELF1 is a known phosphoprotein with multiple predicted phosphorylation sites, and 

CELF1 phosphorylation appears to regulate its function as a mediator of alternative splicing, 

mRNA decay, and translational regulation [74],[75],[76],[77].  One of the pathologic events 

which occurs in the disease Myotonic Dystrophy type 1 (DM1) is an increase in the protein 

abundance of CELF1 and an associated increase in CELF1 mediated alternative splicing 

activity.  This increase in CELF1 protein abundance is a result of increased CELF1 protein 

stability secondary to hyperphosphorylation [75].  In DM1, the (CUG)n expansion of the 

DMPK 3’UTR leads to protein kinase C (PKC) activation through an unknown mechanism.  

PKC, in turn, hyperphosphorylates CELF1, resulting in increased protein stability and 
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abundance as well as increased splicing activity [78].  Additionally, in transgenic mouse 

models of DM1, mice treated with specific inhibitors of the PKC pathway showed 

amelioration of cardiac abnormalities associated with the disease phenotype [79]. 

Phosphorylation of CELF1 also influences its ability to regulate muscle development 

(reviewed in [80]).  CELF1 phosphorylation by Akt kinase at Ser 28 in normal muscle 

myoblasts influences its ability to affect the translation of its target transcripts during 

differentiation [65]. Phosphorylation of CELF1 also directly influences its RNA-binding 

activity.  For example, cyclin D3-Cdk4/6 phosphorylates CELF1 at Ser 302, altering the 

binding specificity of CELF1 to RNA and translation initiation proteins, such as eIF2α [81].  

During the process of T cell activation, phosphorylation of CELF1 alters binding by CELF1 

to target transcripts.  Shortly following T cell activation, CELF1 becomes phosphorylated, 

dramatically decreasing its affinity for mRNA and leading to stabilization of CELF1 target 

transcripts [77].  Overall, these studies show that phosphorylation regulates the many 

functions of CELF1 in posttranscriptional gene regulation. 

3.2. Identification of CELF1 target transcripts 

Insight into the biological significance of CELF1 function as a coordinate regulator of post-

transcriptional network was revealed through the experimental determination of CELF1 

target transcripts. A technique involving RNA-immunoprecipitation followed by 

microarray analysis of associate transcripts (RIP-Chip) has allowed for the unbiased, 

genome-wide experimental identification of RNA-binding protein target transcripts. This 

technique involves immunoprecipitating an RNA-binding protein of interest from cell 

lysates under conditions that preserve RNA:Protein interactions.  The co-purified RNA 

found associated with the immunoprecipitated RNA-binding protein is then isolated and 

interrogated using high throughput methods such as microarrays.  Using this 

methodology, CELF1 targets have been identified in HeLa cells, resting and activated 

human T cells, and mouse myoblasts [55],[77],[82].  CELF1 targets, identified in 

cytoplasmic extracts from HeLa cells using an anti-CELF1 antibody, were analyzed to 

identify the CELF1 target sequence, which is known as the GRE.  The sequence profile of 

CELF1 target transcripts was analyzed for enriched sequences using a Markov Chain 

Monte Carlo based gibbs sampler algorithm (BioProspector) as well as an 

overrepresentation algorithm, and the previously described GRE sequence, 

UGUUUGUUUGU, and a GU-repeat sequence, UGUGUGUGUGU, were found to be 

highly overrepresented in the 3’UTRs of the CELF1 target transcripts [83].  Both sequences 

were validated as CELF1-binding targets and were shown to function as mRNA decay 

elements by accelerating the decay of reporter transcripts.  While GU-repeat sequences had 

previously been identified as a CELF1 recognition motif through in vitro SELEX protocol 

[60]. These and other experiments identified putative binding targets of CELF1 in cells 

[32],[62]. Because (as described later in this chapter) the UGUUUGUUUGU sequence and 

the GU-repeat sequence both bound to CELF1 and functioned as decay elements, the GRE 

was redefined to contain both of these sequences [83],[84]. The RIP-Chip approach was also 

used to immunoprecipitate endogenous RNA binding complexes from mouse myoblasts, 



 
Binding Protein 

 

186 

using an anti-CELF1 antibody and similar G and U rich target sequences were identified 

[55]. In Xenopus extracts, target transcripts identified by RIP-Chip using an antibody 

against the CELF1 sequence homolog, EDEN-BP, were enriched in GU-rich sequences very 

similar to GREs [85]. These GU-rich containing target transcripts represented 

approximately 5% of the tested transcripts on the microarray [85].  In this work, the authors 

proposed a 15-nucleotide consensus motif (UGU/UG)3 to be the target motif of EDEN-BP 

[85],[86].  The RIP-Chip approach was also used to investigate the cytoplasmic target 

transcripts of CELF1 in resting and activated primary human T cells, and target transcripts 

were highly enriched for the presence of the GRE in their 3’UTRs, but the number of CELF1 

target transcripts decreased dramatically following T cell activation [77]. Overall, 

numerous CELF1 target transcripts have been identified in several different systems 

indicating the CELF1 functions to regulate an important posttranscriptional network of 

gene expression.  

Another approach to identify targets of RNA-binding proteins utilizes a cross-linking step 

prior to immunoprecipitation (CLIP) and subsequent high throughput methods to 

identify protein binding sequences. Using this method, 315 CELF1 RNA targets were 

identified in whole cell extracts from mouse hindbrain [87]. These RNA-binding targets 

for CELF1 were enriched in UG repeat sequences, with 64% of target sequences found in 

introns and 25% found in 3’ UTR sequences [87]. Similar analysis of CELF1 in the C2C12 

mouse myoblast cell line [88] extensively characterized RNA-binding sites of CELF1 and 

found that CELF1 bound predominantly in 3’UTRs and caused mRNA decay. The authors 

found significant enrichment of CELF1 binding sites in intronic regions flanking exons, 

supporting a role for CELF1 in alternative splicing [88]. Overall, these studies suggest that 

GU-rich sequences serve as genuine binding sites for CELF1 in a manner that has been 

conserved through evolution. In the next sections, we review the data supporting the 

model that CELF1 recognizes GU-rich sequences and thereby regulates pre-mRNA 

splicing, translation, and/or mRNA deadenylation/decay depending on the cellular and 

environmental context. 

4. CELF1 as a regulator of splicing  

Pre-mRNA alternative splicing is a common mechanism for generating transcript and 

protein diversity. An estimated 90% of human genes produce alternatively spliced 

transcripts [89],[90]. Alignment of the genomic regions adjacent to mammalian intron-exon 

splice sites, identified TG-rich motifs (TTCTG and TGTT) as conserved cis-elements found at 

splicing acceptor sites associated with alternative splicing [91],[92]. These C/UG-rich 

sequences serve as binding sites for CELF proteins which activate or repress the splicing of 

pre-mRNA targets, depending on the context [93]. Recent evidence has re-confirmed the 

position-dependence of CELF1-binding sites in regulating exon inclusion or skipping 

(Figure 1) [88]. Although alternative splicing regulation was initially considered the primary 

function of CELF1 proteins in the nucleus, CELF members have also been implicated in 

nuclear C to U RNA editing in mammalian cells [94],[95].  
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Figure 1. Alternative pre-mRNA splicing by CELF1 protein modulates the temporal and spatial 

diversity of genes during development. CELF1 binds to GU-rich intronic sequences in precursor mRNA 

and regulates exon inclusion or exon skipping during stage-specific alternative splicing transitions. 

CELF1-mediated regulation of alternative splicing is critical for maintenance of normal 

muscle structure and function [43],[96],[97].  Much of what we know about the role of CELF1 

in alternative splicing comes from studies investigating the role of CELF1 in the 

pathogenesis of the neuromuscular disease myotonic dystrophy type 1 (DM1).  In this 

disease, aberrant gain of CELF1 function is combined with a corresponding loss of function 

of the splicing factor MBNL1, resulting in the mis-splicing of a number of crucial genes 

(reviewed in [11]).  Minigene reporter systems that contain alternative splice sites proved to 

be a useful tools for the identification of pre-mRNA targets for CELF1, including genes for 

cardiac troponin T (TNNT2) [98], insulin receptor (INSR) [99], and chloride channel1 

(CLCN1) [100],[101].  Interestingly, these genes were all shown to be mis-regulated in tissues 

from patients who suffered from DM1.  Minigene systems have been particularly useful in 

demonstrating that individual pre-mRNA splicing events are affected by loss or gain of 

activities of specific regulatory proteins. Studies performed in cultured cells with transiently 

transfected minigenes have identified a number of alternative gene regions regulated by 

CELF1 and other family members [43], [69], [98], [99], [100], [101], [102], [103], [104], [105], 

[106],[107],[108]. However, as in other chimeric systems, the results of minigene 

overexpression experiments may not necessarily reflect the full-length pre-mRNA splicing 

patterns observed in vivo, especially during certain stages of organism development [109]. 

CELF proteins have been found to regulate the switch from fetal to adult  splicing patterns 

of several skeletal muscle transcripts through the use of transgenic mouse models 

[101],[100],[110]. In mice, splicing microarray studies found that nearly half of transcripts 

that undergo fetal-to-adult alternative splicing transitions in heart respond to over-

expression of CELF1, suggesting that the level of CELF1 activity directly regulates the  

alternative splicing pattern of endogenous transcripts [111].  The development of dominant 
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negative (DN) and tissue specific transgenic mice was advantageous for studying CELF-

specific alternative splicing in vivo [96],[104],[109],[110]. For example, dominant negative 

CELF (DNΔCELF) expressed under the control of a cardiac muscle-specific promoter, 

promoted the development of dilatated cardiomyopathy and cardiac dysfunction over time 

[96]. In contrast, when DNΔCELF was expressed under the control of a skeletal muscle-

specific promoter, mice exhibit reduction in muscle intersticia and an increase in slow twitch 

fibers [110]. In near future, we will see more phenotypic studies using a nucleus-restricted 

form of the dominant negative CELF protein which would specifically block only the CELF1 

nuclear function, leaving the cytoplasmic function intact [112], [113], [114]. 

5. CELF proteins as regulators of deadenylation, translation, and mRNA 

decay 

5.1. Deadenylation  

CELF1 plays important roles in mRNA stability and translation in diverse species. In 

eukaryotic organisms, the length of a transcript’s polyA tail influences the translational state 

of a transcript, and deadenylation is regulated by GU-rich sequences and CELF1 proteins 

across evolution. Regulation of translation through deadenylation in Xenopus embryos is the 

best characterized model of posttranscriptional gene regulation by CELF proteins.  In this 

model, the shortening or lengthening of the polyA tail causes activation or repression of 

translation of a number of transcripts [115]. However, as we describe below, deadenylation 

can also be the first step leading to mRNA degradation in mammalian cells, and the 

deadenylation machinery seems to be conserved although the consequences of 

deadenylation (translation or degradation) is regulated differently in diverse species.  

In Xenopus, maternal transcripts are stored in the cytoplasm of oocytes in a translationally 

silent form (reviewed in [116]). After fertilization of Xenopus oocytes, the CELF1 homologue 

EDEN-BP binds to the EDEN element which activates transcript deadenylation and leads to 

the translation of EDEN-containing mRNA transcripts, including transcripts that encode 

important cell cycle regulators [31],[33],[50],[117],[118],[119].  Furthermore, human CELF1, 

which has 88% identity with EDEN-BP, was able to functionally substitute for EDEN-BP to 

mediate transcript deadenylation in Xenopus extracts [51], suggesting that the deadenylation 

function of GU-rich sequences and CELF proteins were conserved in diverse species.  

Removal of the polyA tail is the rate-limiting step in the degradation of the majority of 

mammalian mRNAs [120],[121].  In human cell lines, CELF1 has been shown to associate 

with the deadenylase enzyme polyA ribonuclease (PARN) and to stimulate polyA tail 

shortening in a cell-free assay using S100 extracts from human cells [52].  It is not known if 

CELF1 activates other deadenylases in mammalian cells or how deadenylated transcripts 

are subsequently degraded.  PARN, EDEN-BP and cytoplasmic polyadenylation element-

binding proteins (CPEB) are present in Xenopus oocyte extracts [122], [123]. Theoretically, 

the balance between the rate of deadenylation versus polyadenylation depends upon the 

ability of EDEN-BP to recruit PARN and bind to polyA tail with higher affinity than CPEB 
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[122]. Since EDEN-BP in Xenopus is a regulator of deadenylation, it is likely that CELF1 also 

regulates deadenylation in mammalian cells, leading to transcript degradation through 

unknown mechanisms.   

5.2. Translation 

Translation is a critical layer of post-transcriptional control of gene expression that is 

regulated in response to environmental and developmental changes. CELF proteins have 

been shown to be involved in the activation of translation of several mRNA species at 

various stages of development [124]. Additionally, CELF proteins have been shown to 

function as inhibitors of translation under conditions of stress, where they act as 

translational silencers in conjunction with other protein binding partners. The involvement 

of CELF1 in translational regulation is evolutionarily conserved, with several CELF1 

homologues having been shown to regulate translation.  For example, in the Drosophila 

oocyte, translational repression is mediated by the protein Bruno (CELF1 orthologue), that 

binds specifically to bruno response elements (BREs) within the oskar mRNA 3'UTR. 

Binding by the CELF1 orthologue Bru-3 to GU-rich sequences in 3’UTR of gurken, cyclin A 

and oskar mRNA leads to their translational repression [44]. The suggested mechanism 

underlying Bru-3 mediated translational regulation is through the formation of a Bru-

3/eIF4E/5’-cap translational silencing complex during specific stages of embryo 

development [125].  CELF1 has also been shown to play a role in translational regulation in 

mammalian cells.  In human cell lines, tethering of CELF1 to the 3’UTR of mRNA through 

an interaction with the MS2 coat protein led to decreased steady state levels of reporter 

transcripts that contained a MS2 RNA-binding site, while reporter protein levels increased 

[126]. CELF1 increases the translation of p21 (CDKN1A28) protein [127], and Mef2a29 [128] 

during normal muscle cell differentiation via direct interaction with (GC)n repeats located 

within the 5’UTR of those mRNAs.  The data suggests that CELF1 mediates translational 

regulation through interaction with a G- and C-rich motif in the 5’UTR, whereas CELF1 

mediates its splicing and degradation effects through interaction with a G- and U-rich motif 

in introns and 3’UTRs, respectively.  Our experiments determining CELF1 binding targets 

through high-throughput means have failed to identify enrichment of GC-rich motifs or 

5’UTR binding by CELF1 [82].  It may be that CELF1 mediated translational regulation is 

rare, and only occurs in the context of very specific mRNA species and cellular contexts.  

Recently, an additional mechanism for CELF1 mediated translational regulation through 

interaction with the 3’UTR was discovered.  Binding of CELF1 to the 3’UTR of Serine 

hydroxymethyltransferase (SHMT) RNA [129],[130] and cyclin dependent kinase inhibitor 

p27 (Kip1) RNA [131], was found to regulate internal ribosome entry site (IRES) mediated 

translation activation.  This implicated CELF1 in participating in an IRES mode of initiation 

of mRNA translation. In addition, IRES translation is achieved through CELF1/hnRNPH 

complex formation, which promotes circularization of RNA transcripts by mediating 5’/3’ 

ends interactions [129]. Whether CELF1 recruits the translation machinery to the 5’UTR via 

additional interaction with eIF2 (Eukaryotic Initiation Factor 2) or another initiation factor 

remains to be determined (Figure 2).  
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Figure 2. Simplified representation of the role of CELF1 in mRNA translation.  Several mechanisms 

have been proposed for CELF1 mediated regulation of translation.  Many of these mechanisms involve 

CELF1 interacting with mRNA through sequences in the 5’UTR and subsequent translation via an 

internal ribosomal entry site. If (hyper)/phosphorylated, CELF1 interacts with eIF2 and other translation 

initiation factors, this serves to promote the production of truncated protein products. 

One well studied instance of CELF1 mediated translational control involves the translation 

of alternative isoforms of the transcription factor CCAAT/enhancer-binding protein 

(CEBPbeta) [132],[133],[134].  In a rat model, CELF1 phosphorylation was activated by 

partial hepatectomy, which promoted the formation of a complex between CELF1 and 

eIF2a. This subsequently led to selective translation of the liver enriched inhibitory protein 

(LIP) isoform of CCAAT/enhancer-binding protein [76]. It was later shown that in liver, 

CELF1 undergoes hyper-phosphorylation through a GSK3beta-cyclin D3-cdk4 kinase 

pathway, and the activity of this pathway seemed to increase with age [135]. Similar to the 

partial hepatectomy model, the cdk4-mediated hyper-phosphorylation of CELF1 was 
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involved in the age-associated induction of the CELF1-eIF2 complex [136].  In the rat aging 

model, the CELF1-eIF2 complex binds to the 5’UTR of HDAC1 mRNA and increases histone 

deacetylase 1 protein levels in aging liver [136],[137]. It was further shown that during rat 

aging, CELF1 phosphorylation promotes its interaction with a GC-rich sequence in 5’UTR of 

p21 mRNA causing p21 translational arrest and senescence in fibroblasts [138]. In myocytes, 

p21 mRNA is stabilized in discrete cytoplasmic structures called stress granules, which 

serve as reversible storage sites for mRNA under conditions of stress.  Interestingly, only 

during late senescence did p21s localization in stress granules interfere with its translation 

[138],[139].   One important component of stress granules is the RNA-binding protein T cell 

internal antigen 1 (TIA1).  Consistent with CELF1’s recruitment to stress granules, CELF1 

has been shown to function as a translational silencer through interaction with the TIA1 

protein [140]. Further support for this model comes from experiments utilizing DM1 cell 

harboring CUG repeat RNA.  The presence of a CUG repeat expansion was found to cause 

stress and activation of the PKR-phospho-eIF2α–CELF1 pathway leading to stress granule 

formation and inhibition of mRNA translation [81]. This disruption to physiologic mRNA 

translation pathways by cellular stress signals might contribute to the progressive muscle 

loss in DM1 patients. Taken together, this data suggests that CELF proteins may function as 

activators or repressors of translation, depending on the context. 

5.3. mRNA Decay 

Bioinformatic analysis of short lived-transcripts in primary human T cells led to the 

identification of the conserved, GU-rich element (GRE) enriched in transcript’s 3’UTRs.  

CELF1 was subsequently identified as a protein that specifically bound to the GRE in vitro 

and then to regulate the decay of exogenously expressed GRE-containing transcripts within 

cells [30],[141]. Further verification of the role of CELF1 in GRE-mediated mRNA decay 

came from the observation that in HeLa cells, siRNA-mediated knockdown of CELF1 led to 

stabilization of GRE-containing beta-globin reporter transcripts, as well as endogenous 

GRE-containing transcripts [30],[83],[142]. These results implicated CELF1 as a mediator of 

GRE-dependent mRNA decay. In primary human T cells, GREs and CELF1 appear to be 

involved in the rapid changes in gene expression patterns observed following T cell 

receptor-mediated activation.  Identification the cytoplasmic binding targets of CELF1 

before and after T cell activation led to the discovery that CELF1 dissociated from GRE-

containing transcripts following T cell activation in a manner correlated with a transient 

upregulation of CELF1 target mRNAs [77]. The dissociation of CELF1 from its target 

transcripts upon T cell activation was the result of an activation-dependent phosphorylation 

of CELF1 and a resultant decrease in the ability of CELF1 to bind to GRE-containing RNAs 

[77]. Many of the transiently up-regulated CELF1 target transcripts encoded proteins 

necessary for the transition from a quiescent state to a state of cellular activation and 

proliferation.  This supported a model whereby CELF1 suppresses a network of transcripts 

involved in activation and proliferation in resting T cells, and subsequent activation-

induced phosphorylation of CELF1 allows for de-repression and accumulation of these 

transcripts within activated cells.  
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In mouse myoblasts, cytoplasmic CELF1 bound hundreds of target transcripts that 

contained GU-rich sequences, including networks of transcripts that regulated cell cycle, 

intracellular transport and cell survival [55]. Knockdown of CELF1 in this myoblast cell line 

led to the stabilization of many endogenous GRE-containing targets, as well as luciferase 

reporter RNAs [88].  Many CELF1 target transcripts were found to be significantly stabilized 

in CELF1 knockout myoblasts, suggesting that CELF1 mediates the decay of a network of 

transcripts during myoblast growth and differentiation [55].  In the DM1 disease model, 

there is aberrant activation of the protein kinase C pathway as a result of the CTG 

expansion, and this results in CELF1 phosphorylation.  Mouse myoblasts (C2C12 cells) 

made to express CTG expanded RNA were shown to experience stabilization of tumor 

necrosis factor alpha (TNF-alpha) mRNA [143]. This result suggested that the over-

expression of TNF-alpha observed in DM1 could be coming from muscle, and this TNF-

alpha overexpression may contribute to the muscle wasting and insulin resistance that are 

characteristic of this disease [143]. In summary, CELF1 and its GRE-containing target 

transcripts define posttranscriptional regulatory networks that function to control cellular 

growth, activation, and differentiation (Figure 3).  

 

Figure 3. Evolutionary conservation of deadenylation by CELF1 protein and GU-rich sequences. (a). In 

Xenopus and Drosophila eggs, after fertilization, EDEN-BP (CELF1 homologue) bound to EDEN-

containing maternal mRNAs, causing deadenylation and subsequent translational activation. (b). In 

mammalian cells, CELF1 binds to GREs within the 3' UTR of specific transcripts and promotes their 

deadenylation (by deadenylases) and subsequent decay by the exosome. 

6. The GRE/CELF1 posttranscriptional network in human diseases 

The CELF family is an evolutionarily conserved family of RNA-binding proteins that plays 

an essential role in several aspects of post-transcriptional gene regulation and participates in 

(a) (b)
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the control of important developmental processes. Disruption of CELF1/GRE-mediated 

mRNA regulation may play a role in the pathophysiology of developmental defects 

[87],[113],[144], or cancer [145],[146]. In Xenopus, injecting “masking” oligonucleotides into 

embryos to specifically inhibit the binding of CELF1 to mRNA causes developmental 

defects, such as the loss of somatic segmentation [147]. Genetic deletion of CELF1 in 

Caenorhabditis elegans and transgenic mice caused severe developmental abnormalities and 

death [38],[45]. CELF1 knockout mice were mostly non-viable, but the few surviving pups 

displayed severe muscular and fertility defects [38]. The finding that CELF1 knockout mice 

displayed muscle pathophysiology was not surprising since CELF1 was first described as a 

protein that bound to the abnormally expanded CUG mRNA repeats occurring in patients 

with the neuromuscular disease: type I myotonic dystrophy [58],[59]. It has since been 

shown that the molecular pathogenesis of DM1 involves an increase in both nuclear and 

cytoplasmic CELF1 levels [148],[149] due to hyper-phosphorylation of the protein [74]. 

Kuyumcu-Martinez and colleagues reported that CELF1 hyper-phosphorylation was 

triggered by the presence of abnormal CUG repeats in DMPK RNA, which caused cellular 

stress and a resultant activation of the Protein kinase C stress response pathway.  This stress 

response and CELF1 hyper-phosphorylation was shown to trigger stabilization of the CELF1 

protein and thus upregulation in DM1 myoblasts [75]. The importance of CELF1 

upregulation is highlighted by the finding that over-expression of CELF1 in mouse heart 

and skeletal muscle recapitulated many of the aberrant splicing patterns observed in DM1 

patient tissues [54],[78],[97],[128],[148],[150]. Interestingly, the repression of CELF1 activity 

can restore normal alternative splicing events in transgenic mouse model of DM1 [114]. It 

has become increasingly clear that abnormal splicing underlies the molecular pathogenesis 

of muscular degenerative disorders, and in addition to occurring in muscle tissue, these 

splicing changes have been reported in brain tissues [151] which correlated with the 

presence of neurologic impairment [152] and abnormal Ca(2+) metabolism in DM1 patients 

[153]. DM1-like alternative splicing dysregulation and altered expression of CELF1 also 

occurs in mouse models of other muscular dystrophies and muscle injury, most likely due to 

recapitulation of neonatal splicing patterns in regenerating fibers [113]. CELF1 function is 

altered in other neuromuscular diseases due to its sequestration to nuclear inclusions in 

oculopharyngeal muscular dystrophy (OPMD) [154], fragile-X-associated tremor/ataxia 

syndrome [152], and in spinal bulbar muscular atrophy [155], suggesting a key role for this 

protein in muscle pathophysiology.  It will be interesting to investigate whether altered 

CELF1 regulation in muscle diseases could also have deleterious effects through altering the 

stability of GU-rich mRNA targets, given the role of CELF1 in mRNA decay. The discovery 

of disease-causing splicing patterns in muscle disease has yielded a wealth of information 

about both physiologic and dysregulated RNA biology and this information is currently 

being leveraged to develop novel therapies for DM1 and other RNA based neuromuscular 

disorders [156]. 

Despite the fact that the field of CELF1 biology is relatively young, there is some data 

supporting a potential link between dysregulated CELF1 mediated RNA metabolism and a 

cancerous phenotype.  One recent study found CELF1 to be one to the top ten candidates in 

a transposon-based genetic screen in mice to identify potential drivers of colorectal 
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tumorigenesis [157]. Additionally, CELF1 expression has been shown to be lost through a 

t(1;11)(q21;q23) translocation in certain forms of pediatric acute leukemia [158].  One way in 

which disruption of CELF1 may contribute to a malignant phenotype is through 

disregulation of C/EBPbeta expression.  In HER2-overexpressing breast cancer cells CELF1 

is activated favoring the production of the C/EBPbeta transcription-inhibitory isoform LIP 

over that of the active isoform LAP, and this contributed to evasion of TGFbeta and 

oncogene-induced senescence [146]. Treatment of HER2-transformed metastatic breast 

cancer cells with the anti-HER2/neu monoclonal antibody trastuzumab reduced CELF1 

protein level and it’s activity, suggesting that the targeting of CELF1 may be a viable adjunct 

therapy in the treatment of breast cancer [159].  Expressions of C/EBPbeta and C/EBPalfa are 

translationally repressed in BCR/ABL cells (chronic myelogenous leukemia) and it can be re-

induced by imatinib via a mechanism that appears to depend on the activity of CELF1 and 

the integrity of the CUG-rich intercistronic region of C/EBPbeta mRNA [160],[161].   

Another potential mechanism of CELF1 mediated tumor promotion comes from our lab’s 

results of RIP-Chip experiments investigating CELF1’s targets in normal and malignant 

cells. In primary human T cells, we observed that CELF1 bound to a large number of 

transcripts involved in cell cycle and apoptosis regulation pathways, and that upon 

activation and proliferation of these cells, CELF1 bound to a drastically reduced mRNA 

population [77].  This result suggests that CELF1 inhibition is correlated with a cellular state 

of proliferation and altered apoptotic response. We also identified hundreds of CELF1 target 

transcripts in human HeLa cells (carcinoma cell line) and many of these transcripts were 

different than those in normal T cells suggesting again that altered CELF1’s RNA binding 

specificity may correlate with malignancy [82].     

CELF1-HDAC1-C/EBPbeta pathway is activated in young rat liver cells and in human 

tumor liver samples suggesting that CELF1-HDAC1-C/EBPbeta complexes are involved in 

the development of liver tumors [162],[163]. The inhibition of the ubiquitin-dependent 

proteasome system (UPS) via specific drugs (such as Bortezomib) is one type of approach 

used to combat cancer [164]. Gareau et. al. showed that CELF1 is required for p21 mRNA 

stabilization and localization in stress granules induced upon treatment with Bortezomib.  

The authors postulated that this may allow cancer cells survive stress and escape apoptosis 

[165]. This mechanism may explain why some tumors are refractory to Bortezomib 

treatment.   

Thus, the dysregulation of CELF1 and GREs appears to contribute to malignant phenotype, 

perhaps by abrogating its ability to mediate the rapid and timely degradation of GRE-

containing growth-regulatory transcripts and promote translation of some cell cycle 

regulators and oncogenes.  

7. Conclusion 

In summary, we have learned a wealth of information about CELF1-mRNA complexes and 

their importance in development, regeneration, aging and disease. CELF1 binds 

preferentially to GRE-containing transcripts, and affects expression of transcripts encoding 
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other transcription factors and RNA-binding proteins that regulate cell growth, apoptosis, 

and development/differentiation (reviewed in [28],[166]). Thus, CELF1 may be functioning 

as a posttranscriptional “regulator of regulators”, whereby CELF1 influences the expression 

of a network of target transcripts encoding RNA/DNA binding proteins. This, in turn 

regulates individual subnetworks of transcripts necessary for development or 

environmental responses, such as immune activation, requiring transition from a quiescent 

state to a state of cellular activation and proliferation.  

Understanding gene regulatory networks and the integration of transcriptional and 

posttranscriptional events are the next important tasks in translational medicine. It will 

require innovations in computational methods, experimental techniques and new animal 

models. It is also important to further investigate in vivo biochemical interactions between 

CELF proteins and RNA, to discover unknown components of CELF protein-containing 

complexes bound to RNA that may be involved in splicing, deadenylation, decay, and/or 

translation regulation.  The lists of conserved RNA-binding proteins and mRNA cis-elements 

has been expanding over the past decade, but the mechanisms of the precise assembly of 

RNA-binding complexes in an orchestrated temporal and spatial manner have not been 

comprehensively described.  Furthermore, little work has been done on how the  expression 

and function of CELF1 is regulated, specifically by  microRNAs (such as mir-222 [167], mir-

503 [168], and miR-23a/b [169]). The more details we learn about intracellular signaling, cross-

talk, molecular assembly and localization of RNA-protein complexes, the more unifying 

principles we may find. Understanding the biochemistry of posttranscriptional regulation 

will lead to elucidation of posttranscriptional regulatory pathways and networks and lead to 

a better understanding of normal cellular function and disease states. 
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