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1. Introduction

In the field of X-ray crystal structure analysis, while the absolute values of structure factors
are directly observed, phase information is lost in general. However, this problem (phase
problem) has been overcome mainly by the direct method developed by Hauptmann and
Karle except for protein crystals. In the case of protein crystal structure analysis, the
isomorphous replacement method and/or anomalous dispersion method are mainly used to
solve the phase problem. Phasing the structure factors is sometimes the most difficult process
in protein crystallography.

On the other hand, It has been recognized for many years since the suggestion by Lipscomb
in 1949 [12] that the phase information can be physically extracted, at least in principle, from
X-ray diffraction profiles of three-beam cases in which transmitted and two reflected beams
are simultaneously strong in the crystal. This suggestion was verified by Colella [3] that
stimulated many authors [2, 4, 5, 21, 22] and let them investigate the multiple-beam (n-beam)
method to solve the phase problem in protein crystallography.

The most primitive n-beam diffraction is the cases n = 3. The shape of three-beam rocking
curve simply depends on the triplet phase invariant. In the case of protein crystallography,
however, it is extremely difficult to realize such three-beam cases that transmitted and only
two reflected beams are strong in the crystal, which is due to the extremely high density of
reciprocal lattice nodes owing to the large size of unit cell of the crystal. Therefore, X-ray
n-beam dynamical diffraction theory is necessary to solve the phase problem in protein
crystallography. The Ewald-Laue (E-L) dynamical diffraction theory [7, 11] was extended
to the three-beam cases in the late 1960’s [8–10]. The numerical method to solve the n-beam
(n ≥ 3) E-L theory was given by Colella [3]. Colella’s method [3] to solve the n-beam E-L
theory is applicable only to the case of crystals with planar surfaces.
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On the other hand, Okitsu and his coauthors [13, 14, 16, 17] extended the Takagi-Taupin
(T-T) dynamical diffraction theory [18–20] to n-beam cases (n ∈ {3, 4, 5, 6, 8, 12}) and
presented a numerical method to solve the theory. They showed six-beam pinhole topographs
experimentally obtained and computer-simulated based on the n-beam T-T equation, between
which excellent agreements were found. In reference [16], it was shown that the n-beam T-T
equation can deal with X-ray wave field in an arbitrary-shaped crystal.

In the n-beam method to solve the phase problem in the protein crystal structure analysis,
one of the difficulty is the shape of the crystal which is complex in general. Then, the above
advantage of n-beam T-T equation over the E-L dynamical theory is important. The present
authors have derived an n-beam T-T equation applicable for arbitrary number of n, which will
be published elsewhere.

The n-beam T-T equation was derived in references [13, 17] from Takagi’s fundamental
equation of the dynamical theory [19]. In section 2 of the present chapter, however, the n-beam
E-L theory is described at first. The n-beam T-T equation is derived by Fourier-transforming
the n-beam E-L dynamical theory. Then, it is also described that the E-L theory can be derived
from the T-T equation. This reveals a simple relation between the E-L and T-T formulations of
X-ray dynamical diffraction theory. This equivalence between the E-L and T-T formulations
has been implicitly recognized for many years but is explicitly described for the first time. In
section 5, experimentally obtained and computer-simulated pinhole topographs are shown
for n ∈ {3, 4, 5, 6, 8, 12}, which verifies the theory and the computer algorithm to solve it.

2. Derivation of the n-beam Takagi-Taupin equation

2.1. Description of the n-beam Ewald-Laue dynamical diffraction theory

The fundamental equation with the E-L formulation is given by [1, 2]

k2
i − K2

k2
i

Di = ∑ χhi−hj

[

D j

]

⊥ki

. (1)

Here, ki is wavenumber of the ith numbered Bloch wave whose wave vector is k0 + hi

where k0 is the wave vector of the forward-diffracted wave in the crystal, K(= 1/λ) is the
wavenumber of X-rays in vacuum, Di and D j are complex amplitude vectors of the ith
and jth numbered Bloch waves, ∑ is an infinite summation for all combinations of i and j,
χhi−hj

is Fourier coefficient of electric susceptibility and [D j]⊥ki
is component vector of D j

perpendicular to ki, respectively.

By applying an approximation that ki + K ≈ 2ki to (1), the following equation is obtained,

ξiDi =
K

2 ∑ χhi−hj

[

D j

]

⊥ki

, (2)

where ξi = ki − K.

Let the electric displacement vector Di be represented by a linear combination of scalar
amplitudes as follows:

Di = D
(0)
i e

(0)
i +D

(1)
i e

(1)
i .
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Here, e
(0)
i and e

(1)
i are unit vectors perpendicular to si, where si is a unit vector parallel to ki.

si, e
(0)
i and e

(1)
i construct a right-handed orthogonal system in this order. (2) can be described

as follows:

ξ cos ΘBD
(l)
i = −K

(

S
(0)
i,0 β(0) + S

(1)
i,0 β(1)

)

D
(l)
i

+
K

2

n−1

∑
j=0

1

∑
m=0

C
(l,m)
i,j χhi−hj

D
(m)
j , (3)

where, i, j ∈ {0, 1, · · · , n − 1}, n ∈ {3, 4, 5, 6, 8, 12},

l, m ∈ {0, 1}.

Here, S and C are polarization factors defined by

e
(m)
j = S

(m)
i,j si + C

(0,m)
i,j e

(0)
i + C

(1,m)
i,j e

(1)
i , (4)

where i and j are ordinal numbers of waves (i, j ∈ {0, 1, 2, · · · , n − 1}) and l and m are ordinal

numbers of polarization state (l, m ∈ {0, 1}). When deriving (3) from (2), all reciprocal lattice

nodes lying on the surface of Ewald sphere are assumed to be on a circle in reciprocal space.

Then number of waves n are limited to be n ∈ {3, 4, 5, 6, 8, 12} even in the case of cubic crystals

with the highest symmetry. ΘB is the angle spanned by
−→
PQ and ki which is an identical value

for every i (i ∈ {0, 1, 2, · · · , n − 1}), where P and Q are centers of the Ewald sphere and the

circle on which the reciprocal lattice nodes lie, respectively. ξ is such a value that

−−→
P1P′

1 = −ξ
−→
PQ/

∣

∣

∣

−→
PQ

∣

∣

∣
, (5)

where P′
1 is the common initial point of ki [whose terminal points are Hi (i ∈ {0, 1, · · · , n −

1})] and P1 is a point on the sphere whose distance from the origin O of reciprocal space is K.

Hereafter, this surface of sphere is approximated as a plane whose distance from O is K in the

vicinity of the Laue point La whose distance from Hi (i ∈ {0, 1, · · · , n − 1}) is the identical

value K. For description in the next section, it is described here that
−−→
P1P′

1 is represented by a

linear combination of si, e
(0)
i and e

(1)
i as follows:

−−→
P1P′

1 = −ξ
(

cos ΘBsi + η
(0)
i sin ΘBe

(0)
i + η

(1)
i sin ΘBe

(1)
i

)

.

P1 is such a point that

−−→
P1La = K

(

β(0)e
(0)
0 + β(1)e

(1)
0

)

. (6)

(2) and (3) can also be represented using matrices and vector as follows:

ξ cos ΘBED = AD. (7)
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Here, E is a unit matrix of size 2n, D is a amplitude column vector of size 2n whose qth

element is D
(m)
j (q = 2j + m + 1) and A is a square matrix of size 2n whose element ap,q is

given by

ap,q =
K

2
χhi−hj

C
(l,m)
i,j − δp,qK

(

S
(0)
i,0 β(0) + S

(1)
i,0 β(1)

)

.

Here, p = 2i + l + 1 and δp,q is Kronecker delta. 2n couples of ξ and D can be obtained by

solving eigenvalue-eigenvector problem of (7). This problem was solved by Colella [3] for the

first time. Dispersion surfaces on which the initial point P′
1 of wave vectors of Bloch waves

should be, is given as 2n sets of eigenvalues for (7).

2.2. Derivation of the n-beam Takagi-Taupin equation from the Ewald-Laue

theory

In this section, the n-beam theory of T-T formulation is derived by Fourier-transforming the

n-beam E-L theory described by (3).

A general solution of dynamical diffraction theory is considered to be coherent superposition

of Bloch plane-wave system when X-ray wave field D̃(r) is given as follows:

D̃(r) =
n−1

∑
i=0

1

∑
l=0

e
(l)
i D

(l)
i (r) exp

(

−i2π
−−→
LaHi · r

)

, (8)

where r is the location vector. For the following description, r is described by a linear

combination of si, e
(0)
i and e

(1)
i as follows,

r = sisi + e
(0)
i e

(0)
i + e

(1)
i e

(1)
i . (9)

The amplitude of the ith component wave whose polarization state is l is described as,

D
(l)
i (∆k) exp

(

−i2π
−−→
P′

1Hi · r
)

= D
(l)
i (∆k) exp (−i2π∆k · r) exp

(

−i2π
−−→
LaHi · r

)

,

where ∆k =
−−→
P′

1La.

In this section, the amplitude of plane wave whose wave vector is ki and polarization state is

l is denoted by D
(l)
i (∆k) in place of D

(l)
i in order to clarify this value depends on ∆k. D

(l)
i (r)

in (8) is represented by superposing coherently D
(l)
i (∆k) as follows:

D
(l)
i (r) =

∫ D.S.

∆k
D

(l)
i (∆k) exp (−i2π∆k · r)dSk. (10)

Substituting (4) with j = 0, (5), (6) and (9) into (10),

D
(l)
i (r) =

∫ D.S.

∆k
D

(l)
i (∆k)

× exp
{

−i2π
[(

ξ cos ΘB + Kβ(0)S
(0)
i,0 + Kβ(1)S

(1)
i,0

)

si + Ti(ξ, e
(0)
i , e

(1)
i )

]}

dSk. (11)
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Here,
∫ D.S.

∆k dSk means an integration over the dispersion surfaces in reciprocal space and

Ti(ξ, e
(0)
i , e

(1)
i ) is a term that does not depend on si. ∂D

(l)
i (r)/∂si can be calculated as follows:

∂

∂si
D

(l)
i (r) =

∂

∂si

∫ D.S.

∆k
D

(l)
i (∆k) exp (−i2π∆k · r)dSk

=
∫ D.S.

∆k

∂

∂si

[

D
(l)
i (∆k) exp (−i2π∆k · r)

]

dSk

= −i2π
∫ D.S.

∆k

[

ξ cos ΘB + K
(

S
(0)
i,0 β(0) + S

(1)
i,0 β(1)

)]

D
(l)
i (∆k) exp (−i2π∆k · r) dSk.

(12)

Substituting (3) into (12),

∂

∂Si
D

(l)
i (r) = −iπK

∫ D.S.

∆k

n−1

∑
j=0

1

∑
m=0

C
(l,m)
i,j χhi−hj

D
(m)
j (∆k) exp (−i2π∆k · r)dSk

= −iπK
n−1

∑
j=0

1

∑
m=0

C
(l,m)
i,j χhi−hj

∫ D.S.

∆k
D

(m)
j (∆k) exp (−i2π∆k · r) dSk. (13)

Incidentally, when the crystal is perfect, the electric susceptibility χ(r) is represented by

Fourier series as χ(r) = ∑hi
χhi

exp[−i2πhi · r]. However, when the crystal has a lattice

displacement field of u(r), the electric susceptibility is approximately given by χ[r − u(r)]
and represented by Fourier series as follows,

χ[r − u(r)] = ∑
hi

χhi
exp[i2πhi · u(r)] exp(−i2πhi · r).

Then, in the case of crystal with a lattice displacement field of u(r), χhi−hj
can be replaced by

χhi−hj
exp[i2π(hi − hj) · u(r)]. Therefore, the following equation is obtained from (13),

∂

∂si
D

(l)
i (r) = −iπK

n−1

∑
j=0

1

∑
m=0

C
(l,m)
i,j χhi−hj

exp
[

i2π(hi − hj) · u(r)
]

D
(m)
j (r), (14)

where, i, j ∈ {0, 1, · · · , n − 1}, n ∈ {3, 4, 5, 6, 8, 12},

l, m ∈ {0, 1}.

The above equation is nothing but the n-beam T-T equation that appeared as eq. (4) in

reference [17].

2.3. Derivation of the n-beam E-L dynamical theory from the T-T equation

In this section, it is described that the n-beam E-L theory given by (3) can be derived from the

n-beam T-T equation (14).

71
X-Ray N-Beam Takagi-Taupin Dynamical Theory and N-Beam 

Pinhole Topographs Experimentally Obtained and Computer-Simulated



6 Will-be-set-by-IN-TECH

When plane-wave X-rays are incident on the crystal to excite 2n tie points on the dispersion

surfaces, each Bloch plane-wave system is described by

D̃ =
n−1

∑
i=0

1

∑
l=0

e
(l)
i D

(l)
i exp (−i2π∆k · r) exp

(

−i2π
−−→
LaHi · r

)

.

Even when D
(l)
i (r) = D

(l)
i exp(−i2πk

(l)
i · r), D

(l)
i (r) should satisfy (14) with u(r) = 0,

∂

∂si

[

D
(l)
i exp (−i2π∆k · r)

]

= −iπK
n−1

∑
j=0

1

∑
m=0

C
(l,m)
i,j χhi−hj

[

D
(m)
j exp (−i2π∆k · r)

]

. (15)

Applying the same procedure as used when deriving (11),

∂

∂si

[

D
(l)
i exp (−i2π∆k · r)

]

= D
(l)
i

∂

∂si
exp

{

−i2π
[(

ξ cos ΘB + Kβ(0)S
(0)
i,0 + Kβ(1)S

(1)
i,0

)

si + Ti(ξ, e
(0)
i , e

(1)
i )

]}

= −i2π
(

ξ cos ΘB + Kβ(0)S
(0)
i,0 + Kβ(1)S

(1)
i,0

) [

D
(l)
i exp (−i2π∆k · r)

]

. (16)

Comparing (15) and (16), the same equation as (3) is obtained. The equivalence between

the n-beam E-L and T-T X-ray dynamical diffraction theories (n ∈ {3, 4, 5, 6, 8, 12}) described

by a Fourier transform as defined by (10) is verified. As far as the present authors know,

description on this equivalence between the E-L and T-T dynamical diffraction theories for

two-beam case is found just in section 11.3 of Authier’s book [1].

3. Algorithm to solve the theory

Figure 1(a) and 1(b) are schematic drawings for explanation of the algorithm to solve the

n-beam T-T equation (14) for a six-beam case whose computer-simulated and experimentally

obtained results are shown in Figure 9 of the present chapter. Vectors
−−−−−→
R
(0)
i R(1) in Figure

1(a) are parallel to si. When the length of
−−−−−→
R
(0)
i R(1) is sufficiently small compared with

the extinction length −1/(χ0K) of the forward diffraction, The T-T equation (14) can be

approximated by

D
(l)
i (R(1))− D

(l)
i (R

(0)
i )

∣

∣

∣

∣

−−−−−→
R
(0)
i R(1)

∣

∣

∣

∣

= −iπK
n−1

∑
j=0

1

∑
m=0

{

χhi−hj
exp

[

i2π
(

hi − hj

)

· u(Rmi)
]

×C
(l,m)
i,j

[

D
(m)
j (R

(0)
i ) + D

(m)
j (R(1))

]

/2
}

. (17)
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Figure 1. This Figure shows small hexagonal pyramids used when solving the T-T equation (14) in a
six-beam case whose results are shown in Figure 9.

The above equation (17) can be described using matrix and vectors as follows:

A = BD (18)

where, ap = −i
1

2
πK

n−1

∑
j=0

1

∑
m=0

χhi−hj
exp

[

i2π(hi − hj) · u(Rmi)
]

C
(l,m)
i,j D

(m)
j (R

(0)
i )

+
D

(l)
i (R

(0)
i )

∣

∣

∣

∣

−−−−−→
R
(0)
i R(1)

∣

∣

∣

∣

,

bp,q = i
1

2
πKχhi−hj

exp
[

i2π(hi − hj) · u(Rmi)
]

C
(l,m)
i,j +

δp,q
∣

∣

∣

∣

−−−−−→
R
(0)
i R(1)

∣

∣

∣

∣

,

dq = D
(m)
j (R(1)),

p = 2i + l + 1,

q = 2j + m + 1.
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Here, A and D are column vectors of size 2n whose pth and qth elements are ap and dq,

respectively, and B is a square matrix of size 2n whose element of the pth column and the qth

raw is bp,q.

Figure 2. This Figure shows a top view of Figure 1(b).

Figure 2 is a top view of Figure 1(b). The X-ray amplitudes D
(m)
j (R

(1)
i ) were calculated

from the X-ray amplitudes at the incidence point D
(l)
0 (Rinc) of the crystal surface. In this

case, 0 0 0-forward-diffracted and 4 0 4-, 4 2 6-, 0 6 6-, 2 6 4- and 2 2 0-reflected X-rays are

simultaneously strong. The angle spanned by nx- and ny-axes is 120◦ .
−−−−−→
RincR

(1)
i in Figure 1(b)

are parallel to the wave vectors of 0 0 0-forward-diffracted and 4 0 4-, 4 2 6-, 0 6 6-, 2 6 4-

and 2 2 0-reflected X-rays. As a boundary condition on the crystal surface, amplitude array

Deven(i,l,nx,ny) has nonzero value (unity) when (i,l,nx,ny)=(0,0,0,0) or (i,l,nx,ny)=(0,1,0,0).
On the first layer, nonzero X-ray amplitudes Dodd(j, m, nx, ny) are calculated when (nx, ny) =

[n′
x(i), n′

y(i)] (i ∈ {0, 1, · · · , n − 1}). Here, [n′
x(i), n′

y(i)] = (0, 0),(0, 2),(1, 3),(3, 3),(3, 2) and

(1, 0) for i = 0, 1, 2, 3, 4, 5, respectively. In general, Deven(i,l,nx,ny) [or Dodd(i,l,nx,ny)] is

calculated as D
(l)
i (R(1)) by substituting Dodd(j,m,nx − n′

x(i),ny − n′
y(i)) [or Deven(j,m,nx −

n′
x(i),ny − n′

y(i))] into D
(m)
j (R

(0)
i ) in (17). The calculation was performed layer by layer

scanning nx and ny in a range of NMin[n′
x(i)] ≤ nx ≤ N Max[n′

x(i)] and NMin[n′
y(i)] ≤ ny ≤

N Max[n′
y(i)], where N is the ordinal number of layer. The values of χhi−hj

were calculated

by using XOP version 2.3 [6].

4. Experimental

4.1. Phase-retarder system

When taking four-, five-, six- and eight-beam pinhole topographs shown in section 5,

the horizontally polarized synchrotron X-rays monochromated to be 18.245 keV with a

water-cooled diamond monochromator system at BL09XU of SPring-8 were incident on the

‘rotating four-quadrant phase retarder system’ [15, 17].

Figure 3 shows (a) a schematic drawing of the phase retarder system and (b) a photograph

of it. [1 0 0]-oriented four diamond crystals PRn (n ∈ {1, 2, 3, 4}) with thicknesses of 1.545,
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Figure 3. (a) is a schematic drawing of the ‘rotating four-quadrant phase retarder system’ (reproduction
of Figure 3 in reference [17]). (b) is a photograph of it.

2.198, 1.565 and 2.633 mm were mounted on tangential-bar type goniometers such that the

deviation angles ∆θPRn
from the exact Bragg condition of 1 1 1 reflection in an asymmetric

Laue geometry can be controlled. See Figure 4 in reference [17] for more detail. The four

tangential-bar type goniometers were mounted in a χ-circle goniometer [see Figure 3 (b)]
such that the whole system of the phase retarders can be rotated around the beam axis of

transmitted X-rays. The rotation angle of the χ-circle χPR and ∆θPRn
were controlled as

summarized in Table 3 in reference [17] such that horizontal-linearly (LH), vertical-linearly

(LV), right-screwed circularly (CR), left-screwed circularly (CL), −45◦-inclined-linearly

(L−45) and +45◦-inclined-linearly (L+45) polarized X-rays were generated to be incident on

the sample crystal.

In the cases of three- and twelve-beam pinhole topographs, horizontally polarized

synchrotron X-rays monochromated to be 18.245 keV and to be 22.0 keV, respectively, but

not transmitted through the phase retarder system were incident on the sample crystals.
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4.2. Sample crystal

Figure 4 is a reproduction of Fig 7 in reference [17] showing the experimental setup when the

six-beam pinhole topographs shown in reference [17] were taken. Also in the case of n-beam

pinhole topographs (n ∈ {3, 4, 5, 6, 8, 12}) the [1 1 1]-oriented floating-zone silicon crystal with

thickness 9.6 mm (for three-, four-, five-, six- and eight-beam topographs) and 10.0 mm (for

twelve-beam topographs) were also mounted on the four-axis goniometer whose χ-, φ-, ω-

and θ-axes can be rotated. Transmitted X-rays through the sample and two reflected X-rays

were searched by three PIN photo diodes as shown in Figure 4. The positions of the two PIN

photo diodes for detecting the reflected X-rays were determined using a laser beam guide

reflected by a mirror. The mirror was mounted at the sample position on the goniometer

whose angular positions were calculated such that the mirror reflects the laser beam to the

direction of X-rays to be reflected by the sample crystal.

Figure 4. A schematic drawing of the goniometer on which the sample crystal was mount (reproduction
of Figure 7 in reference [17]).

After adjusting the angular position of the goniometer such that the n-beam simultaneous

reflection condition was satisfied, the size of slit S in Figure 3 (a) was limited to be 25×25 μm.

N images of n-beam pinhole topographs were simultaneously recorded on an imaging plate

placed behind the sample crystal.

5. Results and discussion

5.1. Three-beam case

Three-beam case is the most primitive case of X-ray multiple reflection. Figures 5[E(a)] and

5[S(a)] are 0 0 0-forward-diffracted and 4 0 4- and 0 4 4-reflected X-ray pinhole topograph

images. Figures 5[E(b)] and 5[S(b)] are enlargements of 0 4 4-reflected images from Figures

5[E(a)] and 5[S(a)], respectively. Fine-fringe regions ♯1 and ♯2 ([FFR(1)] and [FFR(2)]) and
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Figure 5. [E(a)] and [S(a)] (x ∈ {a, b}) are experimentally obtained and computer-simulated three-beam
X-ray pinhole topographs with an incidence of horizontal-linearly polarized X-rays whose photon
energy was 18.245 keV. [Y(b)] (Y ∈ {E, S}) are enlargements of 0 4 4-reflected X-ray images in [Y(a)].
The exposure time for [E(x)] was 600 s.

‘Y-shaped’ bright region (YBR) indicated by arrows in Figure 5[S(b)], are found also in Figure

5[E(b)].

5.2. Four-beam case

Figures 6[E(x)] and 6[S(x)] (x ∈ {a, b, c}) show experimentally obtained and

computer-simulated pinhole topographs of 0 0 0-forward-diffracted, and 0 6 6-, 6 2 8-

and 6 2 4-reflected X-ray images, respectively. [Y(a)], [Y(b)] and [Y(c)] (Y ∈ {E, S})
were obtained with an incidence of +45◦-inclined-linearly, −45◦-inclined-linearly and

right-screwed-circularly polarized X-rays, respectively, generated with the phase retarder

system or assumed in the simulation.

Figures 7[E(x)] and 7[S(x)] (x ∈ {a, b, c}) are enlargements of 6 2 8-reflected X-ray images

from Figures 6[E(x)] and 6[S(x)]. In Figure 7[S(a)], fine-fringe region ♯1 [FFR(1)], fine-fringe

region ♯2 [FFR(2)] and knife-edge line (KEL) are indicated by arrows. These characteristic

patterns are also observed in Figure 7[E(a)]. In Figures 7[E(b)] and 7[S(b)], while FFR(2) is
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Figure 6. [E(x)] and [S(x)] (x ∈ {a, b, c}) are experimentally obtained and computer-simulated
four-beam X-ray pinhole topographs with an incidence of +45◦-inclined-linearly, −45◦-inclined-linearly
and right-screwed-circularly polarized X-rays whose photon energy was 18.245 keV. The exposure time
for [E(x)] was 1800 s.
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Figure 7. [E(x)] and [S(x)] (x ∈ {a, b, c}) are enlargements of 6 2 8-reflected X-ray images in Figures 6
[E(x)] and 6 [S(x)].
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observed at the same position, a pattern like a fish born (PFB) is observed in place of [FFR(1)].
KEL in Figures 7[E(b)] and 7[S(b)] are fainter. Furthermore, an arched line (AL) and a bright

region (BR) not observed in Figures 7[E(a)] and 7[S(a)] are observed in Figure 7[E(b)] and

7[S(b)]. In Figures 7[E(c)] and 7[S(c)], almost all the characteristic patterns above-mentioned

are observed.

Between the horizontal and vertical components of incident X-rays, there is difference not in

amplitude but in phase among Figures [Y(a)], [Y(b)] and [Y(c)] (Y ∈ {E, S}), which reveals

that the wave fields excited by horizontal- and vertical-linearly polarized components of the

incident X-rays interfere with each other.

5.3. Five-beam case

Figure 8. [E(x)] and [S(x)] (x ∈ {a, b}) are experimentally obtained and computer-simulated five-beam
X-ray pinhole topographs with an incidence of vertical-linearly polarized X-rays whose photon energy
was 18.245 keV. [Y(b)] (Y ∈ {E, S}) are enlargements of 5 5 5-reflected X-ray images in [Y(a)]. The
exposure time for [E(x)] was 1800 s.

In the case of cubic crystals, five reciprocal lattice nodes (including the origin of reciprocal

space) can ride on a circle in reciprocal space. For understanding such a situation, refer to

Figure 1 of reference [17].
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Figures 8[E(a)] and 8[S(a)] are experimentally obtained and computer-simulated five-beam

pinhole topographs. Figures 8[E(b)] and 8[S(b)] are enlargements of 5 5 5-reflected X-ray

images from Figures 8[E(a)] and 8[S(a)]. Knife-edge patterns ♯1 and ♯2 [KEL(1) and KEL(2)]
and ‘harp-shaped’ pattern (HpSP) indicated by arrows in Figure 8[S(b)] are observed also in

Figure 8[E(b)].

Remarking on the directions of KEL(1) and KEL(2), these knife-edge patterns are directed

to 0 0 0-forward-diffracted and 3 3 3-reflected X-ray images, respectively. Then, KEL(1)
and KEL(2) are considered to suggest the strong energy exchange mechanism between

0 0 0-forward-diffracted and 5 5 5-reflected X-ray wave fields and between 3 3 3- and

5 5 5-reflected X-ray wave fields. Such knife-edge patterns are found also in three-, four-,

six- and eight-beam pinhole topograph images shown in the present chapter.

5.4. Six-beam case

Figure 9. [E(a)] and [S(a)] are experimentally obtained and computer-simulated six-beam X-ray pinhole
topographs with an incidence of horizontal-linearly polarized X-rays with a photon energy of 18.245
keV. [E(b)] and [S(b)] are enlargements of 2 6 4- and 0 6 6-reflected X-ray images in [E(a)] and [S(a)].
The exposure time for [E(a)] and [E(b)] was 300 s.

While experimental and computer-simulated six-beam pinhole topograph images whose

shapes are regular hexagons have been reported in reference [14, 16, 17], shown in this
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section are six-beam pinhole topographs whose Borrmann pyramid is not a regular hexagonal

pyramid.

Such six-beam pinhole topographs experimentally obtained and computer-simulated are

shown in Figure 9. Figures 9[E(b)] and 9[S(b)] are enlargements of 2 6 4- and 0 6 6-reflected

X-ray images from Figures 9[E(a)] and 9[S(a)]. Knife-edge patterns [KEL(1) and KEL(2)]
indicated by arrows in Figure 9[S(b)] are found also in Figure 9[E(b)]. Circular patterns that

were found in the central part of the six-beam pinhole topographs [14, 16, 17] cannot be found

in the present case. A ‘heart-shaped’ pattern (HSP) is found also in Figure 9[E(b)].

5.5. Eight-beam case

Figure 10. [E(x)] and [S(x)] (x ∈ {a, b}) are experimentally obtained and computer-simulated
eight-beam X-ray pinhole topographs with an incidence of (a) horizontal-linearly and (b) vertical-linearly
polarized X-rays whose photon energy was 18.245 keV. The exposure time for [E(x)] was 240 s.

Figure 10[E(a)] and 10[S(a)] are eight-beam X-ray pinhole topographs experimentally

obtained and computer-simulated, respectively, with an incidence of horizontal-linearly
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Figure 11. [E(x)] and [S(x)] (x ∈ {a, b}) are enlargements of 0 0 0-forward-diffracted X-ray images in
Figures 10 [E(x)] and 10 [S(x)].

polarized X-rays. Figure 10[E(b)] and 10[S(b)] were obtained with an incidence of

vertical-linearly polarized X-rays. Figure 11[E(x)] and 11[S(x)] (x ∈ {a, b}) are enlargements

of 0 0 0-forward-diffracted X-ray images from Figures 10[E(x)] and 10[S(x)], respectively.

In Figure 11[S(a)], A ‘harp-shaped’ pattern (HpSP), knife-edge line (KEL), ‘hook-shaped’

pattern (HkSP), ‘Y-shaped’ pattern (YSP) and ‘nail-shaped’ patterns are indicated by arrows.

All these characteristic patterns are observed also in Figure 11[E(a)]. NSP is also observed

in Figures 11[E(b)] and 11[S(b)]. However, HpSP in Figures 11[E(b)] and 11[S(b)] are rather

fainter compared with Figures 11[E(a)] and 11[S(a)].
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5.6. Twelve-beam case

Figure 12. [E(a)] and [S(a)] are experimentally obtained and computer-simulated twelve-beam X-ray
pinhole topographs with an incidence of horizontal-linearly polarized X-rays whose photon energy was
22.0 keV. [E(b)] and [S(b)] are enlargements of 2 4 2-reflected X-ray images in [E(a)] and [S(a)]. The
exposure time for [E(a)] and [E(b)] was 300 s.

Twelve is the largest number of n for the n-beam T-T equation (14) that restricts a condition

that n reciprocal lattice nodes should ride on a circle in reciprocal space. Figures 12[E(a)]
and 12[S(a)] are experimentally obtained and computer-simulated tweleve-beam pinhole

topographs. Figures 12[E(b)] and 12[S(b)] are enlargements of 2 4 2-reflected X-ray images

from Figures 12[E(a)] and 12[S(a)].

A very bright region (VBR), ‘V-shaped’ pattern (VSP), central circle (CC) and ‘U-shaped’

pattern indicated by arrows in Figure 12[S(b)] are found also in Figure 12[E(b)].
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6. Summary

The n-beam (n ∈ {3, 4, 5, 6, 8, 12}) Takagi-Taupin equation and computer algorithm to

solve it were verified from excellent agreements between experimentally obtained and

computer-simulated three-, four-, five-, six-, eight- and twelve-beam pinhole topographs.

The equivalence between the E-L and T-T formulations of the n-beam X-ray dynamical

diffraction theory, which has been implicitly recognized for two-beam case theory, was

explicitly described in the present chapter. Whereas the former theory can be calculated by

solving an eigenvalue-eigenvector problem, the latter can be calculated by solving a partial

differential equation. This equivalence is very similar to that between the Heisenberg and

Schrödinger pictures of quantum mechanics and is very important.

Whereas this chapter has been described with focusing on the n-beam case that n ∈
{3, 4, 5, 6, 8, 12}, the n-beam X-ray dynamical diffraction theory applicable to the case of

arbitrary number of n, which is effective and important for solving the phase problem

in protein crystal structure analysis, will be described elsewhere. In the case of protein

crystallography, the situation that arbitrary number of reciprocal lattice nodes are very close

to the surface of the Ewald sphere, cannot be avoided. In protein crystallography, the n-beam

X-ray dynamical diffraction theory for arbitrary number of n is necessary.
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