
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

647

22

Networking Multiple Robots for

Cooperative Manipulation

M. Moallem

1. Introduction

In this chapter, the development of an open architecture multi-robot system is
studied. The environment consists of five serial-link robot manipulators oper-
ated using embedded control computers. The robot control computers are
connected together through a network of supervisory computers. A preemp-
tive multi-tasking Real Time Operating System (RTOS) running on the super-
visory computers is used to perform supervisory and cooperative tasks involv-
ing multiple robots. The software environment allows for controlling the
motion of one or more robots and their interaction with other devices. Devel-
opment of modular components is discussed in this chapter along with typical
laboratory procedures. The environment can be used to develop software for
various robotic applications such as scheduling robotic tasks, cooperative ma-
nipulation, collision avoidance, internet-based telerobotics, and other net-
worked robotic applications.

2. Overview of Networked Multi-robot Systems

With the advent of new computing, sensor, and actuator technologies, the ap-
plication of robotic systems has been growing rapidly in the past decade. Ro-
botic systems were originally developed due to their capability to increase
productivity and operate in hazardous environments. In recent years, robotics
has found its way to a completely new range of real-world applications such as
training, manufacturing, surgery, and health care (Bernard et al., 1999; Craig,
1997; Goldberg et al., 2000; Taylor and Stoianovici, 2003). From the advanced
manufacturing domain to daily life applications, Internet-based telerobotic
systems have the potential to provide significant benefits in terms of tele-
presence, wider reachability, cost effectiveness and maximal resource utiliza-
tion. Challenging problems with regard to Internet-based telerobotic systems
include such issues as uncertain Internet time delays (Luo and Chen, 2000),
system reliability, interaction capability (Schulz al., 2000), and augmented
Human-Machine interfaces. Due to the emergence of new areas in the field of

Source: Industrial-Robotics-Theory-Modelling-Control, ISBN 3-86611-285-8, pp. 964, ARS/plV, Germany, December 2006, Edited by: Sam Cubero

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

648 Industrial Robotics: Theory, Modelling and Control

robotics, there is a growing need for applications that go beyond classical ones
such as simple pick-and-place operations involving a single robot.
Many conventional robot manipulators are closed architecture, meaning that the
user does not have direct access robot’s sensory data and actuator inputs. To
operate a robot, the user is usually confined to a Robot Programming Language
(RPL) that is specific to the robotic system being used (Craig, 1997). This is re-
strictive in many cases, including the robotic applications requiring coordina-
tion of such robots. For example, in developing robotic work-cells that require
interaction of two or more robots at a time, there is a growing need for robots
to share and exchange information through a network. Use of an RPL is re-
strictive in such cases due to the limited capability of the programming envi-
ronment. In this work we present a laboratory setup that can be utilized in or-
der to perform tasks requiring multi-robot scheduling and cooperation tasks
using industry grade manipulators. The objective is to create a flexible soft-
ware environment so that the robot programmer can perform robotic tasks us-
ing a programming language such as C/C++ and a real-time operating system.

3. Interconnection of Multiple Robotic Systems

In this section an overview of a multiple robotic system is presented. The setup
consists of stand-alone robotic systems which are interconnected through a
computer network to be used in cooperative applications.

3.1 Hardware and Software Configuration

Figure 1 illustrates a multiple robotic system comprised of three 6 degree-of-
freedom (DoF) and two 7-DoF robots, all from CRS, Inc., located at the Robot-
ics Laboratory, University of Western Ontario, Canada. The two 7-DoF robots
are mounted on movable tracks while the other three 6-DoF robots are moun-
ted on stationary bases. Each robot is equipped with a gripper controlled by a
servo motor and a 6-dof force/torque sensor. The computing environment is
comprised of a host-target architecture. The target machines consist of Pen-
tium computers running under the VxWorks real-time operating system from
WindRiver Systems, Inc (www.wrs.com). The host machines are used for sys-
tem monitoring and development tasks and run under the Solaris or Microsoft
operating systems.

3.2 Networking and Communication Configuration

The local networking and communication platform utilizes two types of me-
chanisms as shown in Figure 2, consisting of serial port which connect target

Networking Multiple Robots for Cooperative Manipulation 649

machines to robot controllers, and an Ethernet network, which links together all
the target and host machines. Many commercial robots use serial communica-
tion between the host computers and the robot controllers. In this setup, we
use the RS232 serial lines to transmit control commands and sensory informa-
tion between the target machines and robot controllers. The robot motion
commands are issued by a target machine and are sent to the robot controllers.
The robot controllers also transmit sensory information such as gripper dis-
tances, force sensor readings, and the status of executed commands, back to
the target machines. Similarly, the target machines transmit sensory and com-
mand data through the network to other machines. The robot controllers are
embedded computer systems without network connectivity and standard op-
erating system support. Lack of network connectivity is a main drawback of
many conventional robot controllers. In Figure 2, the three target machines run
under the VxWorks real-time operating system. However, any other operating
system that supports networking tools and inter-task synchronization and
communication primitives such as semaphores, message queues, and signals,
can be used to do the same job.

W a ll

S ta tio n a ry R o b o t

T ra c k R o b o t

" S 1 " " T 1 " " S 2 "

" T 2 "

" S 3 "

N

Figure 1. Multi-robot system (left) and layout of the robots (right)

650 Industrial Robotics: Theory, Modelling and Control

Figure 2. Configuration of the networked robotic system shown in Figure 1

3.3 Use of Real-time Operating Systems

Good practice in software engineering encourages the use of object-oriented
programming for developing application software (Pressman, 1997). The main
aspects of object-orientated programming are encapsulation, inheritance, mo-
difiability, and reusability. In this regard, robotic systems are no exception. It
is desirable to have software modules that can be easily ported to other plat-
forms, to be modifiable, and can be reused for different robotic applications.
This is particularly desirable in a laboratory setup where the functional and
non-functional requirements of projects can change. Therefore, the availability
of certain software modules would make it convenient to develop or modify
code for new applications. On the other hand, the computer technology has
got so powerful that an operating system can be used to develop and run ap-
plications on embedded computers. Nowadays operating systems are found in
many devices and systems such as cell phones, wireless access points, robotics,
manufacturing, and control applications. Many applications, including robot-
ics, are real-time meaning that the computer must not only perform the calcu-
lations and logical operations correctly, but it must also perform them on time.
In other words, correctness is as important as timeliness. Moreover, complex
operations require modular programming which can be facilitated by using a
real-time operating system. The operating system is responsible for operations
such as controlling and allocating memory, prioritizing the execution of tasks,
controlling input and output devices, networking operations, and managing fi-
les. The software developed using operating system facilities can be changed
or modified easily without having to scrap the whole program.

Networking Multiple Robots for Cooperative Manipulation 651

4. Application Development for Distributed Robotic Applications

Distributed networked systems are increasingly becoming popular in industry,
education, and research (Hung, 2000). Networked systems have the advantage
of greater flexibility and better distribution of computing resources when
compared to stand alone systems. Different networking architectures and pro-
tocols have been used in automation and control systems such as DeviceNet
(DeviceNet Vendors Association, 1997), ProfiBus
(http://www.profibus.com/), Manufacturing and Automation Protocol (Raji,
1994), ControlNet (ControlNet International, 1988), and Ethernet (see for ex-
ample, Tanenbaum, 1996). Evaluation of the performance of these networks
has been reported in the literature, for example in (Lian, et al., 2001) and
(Hung, 2000). The emergence of networked systems on the factory floor is driv-
ing the automation industry to embrace new network technologies. For im-
proved performance and cost efficiency, robots used on a factory floor should
be enabled to provide data related to manufacturing and process operations to
the management in real-time and preferably using non-proprietary networks.
In the following, an outline of the software framework for supervisory control
of the robots depicted in Figures 1 and 2 is presented.

4.1 Application Development under a Real-Time Operating System

Real-time operating systems have emerged in the past decade to become one
of the basic building blocks of embedded computer systems, including com-
plex robotic systems. A modular approach to software development for time
critical embedded systems calls for decomposition of applications into multi-
ple tasks and use of operating system primitives. A real-time operating system
can be used to run on the supervisory computers such as the Pentium com-
puters shown in Figure 2. We have used the Tornado development environ-
ment which provides a graphical user interface and tools for developing real
time multitasking applications under VxWorks (www.wrs.com). However,
any other real-time operating system can be used for this purpose. In Figure 2,
once the programs are compiled and linked, the tasks can be downloaded into
the memory of the PC workstations running VxWorks. These computers are
used as supervisory controllers that enable communication between robots
through the network communication ports.

4.1.1 The Robot Module

The starting point for implementing modular software for robotic applications
is representing the robot as a class consisting of private data attributes and
member functions as shown in Figure 3.

652 Industrial Robotics: Theory, Modelling and Control

Figure 3. The Robot Class attributes and functions

In the class diagram of Figure 3, the robot identification, position, speed, tor-
que, and other variables are defined as the attributes of the robot object. The
commands sent to the robots are string variables stored in the robotCommand[
] array. Similarly, the status received for each robot after executing a command
is stored in the robotResponse[] array. The communication between the Pen-
tium PCs in Figure 2 with the robot controller is two-way which is performed
through the RS-232 serial interface. The serialPort attribute in Figure 3 is used
to identify which serial port each robot object is using for communication. The
member functions of the Robot Class shown in Figure 3 are used to initialize
the robot object using InitializeRobot(), move the robot to a calibrated position
using Calrdy(), move the robot to a particular point using moveToPoint(), send a
command using SendRobotCommand(), and to open or close a serial port using
openPort() and closePort(), respectively. If needed, the above class can be modi-
fied or other classes can be inherited from it.
One benefit of modular software development is the convenience of develop-
ing the modules one by one. After finishing each part, testing and debugging
can be performed on other parts to be implemented. As a result, the final inte-
gration and testing can be done without much difficulty. In the following we
discuss some of the projects that have been performed using this environment.

Networking Multiple Robots for Cooperative Manipulation 653

4.1.2 Controlling Robots through Serial Ports

Consider the implementation of a cooperative robotic task to be performed by
the two robots indicated in Figure 4, in which the PC communicates with robot
controllers through the RS-232 serial ports. Note that the tasks on the PC
workstation are running concurrently using a real-time operating system
(VxWorks in this case).

Figure 4. Cooperative multitasking by using one VxWorks station

Before running the system under VxWorks, the robot programming language
robcom is used to send commands to the robot from the application shell,
which is similar to MSDOS or UNIX prompts. For example, by issuing the
command “joint 5, 20”, the robot’s fifth joint will rotate 20 degrees clockwise.
This allows for the commands sent to the robot to be tested at the command
prompt level before executing them from a program. The second step involves
sending the commands through the serial ports using a high level program
running under VxWorks instead of the application shell. For example, the func-
tion interface SendRobotCommand() in Figure 3 is written to send commands
through the serial port, or the moveToPoint() command is to move the robot to
a previously taught positions in the robot’s workspace.

4.1.3 Object Handling

In this demonstration, one robot catches an object and passes it to a second ro-
bot. The goal is to develop code for coordination of motion of two robots using
synchronization mechanisms such as semaphores provided by the operating

654 Industrial Robotics: Theory, Modelling and Control

system. A semaphore is a token which if available, will cause the task to con-
tinue and if not available, will block the calling task until the token becomes
available. At the beginning of the program, two robot objects are declared and
initialized. The first robot is programmed to move and fetch the object from a
known pick-up point that has been previously taught to it. Meanwhile, the se-
cond robot moves to the delivery position and waits for the first robot to de-
liver the object. A waiting mechanism is implemented using an empty sema-
phore by issuing a semTake() command in VxWorks which causes the task to
block until the semaphore token becomes available. When the first robot has
reached the delivery point and is ready to deliver the object, it releases the
empty semaphore. The task running the first robot then unblocks, opens its
gripper, and the process of transferring the object is completed. When the ro-
bot catches the object, it moves toward the release point where it allows the o-
ther robot to move to its final destination. At the end, both robots move to
their calibration positions.

4.1.4 Network-based Cooperative Control of two Robots

Network communication allows more than two robots to perform cooperative
tasks concurrently. In this scenario, socket programming under TCP/IP is u-
sed for communication between the VxWorks workstations in a client-server
configuration. A server socket is assigned a well-known address which is con-
stantly listening for client messages to arrive. A client process sends messages
to the server via the server socket’s advertised address. The hardware setup
for this experiment is shown in Figure 5.

Figure 5. Hardware setup for TCP/IP communication

Networking Multiple Robots for Cooperative Manipulation 655

As indicated in Figure 5, two robots are connected to two different VxWorks
workstations. The client program is run on one VxWorks workstation and the
server program is run on the other station simultaneously. The previous dem-
onstrations can be performed on this configuration too. For example, one robot
can catch an object and pass it to a second robot in a similar manner as dis-
cussed before but by using the network interface. In this case, a set of special
strings containing robot commands are defined on both the client and the ser-
ver sides. These strings are then transmitted through sockets to perform coop-
erative tasks. The client-server mechanism can be used for synchronizing tasks
with each other. At the beginning of the program, two robot objects are de-
clared and initialized. In the server routine, a TCP socket is initialized, which
listens for connection from the client while performing its own task. In the cli-
ent routine, a socket is initialized and the connection request is sent to the
server. After the connection is established, both client and the server can syn-
chronize their operations.

4.1.5 Robot Interaction with Input-Output Modules

There are many situations that robots must coordinate their operations with
external devices. For example in a smart manufacturing workcell, robots have
to grab parts from devices such as indexers, or deliver parts to them in a syn-
chronized manner. A rotary indexing table is a simple example that simulates
part of a manufacturing process. The indexing table can rotate by means of a
stepping motor. The motor controller is interfaced with a VxWorks station and
a digital I/O card. The indexer and robot can be connected to the same com-
puter or to separate computers on a shared network. The situation is similar to
the previous example in part E. The program that controls the indexing table
operation is spawned as a separate task which can coordinate its operation
with other robots, for example by using semaphores or a TCP/IP client-server
mechanism on a network.

4.1.6 Other Multi-Robot Operations

Several projects related to scheduling and cooperative operation of robots si-
milar to those used in a manufacturing work-cell have been carried out using
the setup described in this chapter. For example, referring to Figure 1, an ob-
ject handling operation was developed where the first robot takes an object
from a person and delivers it to the second robot. Then, the second robot de-
livers the object to the third robot, and so on, until the object is delivered to the
fifth robot.
Another project was related to visualization of a robotic work-cell using the
Matlab Virtual Reality Modeling Language (VRML) toolbox, from MathWorks,
Inc. In this project, sensory data such as joint displacements are sent through

656 Industrial Robotics: Theory, Modelling and Control

the network to a host computer that may be located in a control room. A visu-
alization program written in VRML is running on the host computer. This
computer obtains real-time sensory data from supervisory robot computers on
the network and presents to the operator a visualization of the robotic work-
cell. A main advantage of using this scheme over sending data through a cam-
era vision system is the small bandwidth required for sending sensory data, as
opposed to a relatively large bandwidth required for transmitting picture
frames when a vision system is used.
The environment has also been used in a distributed robotic system with In-
ternet connectivity where robot operations can be monitored and operated
from the Internet (Wang et al., 2003). The scheduling of robotic work-cells used
in manufacturing has been another topic, where issues such as checking for
deadlock situations, or scheduling the operation of multiple robotic systems
with different timing requirements have been addressed (Yuan et al., 2004).

Networking Multiple Robots for Cooperative Manipulation 657

5. Conclusion

In this chapter, some aspects of developing modular software for controlling
robot operations were discussed. Many commercial robots have a closed archi-
tecture, which makes them difficult to program for certain applications involv-
ing multiple robots. A networked robotic system offers interesting possibilities
in terms of developing novel applications. With the recent advancements
made in the networking technologies it is important that students and engi-
neers taking courses or projects in robotics and automation be familiar with
the capabilities offered by new technologies.

6. References

Bernard, C., Kang, H., Sigh, S.K. and Wen, J.T. (1999), “Robotic system for col-
laborative control in minimally invasive surgery”, Industrial Robot: An in-
ternational Journal, Vol. 26, No. 6, pp. 476-484.

Craig, C.G. (1989), Introduction to Robotics: Mechanics and Control, Addison-
Wesley, Boston, MA.

Goldberg, K., Gentner, S., Sutter, C. and Wiegley, J. (2000), “The mercury pro-
ject: A feasibility study for Internet robots” IEEE Robotics & Auto. Maga-
zine, Vol. 7, No.1, pp. 35-40.

Pressman, R. (1997), Software Engineering: A Practitioner's Approach, McGraw-
Hill, New York, NY.

DeviceNet Vendors Association (1997), DeviceNet Specifications, 2nd. ed. Boca
Raton, FL.

Raji, R.S. (1994), “Smart Networks for Control,” IEEE Spectrum, Vol. 31, pp. 49-
55, June 1994.

ControlNet International (1988), ControlNet Specifications, 2nd ed. Boca Raton,
FL.

Tanenbaum, A.S. (1996), Computer Networks, 3rd ed. Upper Saddle River, Pren-
tice Hall, NJ.

Lian, F.-L. Moyne, J.R.; Tilbury, D.M. (2001), “Performance evaluation of con-
trol networks: Ethernet, ControlNet, and DeviceNet,” IEEE Control Sys-
tems Magazine, Vol. 25, No. 1, pp. 66-83, 2001.

Hung, S.H., (2000), “Experimental performance evaluation of Profibus-FMS,”
IEEE Robotics & Automation Magazine, Vol. 7, No. 4, pp. 64-72.

Taylor, R.H. and Stoianovici, D. (2003), “Medical Robotics in Computer Inte-
grated Surgery,” IEEE Transactions on Robotics and Automation, vol. 19, pp.
765–781.

Luo, R.C., and Chen, T.M. (2000), “Development of a Multibehavior-based
Mobile Robot for Remote Supervisory Control through the Internet”,
IEEE/ASME Trans. on Mechatronics, Vol.5, No.4, pp. 376-385.

658 Industrial Robotics: Theory, Modelling and Control

Schulz, D., Burgard, W., Fox, D., Thrun, S. and Cremers, A.B., (2000), “Web
Interfaces for Mobile Robots in Public Places”, IEEE Robotics & Auto.
Magazine, Vol. 7, No.1, pp. 48-56.

Wang, X-G., Moallem, M. and Patel, R.V., (2003), “An Internet-Based Distrib-
uted Multiple-Telerobot System,” IEEE Transactions on Systems, Man, and
Cybernetics, Part A, Vol. 33, No. 5, pp. 627- 634.

Yuan, P., Moallem, M. and Patel, R.V. (2004), “A Real-Time Task-Oriented
Scheduling Algorithm for Distributed Multi-Robot System," IEEE Interna-
tional Conference on Robotics and Automation, New Orleans, LA.

Industrial Robotics: Theory, Modelling and Control

Edited by Sam Cubero

ISBN 3-86611-285-8

Hard cover, 964 pages

Publisher Pro Literatur Verlag, Germany / ARS, Austria

Published online 01, December, 2006

Published in print edition December, 2006

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation

technologies. Although being highly technical and complex in nature, the papers presented in this book

represent some of the latest cutting edge technologies and advancements in industrial robotics technology.

This book covers topics such as networking, properties of manipulators, forward and inverse robot arm

kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here.

The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic

and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using

the ideas and concepts presented herein.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

M. Moallem (2006). Networking Multiple Robots for Cooperative Manipulation, Industrial Robotics: Theory,

Modelling and Control, Sam Cubero (Ed.), ISBN: 3-86611-285-8, InTech, Available from:

http://www.intechopen.com/books/industrial_robotics_theory_modelling_and_control/networking_multiple_robo

ts_for_cooperative_manipulation

© 2006 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

