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1. Introduction

The F 0 estimation determines a performance of speech processing such as speech coding,
tonal speech recognition, speaker recognition, and speech enhancement. F 0 estimation
named “YIN” has been proposed [1] and it is being prevalently used around the world due
to its high performance and open-source policy. Speech processing is commonly applied in
realistic noisy environments; hence, the performance is degraded seriously. It is well known
that YIN does not perform well for noisy speech although it does perform best for clean
speech. Accordingly, more robust F 0 estimation algorithm is desired and the robust F 0 esti‐
mation is long lasting problem in speech processing. We have already proposed robust F 0

estimation algorithm based on time-varying complex speech analysis for analytic speech sig‐
nal [2][3]. Analytic signal is a complex-valued signal in which its real part is speech signal
and its imaginary part is Hilbert transform of the real part. Since the analytic signal provides
the spectrum only on positive frequencies, the signals can be decimated by a factor of two
with no degradation. As a result, the complex analysis offers attractive features, for exam‐
ple, more accurate spectral estimation in low frequencies. In [2] and [3], complex LPC resid‐
ual is used to calculate the criterion of weighted autocorrelation function (AUTOC) with a
reciprocal of Average Magnitude Difference Function (AMDF) [6]. The complex residual is
calculated from analytic speech signal by means of time-varying complex AR (TV-CAR)
speech analysis method [4][5]. In [2], MMSE-based TV-CAR speech analysis [4] is intro‐
duced and in [3], ELS-based TV-CAR speech analysis [5] is introduced to calculate complex
LPC residual signal. It has been reported in [2] that the method can estimate more accurate F
0 for IRS (Intermediate Reference System) filtered speech corrupted by white Gauss noise.
Moreover, it has been reported in [3] that the ELS-based complex speech analysis can per‐
form better even for additive pink noise. Furthermore, in order to investigate the effective‐
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ness of the time-varying analysis, the performance was compared for the frame with respect
to degree of voiced nature [7]. The experiments using IRS filtered speech corrupted by white
Gauss noise or pink noise demonstrate that ELS-based robust time-varying complex speech
analysis can perform better for stationary voiced speech and ELS-based time-invariant
speech analysis can perform better for ordinary voiced frame. However the computational
cost turns to be larger by introducing time-varying analysis. In this paper, in order to reduce
the computational cost, pre-selection is introduced. The pre-selection is performed by peak
picking of speech spectrum based on the TV-CAR analysis [8]. The evaluation is carried out
using Keele Pitch Database [9]. The reminder of the chapter is organized as follows. In Sec‐
tion 2, TV-CAR speech analysis is explained. Analytic signal and Time-Varying Complex
AR (TV-CAR) model are explained. Two kinds of the TV-CAR parameter estimation algo‐
rithms from an analytic signal, viz., MMSE and ELS methods are explained. In Section 3, F 0

estimation algorithm is explained in detail. Sample-based pre-selection is explained and
frame-based final–selection is explained. In Section 4, experimental results are explained
and these confirm the effectiveness of the proposed method.

2. TV-CAR speech analysis

In this section, ELS-based robust TV-CAR speech analysis method is explained. Before the
explanation, analytic signal and TV-CAR model is explained, in which analytic signal is out‐
put of the TV-CAR model. In 2.6, the benefit of the robust TV-CAR analysis is explained by
showing the estimated sprctra from natural speech.

2.1. Analytic speech signal

Target signal of the time-varying complex AR (TV-CAR) method is an analytic signal that is
complex-valued signal defined by an all-pole model as follows.

( ) ( ) ( )2 2
2

Hc y t j y t
y t

+ ×
= (1)

where yc(t) ,y(t) and yH(t) denote an analytic signal at time t, an observed signal at time t,
and a Hilbert transformed signal for the observed signal, respectively. Notice that super‐
script c denotes complex value in this paper. Since analytic signals provide the spectra only
over the range of (0, π) analytic signals can be decimated by a factor of two. 2t means the
decimation. The term of 1/ 2 is multiplied in order to adjust the power of an analytic signal
with that of the observed one.

2.2. Time-varying complex AR (TV-CAR) model

Conventional LPC model is defined by
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where ai and I are i-th order LPC coefficient and LPC order, respectively. Since the conven‐

tional LPC model cannot express the time-varying spectrum, LPC analysis cannot extract
the time-varying spectral features from speech signal. In order to represent the time-varying
features, the TV-CAR model employs a complex basis expansion shown as
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where ai
c(t) ,I,L, gi,l

c  ,l and fl
c(t) are taken to be i-th complex AR coefficient at time t, AR order,

finite order of complex basis expansion, complex parameter, and a complex-valued basis
function, respectively. By substituting Eq.(3) into Eq.(2), one can obtain the following trans‐
fer function. Eq.(4) means the TV-CAR model.
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The input-output relation is defined as
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where uc(t) and yc(t) are taken to be complex-valued input and analytic speech signal shown
in Eq.(1), respectively. In the TV-CAR model, the complex AR coefficient is modeled by a
finite number of arbitrary complex basis functions such as Fourier basis, wavelet basis or so
on. Note that Eq.(3) parameterizes the AR coefficient trajectories that continuously change
as a function of time so that the time-varying analysis is feasible to estimate continuous
time-varying speech spectrum. In addition, as mentioned above, the complex-valued analy‐
sis facilitates accurate spectral estimation in the low frequencies, as a result, this feature al‐
lows for more accurate F 0 estimation if formant structure is removed by the inverse
filtering. Eq.(5) can be represented by vector-matrix notation as
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where N is analysis interval, y
-

f is (N − I, 1) column vector whose elements are analytic

speech signal, θ
-
 is (L ・ I, 1) column vector whose elements are complex parameters, Φ

-
f is (N

−I,L・ I) matrix whose elements are weighted analytic speech signal by the complex basis.
Superscript T denotes transposition.

2.3. MMSE-based algorithm [4]

There are several algorithms that estimate the TV-CAR model parameter from complex-val‐
ued signal such as MMSE, WLS(Weighted Least Square), M-estimation, GLS(Generalized
Least Square), and ELS(Extended Least Square). The MMSE-algorithm is basic algorithm
and used for initial estimation of the ELS. Before explaining the ELS, the MMSE algorithm is
explained.

MSE criterion is defined by

( ) ( ) ( ) $, 1 , , 1
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Where ĝi,l
c  is the estimated complex parameter, rc(t) is an equation error, or complex AR re‐

sidual and E is Mean Squared Error (MSE) for the equation error. To obtain optimal complex
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AR coefficients, we minimize the MSE criterion. Minimizing the MSE criterion of Eq.(9) with
respect to the complex parameter leads to the following MMSE algorithm.

( ) $H H
f f f fyqF F = -F (10)

Superscript H denotes Hermitian transposition. After solving the linear equation of Eq.(10),

we can get the complex AR parameter ( ai
c(t) ) at time t by calculating the Eq.(3) with the

estimated complex parameter ĝi,l
c  .

2.4. ELS-based algorithm [5]

Figure 1 shows block diagram of ELS estimation. If the equation error shown as in Eq.(8) is
white Gaussian, the MMSE estimation is optimal, however, it is rare case. As a result, MMSE
estimation suffers from biased estimation. In the ELS method, an AR filter is adopted to
whiten the equation error as follows (Figure 1(2)).

( ) ( ) ( )
1

K
c c c c

k
k

r t b r t k e t
=

= - - +å (11)

where bk
c  is k-th parameter of the AR filter whose order is K and ec(t) is 0-mean white Gaus‐

sian of equation error at time t. The inverse filter of Eq.(11) is called a whiten filter. The TV-
CAR model can be represented using Eq.(5) and Eq.(11) as follows.
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Eq.(12) is the ELS model shown as in Figure 1(3). The parameter is estimated so as minimize
the MSE for the whitened equation error in the ELS algorithm whereas the parameter is esti‐
mated so as minimize the MSE for the equation error in the MMSE algorithm shown as in
Figure 1(1).

Eq.(12) can be expressed by the following vector-matrix notation.

( )( )f f f ff ff by R b e R eqq= -F - + = - F + (13)

Where
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By minimizing the MSE for Eq.(13), one can get the following equation.
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By applying the well-known inversion Matrix lemma to Eq.(15), one can obtain the follow‐
ing equation.

( ) $H H
f f f fbias R bqF F = F $ (16)

$ $ $
0 biasq q q= - (17)

The MMSE estimated parameter θ̂0 contains the biased element θ̂bias . The unbiased estima‐

tion of θ̂ is calculated by θ̂0− θ̂|bias . The ELS algorithm is equivalent to the GLS (General‐

ized Least Square) algorithm and more sophisticated algorithm. Since the equation error r
c(t) cannot be observed, the iteration algorithm is required by estimating the A(z) and B(z).
The iteration procedure is shown as follows.

1. Initial θ̂0 is estimated by MMSE (Eq.(10)).

2. The equation error is calculated by Eq.(8).
3. b̂ is estimated so as to minimize Eq.(18) using rc(t).

4. The bias parameter b̂ is calculated by Eq.(16).

5. The unbiased parameter θ̂ is calculated by Eq.(17).

6. Go to 2.
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In Eq.(18), R(z) is z-transform of r c(t) and B(z) is the transfer function of the whiten filter.
The procedures from 2 to 5 are iterated with the pre-determined number. The ELS algorithm
estimates two kinds of AR filters, A(z) and B(z), iteratively. Since the ELS algorithm can esti‐
mate unbiased and less effected speech spectrum against additive noise, more accurate F 0

and formants frequencies can be estimated. Thus, more accurate F 0 trajectories can be esti‐
mated than the MMSE estimation.

Figure 1. Block diagrams of MMSE and ELS estimation.

2.5. Benefit of robust TV-CAR speech analysis

In this paragraph, we explain the benefit of robust TV-CAR speech analysis by showing the
estimated speech spectrum and explain its effectiveness on F 0 estimation of speech. Figure 2
shows example of the estimated speech spectra of natural Japanese vowel /o/ for analytic
signal and conventional LPC analysis for speech signal.
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Figure 2. Estimated Spectra of vowel /o/ with complex and conventional LPC analysis.

In Figure 2, left side denote the estimated spectra. Upper is for real-valued LPC analysis.
Lower is for complex-valued LPC analysis. Blue line means estimated spectrum by LPC
analysis and green line means estimated DFT spectrum. Right side means estimated poles
from the estimated AR filter. Figure 3 shows the estimated running spectrum for clean natu‐
ral speech /arayu/ and for the speech corrupted by white Gaussian (10[dB]). In Figure 3, (1)
means speech waveform, (2),(3),(4),(5) and (6) mean the estimated spectrum by MMSE-
based time-invariant real-valued AR speech analysis, by MMSE-based time-invariant com‐
plex-valued AR speech analysis (L=1), by MMSE-based time-varying complex AR (TV-CAR)
speech analysis (L=2), by ELS-based time-invariant complex-valued AR speech analysis
(L=1), and by ELS-based time-varying complex AR (TV-CAR) speech analysis (L=2), respec‐
tively. Analysis order I is 14 for real analysis and 7 for complex analysis. Basis function is 1st

order polynomial function (1,t). One can observe that the complex analysis can estimate
more accurate spectrum in low frequencies whereas the estimation accuracy is down in high
frequencies. Since speech spectrum provides much energy in low frequencies, it is expected
that the high spectral estimation accuracy in low frequencies makes it possible to improve
the performance on F 0 estimation. Furthermore, the ELS analysis can estimate more accu‐
rate spectrum than MMSE, so that the ELS analysis makes it possible to estimate more accu‐
rate F 0. Time-varying analysis can estimate tive-varying spectrum from speech. It is
expected that the time-varying analysis enables to estimate more accurate F 0 since F 0 is
varying in the analysis interval.
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Figure 3. Estimated spectrum for noise corrupted speech /arayu/ (10[dB]).
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3. F0 Estimation method

Proposed method employs two-stage search of F0. In first stage, pre-selection, F0 and F1 are
estimated by using sample-based F0 contour estimation [8]. In second stage, final-selection,
F0 is estimated by using frame-based F0 estimation [3] within limited range based on the pre-
estimated F0 and F1. The two-stage estimation makes it possible to reduce the computation
with less degradation In 3.1, pre-selection algorithm is explained. In 3.2, final-selection algo‐
rithm is explained.

3.1. Sample-based pre-selection

F0 and F1 are estimated as the lowest two peak frequency, viz., glottal and first formant fre‐
quencies by peak-picking for the estimated time-varying speech spectrum. The procedure of
F0 and F1 contour estimation is shown as in Figure 4

1. The set of complex-valued parameter ĝi,l
c  is estimated by the ELS algorithm for each

analysis frame.

2. By using Eq.(3) and Eq.(4) with the estimated parameter ĝi,l
c  , the speech power spec‐

trum for each sample t is calculated, and the two peaks of the estimated spectrum are
searched by the peak-picking.

The peak-pinking is carried out from low frequency to high frequency shown as in Figure 5.
The estimated two peaks correspond to glottal formant (F0) and first formant (F1). The for‐
mant frequencies are estimated by solving the equation of the reciprocal of Eq.(4).

Figure 4. Flow of F0 and F1 contour estimation
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Figure 5. Peak Picking

3.2. Frame-based final-selection

In frame-based F0 estimation, autocorrelation or AMDF is commonly used. In this para‐
graph, autocorrelation and AMDF are explained and then adopted weighted autocorrelation
is explained.

Autocorrelation function (AUTOC) is defined by

( ) ( ) ( )
1

0

1 N

t
f x t x t

N
t t

-

=

= +å (19)

where x(t) is target signal such as speech signal, LPC residual or so on, N is frame length
and τ means delay. F0 is selected as peak frequency for Eq.(19) within certain range of F0.

AMDF is defined as follows.

( ) ( ) ( )
1

0
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t
p x t x t

N
t t

-

=

= - +å (20)

F0  is  selected  as  notch  frequency  for  Eq.(20)  within  certain  range  of  F0.  In  Shimamura
method [6], the AUTOC is weighted by a reciprocal of the AMDF shown as Eq.(21). Since
the weighting makes it  possible to suppress other peaks,  the method can estimate more
accurate F0  than AUTOC or AMDF. The value of m is set to be 1 in order to avoid the
value of 0 at the denominator.
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where f(τ ) and p(τ ) are AUTOC shown as in Eq.(19) and AMDF shown as in Eq.(20), re‐
spectively. In the frame-based method, Shimamura criterion shown as Eq.(21) is applied to
complex AR residual extracted by the ELS-based TV-CAR speech analysis. The time-varying
complex parameter is estimated and complex AR residual is calculated with the estimated
complex parameter with Eq.(17). Note that pre-emphasis is operated for speech analysis
such as real-valued AR or TV-CAR speech analysis, and inverse filtering is applied for the
non pre-emphasized speech signal so as not to eliminate F0 spectrum on the residual signal.
Real part of AUTOC is used to calculate the AUTOC for complex-valued signal. F0 is esti‐
mated within the range corresponding to 50-400[Hz]. In order to reduce the computational
amount, the range is shortened by setting the upper value as follows.

( )( )0 1 0min /100,400S S SF F F d+ - (22)

where F0
s and F1

s are estimated F0 and F1 by the sample-based pre-selection. Setting upper
bound below F1 can not only reduce the computational cost but also can reduce the estima‐
tion error.

4. Experiments

Speech signals used in the experiment are 5 long sentences uttered by 5 male speaker and 5
long sentences uttered by 5 female speaker of Keele pitch database [9]. Speech signals are
filtered by an IRS filter [10]. The IRS filter is band pass FIR filter whose frequency response
corresponds to that for analog part of the transmitter of telephone equipment. The frequen‐
cy response is shown in Figure 6. In order to evaluate the proposed method for the speech
data processed by speech coding, the IRS filter has to be introduced shown as in [2]. The ex‐
perimental conditions are summarized in Table 1. Frame length is 25.6[msec] and frame
shift length is 10[msec]. Analysis orders are 14 and 7 for real-valued analysis and complex-
valued analysis, respectively. The basis expansion order L is set to be 1(time-invariant) or
2(time-varying) in the experiments. First order polynomial function is adopted as a basis
function. White Gauss noise or pink noise [11] is adopted for additive noise and the levels
are 30, 20, 10, 5, 0, and -5 [dB]. In order to extract more accurate F0, 3-point Lagrange’s inter‐
polation is adopted. Commonly used criterion for F0 estimation, Gross Pitch Error (GPE), is
adopted for objective evaluation. F0 estimation error is defined as
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( ) ( ) ( )p e te n F n F n= - (23)

where Ft(n) is true F0 value and Fe(n) is the estimated one. The true values are derived by

pitch file in Keele database. In Eq.(14), if |ep(n) | ≥Ft(n)×THR / 100 then the estimation error

is regarded as ERROR and GPE is the probability of the error frames. Otherwise, the estima‐
tion is regarded as SUCCESS and FPE is standard deviation of the error. Figures 7,8,9 and 10
show the experimental results setting the THR as 10[%]. Figure 7 and 9 means the results for
male speech. Figure 8 and 10 means the results for female speech. In Figures, (1) shows the
results of GPEs or FPEs for additive white Gauss noise. (2) shows the results of GPEs or
FPEs for additive pink noise. PROPOSED means the GPEs or FPEs for the proposed method
with δ being 25. SP means the Shimamura method [6], viz., Shimamura criterion for speech
signal. Other lines mean the GPEs or FPEs for the analysis method shown in Table 2. In all
figures, X-axis means noise level of 30, 20, 10, 5, 0,−5[dB]. Y-axis means GPE[%] or FPE[Hz].

Figures 7 and 8 demonstrate that the proposed method can perform slightly better than the
full-search method(TVC_E) for male speech while it can perform equivalently to the full
search method(TVC_E) for female speech. Figures 9 and 10 show that the proposed one does
not perform well in terms of FPE although the Shimamura method performs better in terms
of FPE.

Speech data Keele Pitch database [9]

Male 5 long sentences

Female 5 long sentences

IRS filter 64-th FIR [10]

Target signal complex AR residual

Sampling 10kHz/16bit

Analysis window Window Length: 25.6[ms]

Shift Length: 10.0[ms]

F0 search range 50 to Eq.Eq.(22)

Complex-valued AR I=7, L=2 (time-varying)

Pre-emphasis 1 − z−1

Criterion AUTOC/AMDF [6]

Noise (1)white Gauss noise

(2)pink noise [11]

Noise Level 30,20,10,5,0,-5[dB]

Interpolation 3 point Lagrange’s

Table 1. Experimental Conditions
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Line Real or Complex Non or TV MMSE or ELS

LPC Red Dotted Real Non MMSE

TVR Blue Dotted Real TV MMSE

LPC_E Magenta Dotted Real Non ELS

TVR_E Green Dotted Real TV ELS

CLPC Red Solid Complex Non MMSE

TVC Blue Solid Complex TV MMSE

CLPC_E Magenta Solid Complex Non ELS

TVC_E Green Solid Complex TV ELS

Table 2. Analysis methods

Figure 6. Frequency response of IRS filter
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Figure 7. Experimental Results for Male speech
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Figure 8. Experimental Results for Female speech
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Figure 9. Experimental Results for Male speech

Low Computational Robust F0 Estimation of Speech Based on TV-CAR Analysis
http://dx.doi.org/10.5772/51694

47



Figure 10. Experimental Results for Female speech

5. Conclusions

This paper proposed fast robust fundamental frequency estimation algorithm based on ro‐
bust TV-CAR speech analysis. The method provides two stage of search procedure, pre-se‐
lection and final-selection. In the pre-selection, F0 and F1 are estimated by using time-
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varying F0 contour estimation. In the final-selection, F0 is estimated for only the shorten
range based on the pre-selected F0 and F1. The proposed method can perform better for male
speech in terms of GPE with reduced computation.
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