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1. Introduction

Intrusion detection is the method of identifying intrusions or misuses in a computer network,
which compromise the confidentiality and integrity of the network. Intrusion Detection
System (IDS) is a security tool used to monitor network traffic and detect unauthorized
activities in the network [23, 28, 30]. A security monitoring surveillance system, which is an
intrusion detection model based on detecting anomalies in user behaviors was first introduced
by James P. Anderson in 1980 [1]. After that several intrusion detection models based on
statistics, Markov chains, time-series, etc proposed by Dorothy Denning in 1986. At first
host-based IDS was implemented, which located in the server machine to examine the internal
interfaces [35], but with the evolution of computer networks day by day focus gradually
shifted toward network-based IDS [20]. Network-based IDS monitors and analyzes network
traffics for detecting intrusions from internal and external intruders [26, 27, 34]. A number of
data mining algorithms have been widely used by the intelligent computational researchers
in the large amount of network audit data for detecting known and unknown intrusions in
the last decade [3, 9, 18, 32, 33]. Even for a small network the amount of network audit data
is very large that an IDS needs to examine. Use of data mining for intrusion detection aim
to solve the problem of analyzing the large volumes of audit data and realizing performance
optimization of detection rules.

There are many drawbacks in currently available commercial IDS, such as low and
unbalanced detection rates for different types of network attacks, large number of false
positives, long response time in high speed network, and redundant input attributes in
intrusion detection training dataset. In general a conventional intrusion detection dataset
is complex, dynamic, and composed of many different attributes. It has been successfully
tested that not all the input attributes in intrusion detection training dataset may be needed
for training the intrusion detection models or detecting intrusions [31]. The use of redundant
attributes interfere with the correct completion of mining task, increase the complexity of
detection model and computational time, because the information they added is contained in
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other attributes [7]. Ideally, IDS should have an intrusion detection rate of 100% along with
false positive of 0%, which is really very difficult to achieve.

Applying mining algorithms for adaptive intrusion detection is the process of collecting
network audit data and convert the collected audit data to the format that is suitable for
mining. Finally, developing a clustering or classification model for intrusion detection,
which provide decision support to intrusion management for detecting known and unknown
intrusions by discovering intrusion patterns [4, 5].

2. Intrusion detection

Intrusion detection is the process of monitoring and analyzing the network traffics. It takes
sensor data to gather information for detecting intrusions from internal and external networks
[6], and notify the network administrator or intrusion prevention system (IPS) about the attack
[19, 24]. Intrusion detection is broadly classified into three categories: misuse, anomaly, and
hybrid detection model [10]. Misuse detection model detects attacks based on known attack
patterns, which already stored in the database by using pattern matching of incoming network
packets to the signatures of known intrusions. It begins protecting the network immediately
upon installation and produces very low FP, but it requires frequently signature updates and
cannot detect new intrusions. Anomaly based detection model detects deviations from normal
behaviors to identify new intrusions [22]. It creates a normal profile of the network and then
any action that deviated from the normal profile is treated as a possible intrusion, which
produces large number of false positives. Hybrid detection model combines both misuse and
anomaly detection models [2]. It makes decision based on both the normal behavior of the
network and the intrusive behavior of the intruders. Table 1 shows the comparisons among
misuse, anomaly, and hybrid detection models.

Characteristics Misuse Anomaly Hybrid

Detection Accuracy High (for known attacks) Low High
Detecting New Attacks No Yes Yes

False Positives Low Very high High
False Negatives High Low Low

Timely Notifications Fast Slow Rather Fast
Update Usage Patterns Frequent Not Frequent Not Frequent

Table 1. Comparisons of Detection Models.

Detection rate (DR) and false positive (FP) are the most important parameters that are used for
performance estimation of intrusion detection models [8]. Detection rate is calculated by the
number of intrusions detected by the IDS divided by the total number of intrusion instances
present in the intrusion dataset, and false positive is an alarm, which rose for something that
is not really an attack, which are expressed be equation 1 and 2.

DetectionRate, DR =
TotalDetectedAttacks

TotalAttacks
∗ 100 (1)

FalsePositive, FP =
TotalMisclassi f iedProcess

TotalNormalProcess
∗ 100 (2)

Also precision, recall, overall, and false alarm have been used to measure the performance
of IDS [21, 25] from table 2, precision, recall, overall, and false alarm may be expressed be
equation 3 to 6.
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Parameters Definition

True Positive (TP) or Detection Rate (DR) Attack occur and alarm raised
False Positive (FP) No attack but alarm raised

True Negative (TN) No attack and no alarm
False Negative (FN) Attack occur but no alarm

Table 2. Parameters for performances estimation of IDS.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Overall =
TP + TN

TP + FP + FN + TN
(5)

FalseAlarm =
FP + FN

TP + FP + FN + TN
(6)

2.1. Intrusion detection dataset

The data generated by IDS contain information about network topology, hosts and other
confidential information for this reason intrusion detection dataset cannot be shared in public
domain. Whereas it is not difficult task to generate a large set of intrusion detection alets by
running IDS in a private or Internet-exposed network. For generating intrusion detection
dataset only major challenge is to labeling the network data, because network data are
unlabeled and it is not clear which attacks are false positives and which are true positives.
The KDD 1999 cup benchmark intrusion detection dataset is the most popular dataset for
intrusion detection research, a predictive model capable of distinguishing between intrusions
and normal connections, which was first used in the 3rd International Knowledge Discovery
and Data Mining Tools Competition for building a network intrusion detector [29]. A
simulated environment was set up by the MIT Lincoln Lab to acquire raw TCP/IP dump
data for a local-area network (LAN) to compare the performance of various IDS that is the
part of KDD99 dataset. Examples in KDD99 dataset represent attribute values of a class in
the network data flow, and each class is labelled either normal or attack. For each network
connection 41 attributes are in KDD99 dataset that have either discrete or continuous values.
These attributes are divided into three groups: basic features , content features, and statistical
features of network connection.

The classes in KDD99 dataset are mainly categorized into five classes: normal, denial of
service (DoS), remote to user (R2L), user to root (U2R), and probing. Normal connections are
generated by simulated daily user behaviours. Denial of service computes power or memory
of a victim machine too busy or too full to handle legitimate requests. Remote to user is
an attack that a remote user gains access of a local user or account by sending packets to a
machine over a network communication. User to root is an attack that an intruder begins
with the access of a normal user account and then becomes a root-user by exploiting various
vulnerabilities of the system. Probing is an attack that scans a network to gather information
or find known vulnerabilities. In KDD99 dataset the main four attacks are divided into 22
different attacks that tabulated in table 3 and table 4 shows the number of training and testing
examples for each major class.
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4 Main Attack Classes 22 Attacks Classes

Denial of Service (DoS) back, land, neptune, pod, smurf, teardrop
Remote to User (R2L) ftp_write, guess_passwd, imap, multihop, phf, spy,

warezclient, warezmaster
User to Root (U2R) buffer_overflow, perl, loadmodule, rootkit

Probing ipsweep, nmap, portsweep, satan

Table 3. Different types of attacks in KDD99 Dataset.

Attack Types Training Examples Testing Examples

Normal 97278 60592
Denial of Service 391458 237594
Remote to User 1126 8606

User to Root 52 70
Probing 4107 4166

Total Examples 494021 311028

Table 4. Number of training and testing examples in KDD99 dataset.

3. Combining naïve Bayesian and Decision Tree

In this section, we present the hybrid learning algorithms, NBDTAID (naïve Bayesian with
Decision Tree for Adaptive Intrusion Detection) [14], ACDT (Attacks Classificaton using
Decision Tree) [13], and Attribute Weighting with Adaptive NBTree Algorithm [11, 15] for
intrusions classification in intrusion detection problem. Presented algorithms are performed
balance detections and keep FP at acceptable level for different types of network intrusions. It
has been successfully tested that by combining the properties of naïve Bayesian classifier and
decision tree classifier, the performance of intrusion detection classifier can be enhanced.

3.1. Adaptive intrusion classifier

Naïve Bayesian with Decision Tree for Adaptive Intrusion Detection (NBDTAID) performs
balance detections and keeps FP at acceptable level in intrusion detection. NBDTAID
eliminates redundant attributes and contradictory examples from training data, and addresses
some mining difficulties such as handling continuous attribute, dealing with missing attribute
values, and reducing noise in training data [14].

Given a training data D = {t1, · · · , tn} where ti = {ti1, · · · , tih} and the training data
D contains the following attributes {A1, A2, · · · , An} and each attribute Ai contains the
following attribute values {Ai1, Ai2, · · · , Aih}. The attribute values can be discrete or
continuous. Also the training data D contains a set of classes C = {C1, C2, · · · , Cm}. Each
example in the training data D has a particular class Cj. The algorithm first searches for
the multiple copies of the same example in the training data D, if found then keeps only
one unique example in the training data D (suppose all attribute values of two examples are
equal then the examples are similar). Then the algorithm discreties the continuous attributes
in the training data D by finding each adjacent pair of continuous attribute values that are
not classified into the same class value for that continuous attribute. Next the algorithm
calculates the prior P(Cj) and conditional P(Aij|Cj) probabilities in the training data D. The
prior probability P(Cj) for each class is estimated by counting how often each class occurs
in the training data D. For each attribute Ai the number of occurrences of each attribute
value Aij can be counted to determine P(Ai). Similarly, the conditional probability P(Aij|Cj)
for each attribute values Aij can be estimated by counting how often each attribute value
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occurs in the class in the training data D. Then the algorithm classifies all the examples in the
training data D with these prior P(Cj) and conditional P(Aij|Cj) probabilities. For classifying
the examples, the prior and conditional probabilities are used to make the prediction. This is
done by combining the effects of the different attribute values from that example. Suppose
the example ei has independent attribute values {Ai1, Ai2, · · · , Aip}, we know P(Aik|Cj), for
each class Cj and attribute Aik. We then estimate P(ei|Cj) by

P(ei|Cj) = P(Cj)
p

∏
k=1

P(Aij|Cj) (7)

To classify the example, the algorithm estimates the likelihood that ei is in each class. The
probability that ei is in a class is the product of the conditional probabilities for each attribute
value with prior probability for that class. The posterior probability P(Cj|ei) is then found for
each class and the example classifies with the highest posterior probability for that example.
After classifying all the training examples, the class value for each example in training data D
updates with Maximum Likelihood (ML) of posterior probability P(Cj|ei).

Cj = Ci → PML(Cj|ei) (8)

Then again the algorithm calculates the prior P(Cj) and conditional P(Aij|Cj) probabilities
using updated class values in the training data D, and again classifies all the examples of
training data using these probabilities. If any of the training example is misclassified then the
algorithm calculates the information gain for each attributes {A1, A2, · · · , An} in the training
data D.

In f o(D) = −
m

∑
j=1

f req(Cj, D)

|D| log2

(

f req(Cj, D)

|D|

)

(9)

In f o(T) = −
n

∑
i=1

|Ti|
|T| in f o(Ti) (10)

In f ormationGain(Ai) = In f o(D)− In f o(T) (11)

And chooses one of the best attributes Ai among the attributes {A1, A2, · · · , An} from
the training data D with highest information gain value, Then split the training data D
into sub-datasets {D1, D2, · · · , Dn} depending on the chosen attribute values of Ai. After
the algorithm estimates the prior and conditional probabilities for each sub-dataset Di =
{D1, D2, · · · , Dn} and classifies the examples of each sub-dataset Di using their respective
probabilities. If any example of any sub-dataset Di is misclassified then the algorithm
calculates the information gain of attributes for that sub-dataset Di , and chooses the best
attribute Ai with maximum information gain value from sub-dataset Di, and split the
sub-dataset Di into sub-sub-datasets Dij. Then again calculates the prior and conditional
probabilities for each sub-sub-dataset Dij, and also classifies the examples of sub-sub-datasets
using their respective probabilities. The algorithm will continue this process until all the
examples of sub/sub-sub-datasets are correctly classified. When the algorithm correctly
classifies all the examples then the prior and conditional probabilities for each datasets are
preserved for future classification of unseen examples. The main procedure of the algorithm
is described in Algorithm 1.
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Algorithm 1 NBDTAID Algorithm

Input: Training Data, D.
Output: Adaptive Intrusion Detection Model, AIDM.
Procedure:

1: Search the multiple copies of same example in D, if found then keeps only one unique
example in D.

2: For each continuous attributes in D find the each adjacent pair of continuous attribute
values that are not classified into the same class value for that continuous attribute.

3: Calculate the prior probabilities P(Cj) and conditional probabilities P(Aij|Cj) in D.
4: Classify all the training examples using these prior and conditional probabilities,

P(ei|Cj) = P(Cj)
p

∏
k=1

P(Aij|Cj)

5: Update the class value for each example in D with Maximum Likelihood (ML) of posterior
probability,

P(Cj|ei); Cj = Ci → PML(Cj|ei)

6: Recalculate the prior P(Cj) and conditional P(Aij|Cj) probabilities using updated class
values in D.

7: Again classify all training examples in D using updated probability values.
8: If any training examples in D is misclassified then calculate the information gain for each

attributes Ai = {A1, A2, · · · , An} in D using equation 11.
9: Choose the best attribute Ai from D with the maximum information gain value.

10: Split dataset D into sub-datasets {D1, D2, · · · , Dn} depending on the attribute values of
Ai.

11: Calculate the prior P(Cj) and conditional P(Aij|Cj) probabilities of each sub-dataset Di .
12: Classify the examples of each sub-dataset Di with their respective prior and conditional

probabilities.
13: If any example of any sub-dataset Di is misclassified then calculate the information gain

of attributes for that sub-dataset Di, and choose one best attribute Ai with maximum gain
value, then split the sub-dataset Di into sub-sub-datasets Dij. Then again calculate the
probabilities for each sub-sub-dataset Dij. Also classify the examples in sub-sub-datasets
using their respective probabilities.

14: Continue this process until all the examples are correctly classified.
15: Preserved all the probabilities of each dataset for future classification of examples.

3.2. Intrusions Classification using Decision Tree

Attacks Classificaton using Decision Tree (ACDT) for anomaly based network intrusion
detection [13] addresses the problem of attacks classification in intrusion detection for
classifying different types of network attacks.

In a given dataset, first the ACDT algorithm initializes the weights for each example of dataset;
Wi equal to 1

n , where n is the number of total examples in dataset. Then the ACDT algorithm
estimates the prior probability P(Cj) for each class by summing the weights that how often
each class occurs in the dataset. Also for each attribute, Ai, the number of occurrences of each
attribute value Aij can be counted by summing the weights to determine P(Aij). Similarly,
the conditional probabilities P(Aij|Cj) are estimated for all values of attributes by summing
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the weights how often each attribute value occurs in the class Cj. After that the ACDT
algorithm uses these probabilities to update the weights for each example in the dataset. It is
performed by multiplying the probabilities of the different attribute values from the examples.
Suppose the example ei has independent attribute values {Ai1, Ai2, · · · , Aip}. We already
know P(Aik|Cj), for each class Cj and attribute Aik. We then estimate P(ei|Cj) by

P(ei|Cj) = P(Cj)
p

∏
k=1

P(Aij|Cj)

To update the weight, the algorithm estimate the likelihood of ei in each class Cj. The
probability that ei is in a class is the product of the conditional probabilities for each attribute
value. The posterior probability P(Cj|ei) is then found for each class. Now the weight of
the example is updated with the highest posterior probability for that example. Finally, the
algorithm calculates the information gain by using updated weights and builds a tree for
decision making. Algorithm 2 describes the main procedure of learning process:

Algorithm 2 ACDT Algorithm

Input: Dataset, D.
Output: Decision Tree, T.
Procedure:

1: Initialize all the weights in D, Wi =
1
n , where n is the total number of the examples.

2: Calculate the prior probabilities P(Cj) for each class Cj in D.

P(Cj) =
∑Ci

Wi

∑
n
i=1 Wi

3: Calculate the conditional probabilities P(Aij|Cj) for each attribute values in D.

P(Aij|Cj) =
P(Aij)

∑Ci
Wi

4: Calculate the posterior probabilities for each example in D.

P(ei|Cj) = P(Cj)
p

∏
k=1

P(Aij|Cj)

5: Update the weights of examples in D with Maximum Likelihood (ML) of posterior
probability P(Cj|ei);

Wi = PML(Cj|ei)

6: Find the splitting attribute with highest information gain using the updated weights, Wi

in D.
7: T = Create the root node and label with splitting attribute.
8: For each branch of the T, D = database created by applying splitting predicate to D, and

continue steps 1 to 7 until each final subset belong to the same class or leaf node created.
9: When the decision tree construction is completed the algorithm terminates.

333Mining Complex Network Data for Adaptive Intrusion Detection
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3.3. Attribute Weighting with Adaptive NBTree

This subsection presents learning algorithms: Attribute Weighting Algorithm and Adaptive
NBTree Algorithm for reducing FP in intrusion detection [11]. It is based on decision tree
based attribute weighting with adaptive naïve Bayesian tree (NBTree), which not only reduce
FP at acceptable level, but also scale up DR for different types of network intrusions. It
estimate the degree of attribute dependency by constructing decision tree, and considers the
depth at which attributes are tested in the tree. In NBTree nodes contain and split as regular
decision tree, but the leaves contain naïve Bayesian classifier. The purpose of this subsection is
to identify important input attributes for intrusion detection that is computationally efficient
and effective.

3.3.1. Attribute Weighting Algorithm

In a given training data, D = {A1, A2, · · · , An} of attributes, where each attribute Ai =
{Ai1, Ai2, · · · , Aik} contains attribute values and a set of classes C = {C1, C2, · · · , Cn}, where
each class Cj = {Cj1, Cj2, · · · , Cjk} has some values. Each example in the training data
contains weight, w = {w1, w2, · · · , wn}. Initially, all the weights of examples in training data
have equal unit value that set to wi =

1
n . Where n is the total number of training examples.

Estimates the prior probability P(Cj) for each class by summing the weights that how often
each class occurs in the training data. For each attribute, Ai, the number of occurrences of each
attribute value Aij can be counted by summing the weights to determine P(Aij). Similarly, the
conditional probability P(Aij|Cj) can be estimated by summing the weights that how often
each attribute value occurs in the class Cj in the training data. The conditional probabilities
P(Aij|Cj) are estimated for all values of attributes. The algorithm then uses the prior and
conditional probabilities to update the weights. This is done by multiplying the probabilities
of the different attribute values from the examples. Suppose the training example ei has
independent attribute values {Ai1, Ai2, · · · , Aip}. We already know the prior probabilities
P(Cj) and conditional probabilities P(Aik|Cj), for each class Cj and attribute Aik. We then
estimate P(ei|Cj) by

P(ei|Cj) = P(Cj)∏ P(Aij|Cj) (12)

To update the weight of training example ei, we can estimate the likelihood of ei for each
class. The probability that ei is in a class is the product of the conditional probabilities for
each attribute value. The posterior probability P(Cj|ei) is then found for each class. Then
the weight of the example is updated with the highest posterior probability for that example
and also the class value is updated according to the highest posterior probability. Now, the
algorithm calculates the information gain by using updated weights and builds a tree. After
the tree construction, the algorithm initialized weights for each attributes in training data D.
If the attribute in the training data is not tested in the tree then the weight of the attribute
is initialized to 0, else calculates the minimum depth, d that the attribute is tested at and
initialized the weight of attribute to 1√

d
. Finally, the algorithm removes all the attributes with

zero weight from the training data D. The main procedure of the algorithm is described in
Algorithm 3.

3.3.2. Adaptive NBTree Algorithm

Given training data, D where each attribute Ai and each example ei have the weight value.
Estimates the prior probability P(Cj) and conditional probability P(Aij|Cj) from the given
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Algorithm 3 Attribute Weighting Algorithm

Input: Training Dataset, D.
Output: Decision tree, T.
Procedure:

1: Initialize all the weights for each example in D, wi =
1
n , where n is the total number of the

examples.
2: Calculate the prior probabilities P(Cj) for each class Cj in D.

P(Cj) =
∑Ci

Wi

∑
n
i=1 Wi

3: Calculate the conditional probabilities P(Aij|Cj) for each attribute values in D.

P(Aij|Cj) =
P(Aij)

∑Ci
Wi

4: Calculate the posterior probabilities for each example in D.

P(ei|Cj) = P(Cj)∏ P(Aij|Cj)

5: Update the weights of examples in D with Maximum Likelihood (ML) of posterior
probability P(Cj|ei);

Wi = PML(Cj|ei)

6: Change the class value of examples associated with maximum posterior probability,

Cj = Ci → PML(Cj|ei)

7: Find the splitting attribute with highest information gain using the updated weights, Wi

in D.
In f ormationGain =

⎛

⎝−
k

∑
j=1

∑i=Ci
Wi

∑
n
i=1 Wi

log
∑i=Ci

Wi

∑
n
i=1 Wi

⎞

−

⎛

⎝

n

∑
i=1

∑i=Cij
Wi

∑i=Ci
Wi

log

⎛

⎝ ∑
i=Cij

Wi

⎞



⎞



8: T = Create the root node and label with splitting attribute.
9: For each branch of the T, D = database created by applying splitting predicate to D, and

continue steps 1 to 8 until each final subset belong to the same class or leaf node created.
10: When the decision tree construction is completed, for each attribute in the training data

D: If the attribute is not tested in the tree then weight of the attribute is initialized to 0.
Else, let d be the minimum depth that the attribute is tested in the tree, and weight of the
attribute is initialized to 1√

d
.

11: Remove all the attributes with zero weight from the training data D.
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training dataset using weights of the examples. Then classify all the examples in the training
dataset using these prior and conditional probabilities with incorporating attribute weights
into the naïve Bayesian formula:

P(ei|Cj) = P(Cj)
m

∏
i=1

P(Aij|Cj)
Wi (13)

Where Wi is the weight of attribute Ai. If any example of training dataset is misclassified, then
for each attribute Ai, evaluate the utility, u(Ai), of a spilt on attribute Ai. Let j = argmaxi(ui),
i.e., the attribute with the highest utility. If uj is not significantly better than the utility of
the current node, create a NB classifier for the current node. Partition the training data D
according to the test on attribute Ai. If Ai is continuous, a threshold split is used; if Ai is
discrete, a multi-way split is made for all possible values. For each child, call the algorithm
recursively on the portion of D that matches the test leading to the child. The main procedure
of the algorithm is described in Algorithm 4.

Algorithm 4 Adaptive NBTree Algorithm

Input: Training dataset D of labeled examples.
Output: A hybrid decision tree with naïve Bayesian classifier at the leaves.
Procedure:

1: Calculate the prior probabilities P(Cj) for each class Cj in D.

P(Cj) =
∑Ci

Wi

∑
n
i=1 Wi

2: Calculate the conditional probabilities P(Aij|Cj) for each attribute values in D.

P(Aij|Cj) =
P(Aij)

∑Ci
Wi

3: Classify each example in D with maximum posterior probability.

P(ei|Cj) = P(Cj)
m

∏
i=1

P(Aij|Cj)
Wi

4: If any example in D is misclassified, then for each attribute Ai, evaluate the utility, u(Ai),
of a spilt on attribute Ai.

5: Let j = argmaxi(ui), i.e., the attribute with the highest utility.
6: If uj is not significantly better than the utility of the current node, create a naÃŕve Bayesian

classifier for the current node and return.
7: Partition the training data D according to the test on attribute Ai. If Ai is continuous, a

threshold split is used; if Ai is discrete, a multi-way split is made for all possible values.
8: For each child, call the algorithm recursively on the portion of D that matches the test

leading to the child.
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4. Clustering, boosting, and bagging

In this section, we present IDNBC (Intrusion Detection through naïve Bayesian with
Clustering) algorithm [12], Boosting [16], and Bagging [17] algorithms for adaptive intrusion
detection. The Boosting algorithm considers a series of classifiers and combines the votes of
each individual classifier for classifying intrusions using NB classifier. The Bagging algorithm
ensembles ID3, NB classifier, and k-Nearest-Neighbor classifier for intrusion detection, which
improves DR and reduces FP. The purpose of this chapter is to combines the several classifiers
to improve the classification of different types of network intrusions.

4.1. Naïve Bayesian with clustering

It has been tested that one set of probability derived from data is not good enough to
have good classification rate. This subsection presents algorithm namely IDNBC (Intrusion
Detection through naïve Bayesian with Clustering) for mining network logs to detect network
intrusions through NB classifier [12], which clusters the network logs into several groups
based on similarity of logs, and then calculates the probability set for each cluster. For
classifying a new log, the algorithm checks in which cluster the log belongs and then use
that cluster probability set to classify the new log.

Given a database D = {t1, t2, · · · , tn} where ti = {ti1, ti2, · · · , tih} and the database D contains
the following attributes {A1, A2, · · · , An} and each attribute Ai contains the following
attribute values {Ai1, Ai2, · · · , Aih}. The attribute values can be discrete or continuous. Also
the database D contains a set of classes C = {C1, C2, · · · , Cm}. Each example in the database
D has a particular class Cj. The algorithm first clusters the database D into several clusters
{D1, D2, · · · , Dn} depending on the similarity of examples in the database D. A similarity
measure, sim(ti, tl), defined between any two examples, t1, t2 in D, and an integer value k,
the clustering is to define a mapping f : D → {1, · · · , K} where each ti is assigned to one
cluster Kj. Suppose for two examples there is a match between two attribute values then the
similarity becomes 0.5. If there is a match only in one attribute value, then similarity between
the examples is taken as 0.25 and so on. Then the algorithm calculates the prior probabilities
P(Cj) and conditional probabilities P(Aij|Cj) for each cluster. The prior probability P(Cj)
for each class is estimated by counting how often each class occurs in the cluster. For
each attribute Ai the number of occurrences of each attribute value Aij can be counted to
determine P(Ai). Similarly, the conditional probability P(Aij|Cj) for each attribute values
Aij can be estimated by counting how often each attribute value occurs in the class in the
cluster. For classifying a new example whose attribute values are known but class value is
unknown, the algorithm checks in which cluster the new example belongs and then use that
cluster probability set to classify the new example. For classifying a new example, the prior
probabilities and conditional probabilities are used to make the prediction. This is done by
combining the effects of the different attribute values from that example. Suppose the example
ei has independent attribute values {Ai1, Ai2, · · · , Aip}, we know the P(Aik|Cj), for each class
Cj and attribute Aik. We then estimate P(ei|Cj) to classify the example, the probability that
ei is in a class is the product of the conditional probabilities for each attribute value with
prior probability for that class. The posterior probability P(Cj|ei) is then found for each class
and the example classifies with the highest posterior probability for that example. The main
procedure of the algorithm is described in Algorithm 5.
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Algorithm 5 IDNBC Algorithm

Input: Database, D.
Output: Intrusion Detection Model.
Procedure:

1: for each example ti ǫ D, check the similarity of examples: sim(ti, tl);
2: Put examples into cluster: Di ← ti;
3: for each cluster Di, calculate the prior probabilities:

P(Cj) =
∑ ti→Cj

∑
n
i=1 ti

4: for each cluster Di, calculate the conditional probabilities:

P(Aij|Cj) =
∑

n
i=1 Ai→Cj

∑ ti→Cj

5: for each cluster Di, store the prior probabilities, S1 = P(Cj); and conditional probabilities,
S2 = P(Aij|Cj);

6: For classifying new example, check in which cluster the example belongs and then use
that cluster probability set to classify the example.

4.2. Boosting

Adaptive intrusion detection using boosting and naïve Bayesian classifier [16], which
considers a series of classifiers and combines the votes of each individual classifier for
classifying an unknown or known intrusion. This algorithm generates the probability set
for each round using naïve Bayesian classifier and updates the weights of training examples
based on the misclassification error rate that produced by the training examples in each round.

Given a training data D = {t1, · · · , tn}, where ti = {ti1, · · · , tih} and the
attributes {A1, A2, · · · , An}. Each attribute Ai contains the following attribute values
{Ai1, Ai2, · · · , Aih}. The training data D also contains a set of classes C = {C1, C2, · · · , Cm}.
Each training example has a particular class Cj. The algorithm first initializes the weights

of training examples to an equal value of wi = 1
n , where n is the total number of training

examples in D. Then the algorithm generates a new dataset Di with equal number of examples
from training data D using selection with replacement technique and calculates the prior
P(Cj) and class conditional P(Aij|Cj) probabilities for new dataset Di .

The prior probability P(Cj) for each class is estimated by counting how often each class occurs
in the dataset Di. For each attribute Ai the number of occurrences of each attribute value Aij

can be counted to determine P(Ai). Similarly, the class conditional probability P(Aij|Cj) for
each attribute values Aij can be estimated by counting how often each attribute value occurs
in the class in the dataset Di. Then the algorithm classifies all the training examples in training
data D with these prior P(Cj) and class conditional P(Aij|Cj) probabilities from dataset Di .
For classifying the examples, the prior and conditional probabilities are used to make the
prediction. This is done by combining the effects of the different attribute values from that
example. Suppose the example ei has independent attribute values {Ai1, Ai2, · · · , Aip}, we
know P(Aik|Cj), for each class Cj and attribute Aik. We then estimate P(ei|Cj) by using
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equation 14.

P(ei|Cj) = P(Cj)
p

∏
k=1

P(Aij|Cj) (14)

To classify the example, the probability that ei is in a class is the product of the conditional
probabilities for each attribute value with prior probability for that class. The posterior
probability P(Cj|ei) is then found for each class and the example classifies with the highest
posterior probability value for that example. The algorithm classifies each example ti in D
with maximum posterior probability. After that the weights of the training examples ti in
training data D are adjusted or updated according to how they were classified. If an example
was misclassified then its weight is increased, or if an example was correctly classified then
its weight is decreased.

To updates the weights of training data D, the algorithm computes the misclassification rate,
the sum of the weights of each of the training example ti in D that were misclassified. That is,

error(Mi) =
d

∑
i

Wi ∗ err(ti) (15)

Where err(ti) is the misclassification error of example ti. If the example ti was misclassified,
then is err(ti) 1. Otherwise, it is 0. The misclassification rate affects how the weights of the
training examples are updated. If a training example was correctly classified, its weight is
multiplied by error ( Mi

1−error(Mi)
). Once the weights of all of the correctly classified examples

are updated, the weights for all examples including the misclassified examples are normalized
so that their sum remains the same as it was before. To normalize a weight, the algorithm
multiplies the weight by the sum of the old weights, divided by the sum of the new weights.
As a result, the weights of misclassified examples are increased and the weights of correctly
classified examples are decreased. Now the algorithm generates another new data set Di from
training data D with maximum weight values and continues the process until all the training
examples are correctly classified. Or, we can set the number of rounds that the algorithm will
iterate the process. To classify a new or unseen example use all the probabilities of each round
(each round is considered as a classifier) and consider the class of new example with highest
classifier’s vote. The main procedure of the boosting algorithm is described in Algorithm 6.

4.3. Bagging

Classification of streaming data based on bootstrap aggregation (bagging) [17] creates an
ensemble model by using ID3 classifier, naïve Bayesian classifier, and k-Nearest-Neighbor
classifier for a learning scheme where each classifier gives the weighted prediction.

Given a dataset D, of d examples and the dataset D contains the following
attributes {A1, A2, · · · , An} and each attribute Ai contains the following attribute values
{Ai1, Ai2, · · · , Aih}. Also the dataset D contains a set of classes C = {C1, C2, · · · , Cm}, where
each example in dataset D has a particular class Cj. The algorithm first generates the training
dataset Di from the given dataset D using selection with replacement technique. It is very
likely that some of the examples from the dataset D will occur more than once in the training
dataset Di . The examples that did not make it into the training dataset end up forming
the test dataset. Then a classifier model, Mi, is learned for each training examples d from
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Algorithm 6 Boosting Algorithm

Input: D, Training data D of labeled examples ti.
Output: A classification model.
Procedure:

1: Initialize the weight wi =
1
n of each example ti in D, where n is the total number of training

examples.
2: Generate a new dataset Di with equal number of examples from D using selection with

replacement technique.
3: Calculate the prior probability P(Cj) for each class Cj in dataset Di:

P(Ci) =
∑ ti→Cj

∑
n
i=1 ti

4: Calculate the class conditional probabilities P(Aij|Cj) for each attribute values in dataset
Di :

P(Aij|Cj) =
∑

n
i=1 Ai→Cj

∑ ti→Cj

5: Classify each training example ti in training data D with maximum posterior probabilities.

P(ei|Cj) = P(Cj)
p

∏
k=1

P(Aij|Cj)

6: Updates the weights of each training examples tiD, according to how they were classified.
If an example was misclassified then its weight is increased, or if an example was correctly
classified then its weight is decreased. To updates the weights of training examples
the misclassification rate is calculated, the sum of the weights of each of the training
example tiD that were misclassified: error(Mi) = ∑

d
i Wi ∗ err(ti); Where err(ti) is the

misclassification error of example ti. If the example ti was misclassified, then is err(ti) 1.
Otherwise, it is 0. If a training example was correctly classified, its weight is multiplied by
( Mi

1−error(Mi)
). Once the weights of all of the correctly classified examples are updated, the

weights for all examples including the misclassified examples are normalized so that their
sum remains the same as it was before. To normalize a weight, the algorithm multiplies
the weight by the sum of the old weights, divided by the sum of the new weights. As
a result, the weights of misclassified examples are increased and the weights of correctly
classified examples are decreased.

7: Repeat steps 2 to 6 until all the training examples ti in D are correctly classified.
8: To classify a new or unseen example use all the probability set in each round (each round is

considered as a classifier) and considers the class of new example with highest classifier’s
vote.
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training dataset Di. The algorithm builds three classifiers using ID3, naïve Bayesian (NB), and
k-Nearest-Neighbor (kNN) classifiers.

The basic strategy used by ID3 classifier is to choose splitting attributes with the highest
information gain first and then builds a decision tree. The amount of information associated
with an attribute value is related to the probability of occurrence. The concept used to quantify
information is called entropy, which is used to measure the amount of randomness from a data
set. When all data in a set belong to a single class, there is no uncertainty, and then the entropy
is zero. The objective of decision tree classification is to iteratively partition the given data set
into subsets where all elements in each final subset belong to the same class. The entropy
calculation is shown in equation 16. Given probabilities p1, p2, · · · , ps for different classes in
the data set

Entropy : H(p1, p2, · · · , ps) =
s

∑
i=1

(pi log(
1
pi
)) (16)

Given a data set, D, H(D) finds the amount of entropy in class based subsets of the data set.
When that subset is split into s new subsets S = D1, D2, · · · , Ds using some attribute, we can
again look at the entropy of those subsets. A subset of data set is completely ordered and does
not need any further split if all examples in it belong to the same class. The ID3 algorithm
calculates the information gain of a split by using equation 17 and chooses that split which
provides maximum information gain.

Gain(D, S) = H(D)−
s

∑
i=1

p(Di)H(Di) (17)

The naïve Bayesian (NB) classifier calculates the prior probability, P(Cj) and class conditional
probability, P(Aij|Cj) from the dataset. For classifying an example, the NB classifier uses these
prior and conditional probabilities to make the prediction of class for that example. The prior
probability P(Cj) for each class is estimated by counting how often each class occurs in the
dataset Di. For each attribute Ai the number of occurrences of each attribute value Aij can
be counted to determine P(Ai). Similarly, the class conditional probability P(Aij|Cj) for each
attribute values Aij can be estimated by counting how often each attribute value occurs in the
class in the dataset Di.

The k-Nearest-Neighbor (kNN) classifier assumes that the entire training set includes not only
the data in the set but also the desired classification for each item. When a classification is
to be made for a test or new example, its distance to each item in the training data must
be determined. The test or new example is then placed in the class that contains the most
examples from this training data of k closest items.

After building classifiers using ID3, NB, and kNN, each classifier, Mi, classifies the training
examples and initialized the weight, Wi of each classifier based on the accuracies of percentage
of correctly classified examples from training dataset. To classify the testing examples or
unknown examples each classifier returns its class prediction, which counts as one vote. The
proposed bagged classifier counts the votes with the weights of classifiers, and assigns the
class with the maximum weighted vote. The main procedure of the bagging algorithm is
described in Algorithm 7.
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Algorithm 7 Bagging Algorithm

Input:
D, a set of d examples.
k = 3, the number of models in the ensemble.
Learning scheme (ID3, naïve Bayesian classifier, and k-Nearest-Neighbor).
Output: A composite model, M∗.
Procedure:

1: Generate a new training dataset Di with equal number of examples from a given dataset
D using selection with replacement technique. Same example from given dataset D may
occur more than once in the training dataset Di.

2: for i = 1 to k do
3: Derive a model or classifier, Mi using training dataset Di.
4: Classify each example d in training data Di and initialized the weight, Wi for the model,

Mi, based on the accuracies of percentage of correctly classified example in training data
Di .

5: endfor

To use the composite model on test examples or unseen examples:

1: for i = 1 to k do
2: Classify the test or unseen examples using the k models.
3: Returns a weighted vote (which counts as one vote).
4: endfor
5: M∗, counts the votes and assigns the class with the maximum weighted vote for that

example.

5. Experimental results

The experiments were performed by using an Intel Core 2 Duo Processor 2.0 GHz processor
(2 MB Cache, 800 MHz FSB) with 1 GB of RAM.

5.1. NBDTAID evaluation

In order to evaluate the performance of NBDTAID algorithm for network intrusion detection,
we performed 5-class classification using KDD99 intrusion detection benchmark dataset [14].
The results of the comparison of NBDTAID with naïve Bayesian classifier and ID3 classifier
are presented in Table 5 using 41 input attributes, and Table 6 using 19 input attributes.
The performance of NBDTAID algorithm using reduced dataset (12 and 17 input attributes)
increases DR that are summarized in Table 7.

Method Normal Probe DOS U2R R2L

NBDTAID (DR %) 99.72 99.25 99.75 99.20 99.26
NBDTAID (FP %) 0.06 0.39 0.04 0.11 6.81

naïve Bayesian (DR %) 99.27 99.11 99.69 64.00 99.11
naïve Bayesian (FP %) 0.08 0.45 0.04 0.14 8.02

ID3 (DR %) 99.63 97.85 99.51 49.21 92.75
ID3 (FP %) 0.10 0.55 0.04 0.14 10.03

Table 5. NBDTAID Algorithm: Comparison of the results using 41 attributes.
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Method Normal Probe DOS U2R R2L

NBDTAID (DR %) 99.84 99.75 99.76 99.47 99.35
NBDTAID (FP %) 0.05 0.28 0.03 0.10 6.22

naïve Bayesian (DR %) 99.65 99.35 99.71 64.84 99.15
naïve Bayesian (FP %) 0.05 0.32 0.04 0.12 6.87

ID3 (DR %) 99.71 98.22 99.63 86.11 97.79
ID3 (FP %) 0.06 0.51 0.04 0.12 7.34

Table 6. NBDTAID Algorithm: Comparison of the results using 19 attributes.

Class Value 12 Attributes 17 Attributes

Normal 99.98 99.95
Probe 99.92 99.93
DoS 99.99 99.97
U2R 99,38 99.46
R2L 99.55 99.69

Table 7. Performance of NBDTAID algorithm using reduced dataset.

5.2. ACDT evaluation

The results of the comparison of ACDT, ID3, and C4.5 algorithms using 41 attributes are
tabulated in Table 8 and using 19 attributes are tabulated Table 9 [13].

Method Normal Probe DoS U2R R2L

ACDT (DR %) 98.76 98.21 98.55 98.11 97.16
ACDT (FP %) 0.07 0.44 0.05 0.12 6.85
ID3 (DR %) 97.63 96.35 97.41 43.21 92.75
ID3 (FP %) 0.10 0.55 0.04 0.14 10.03

C4.5 (DR %) 98.53 97.85 97.51 49.21 94.65
C4.5 (FP %) 0.10 0.55 0.07 0.14 11.03

Table 8. Comparison of ACDT with ID3 and C4.5 using 41 Attributes.

Method Normal Probe DoS U2R R2L

ACDT (DR %) 99.19 99.15 99.26 98.43 98.05
ACDT (FP %) 0.06 0.48 0.04 0.10 6.32
ID3 (DR %) 98.71 98.22 97.63 86.11 94.19
ID3 (FP %) 0.06 0.51 0.04 0.12 7.34

C4.5 (DR %) 98.81 98.22 97.73 56.11 95.79
C4.5 (FP %) 0.08 0.51 0.05 0.12 8.34

Table 9. Comparison of ACDT with ID3 and C4.5 using 19 Attributes.

5.3. Adaptive NBTree evaluation

Firstly, we used attribute weighting algorithm to perform attribute selection from training
dataset of KDD99 dataset and then we used adaptive NBTree algorithm for classifier
construction [11]. The performance of our proposed algorithm on 12 attributes in KDD99
dataset is listed in Table 10.

Classes Detection Rates (%) False Positives (%)

Normal 100 0.04
Probe 99.93 0.37
DoS 100 0.03
U2R 99,38 0.11
R2L 99.53 6.75

Table 10. Performance of adaptive NBTree algorithm on KDD99 Dataset.
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Table 11 and Table 12 depict the performance of naïve Bayesian (NB) classifier and C4.5
algorithm using the original 41 attributes of KDD99 dataset. Table 13 and Table 14 depict
the performance of NB classifier and C4.5 using reduces 12 attributes.

Classes Detection Rates (%) False Positives (%)

Normal 99.27 0.08
Probe 99.11 0.45
DoS 99.68 0.05
U2R 64.00 0.14
R2L 99.11 8.12

Table 11. Performance of NB classifier on KDD99 Dataset.

Classes Detection Rates (%) False Positives (%)

Normal 98.73 0.10
Probe 97.85 0.55
DoS 97.51 0.07
U2R 49.21 0.14
R2L 91.65 11.03

Table 12. Performance of C4.5 algorithm on KDD99 Dataset.

Classes Detection Rates (%) False Positives (%)

Normal 99.65 0.06
Probe 99.35 0.49
DoS 99.71 0.04
U2R 64.84 0.12
R2L 99.15 7.85

Table 13. Performance of NB classifier using 12 attributes.

Classes Detection Rates (%) False Positives (%)

Normal 98.81 0.08
Probe 98.22 0.51
DoS 97.63 0.05
U2R 56.11 0.12
R2L 91.79 8.34

Table 14. Performance of C4.5 algorithm using 12 attributes.

We compare the detection rates among Support Vector Machines (SVM), Neural Network
(NN), Genetic Algorithm (GA), and adaptive NBTree algorithm on KDD99 dataset that
tabulated in Table 15.

SVM NN GA Adaptive NBTree

Normal 99.4 99.6 99.3 99.93
Probe 89.2 92.7 98.46 99.84
DoS 94.7 97.5 99.57 99.91
U2R 71.4 48 99.22 99.47
R2L 87.2 98 98.54 99.63

Table 15. Comparison of several algorithms with adaptive NBTree algorithm.

5.4. IDNBC evaluation

The performance of IDNBC algorithm tested by employing KDD99 benchmark network
intrusion detection dataset, and the experimental results proved that it improves DR as well
as reduces FP for different types of network intrusions are tabulated in Table 16 [12].
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Method Normal Probe DoS U2R R2L

IDNBC (DR %) 99.66 99.24 99.62 99.19 99.08
IDNBC (FP %) 0.08 0.86 0.09 0.18 7.85

NB (DR %) 99.27 99.11 99.69 64.00 99.11
NB (FP %) 0.08 0.45 0.05 0.14 8.02

Table 16. Performance of IDNBC algorithm with naïve Bayesian classifier.

5.5. Boosting evaluation

We tested the performance of Boosting algorithm with k-Nearest-Neighbor classifier (kNN),
Decision Tree classifier (C4.5), Support Vector Machines (SVM), Neural Network (NN), and
Genetic Algorithm (GA) by employing on the KDD99 benchmark intrusion detection dataset
[16] that is tabulated in Table 17.

Method Normal Probe DoS U2R R2L

Boosting Algorithm 100 99.95 99.92 99.55 99.60
kNN 99.60 75.00 97.30 35.00 0.60
C4.5 98.49 94.82 97.51 49.25 91.26
SVM 99.40 89.2 94.7 71.40 87.20
NN 99.60 92.7 97.50 48.00 98.00
GA 99.30 98.46 99.57 99.22 98.54

Table 17. Comparison of the results for the intrusion detection problem (Detection Rate %).

It has been successfully tested that effective attributes selection improves the detection rates
for different types of network intrusions in intrusion detection. The performance of boosting
algorithm on 12 attributes in KDD99 dataset is listed in Table 18.

Attack Types DR (%) FP (%)

Normal 100 0.03
Probing 99.95 0.36

DoS 100 0.03
U2R 99.67 0.10
R2L 99.58 6.71

Table 18. Boosting on reduce KDD99 dataset.

5.6. Bagging evaluation

The presented bagging algorithm was tested on the KDD99 benchmark intrusion detection
dataset that is tabulated in Table 19 [17].

Method Normal Probe DoS U2R R2L

ID3 99.63 97.85 99.51 49.21 92.75
NB 99.27 99.11 99.69 64.00 99.11

kNN 99.60 75.00 97.30 35.00 0.60
Bagging Algorithm 100 99.92 99.93 99.57 99.61

Table 19. Comparison of the results on KDD99 dataset using bagging (Detection Rate %).

6. Conclusions and future work

The work presented in this chapter has explored the basic concepts of adaptive intrusion
detection employing data mining algorithms. We focused on naïve Bayesian (NB) classifier
and decision tree (DT) classifier for extracting intrusion patterns from network data. Both NB
and DT are efficient learning techniques for mining the complex data and already applied in
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many real world problem domains. NB has several advantages. First, it is easy to use. Second,
unlike other learning algorithms, only one scan of the training data is required. NB can
easily handle missing attribute values by simply omitting that probability when calculation
the likelihoods of membership in each class. On the other side, the ID3 algorithm to build a
decision tree based on information theory and attempts to minimize the expected number
of comparisons. The basic strategy used by ID3 is to choose splitting attributes with the
highest information gain. The amount of information associated with an attribute value is
related to the probability of occurrence. Having evaluated the mining algorithms on KDD99
benchmark intrusion detection dataset, it proved that supervised intrusion classification can
increased DR and significantly reduced FP. It also proved that data mining for intrusion
detection works, and the combination of NB classifier and DT algorithm forms a robust
intrusion-processing framework. Algorithms such as NBDTAID, ACDT, Attribute Weighting
with Adaptive NBTree, IDNBC, Boosting, and Bagging presented in this chapter can increase
the DR and significantly reduce the FP in intrusion detection. The future works focus on
improving FP for R2L attacks and ensemble with other mining algorithms to improve the DR
for new network attacks.
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