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1. Introduction

High-rise buildings are constructed everywhere in the world. The height and size of high-
rise buildings get larger and larger. The structural design of high-rise buildings depends on
dynamic analysis for winds and earthquakes. Since today performance of computer pro‐
gresses remarkably, almost structural designers use the software of computer for the struc‐
tural design of high-rise buildings. Hence, after that the structural plane and outline of high-
rise buildings are determined, the structural design of high-rise buildings which checks
structural safety for the individual structural members is not necessary outstanding struc‐
tural ability by the use of structural software on the market. However, it is not exaggeration
to say that the performance of high-rise buildings is almost determined in the preliminary
design stages which work on multifaceted examinations of the structural form and outline.
The structural designer is necessary to gap exactly the whole picture in this stage. The static
and dynamic structural behaviors of high-rise buildings are governed by the distributions of
transverse shear stiffness and bending stiffness per each storey. Therefore, in the prelimina‐
ry design stages of high-rise buildings a simple but accurate analytical method which re‐
flects easily the structural stiffness on the whole situation is more suitable than an analytical
method which each structural member is indispensable to calculate such as FEM.

There are many simplified analytical methods which are applicable for high-rise buildings.
Since high-rise buildings are composed of many structural members, the main treatment for
the simplification is to be replaced with a continuous simple structural member equivalent
to the original structures. This equivalently replaced continuous member is the most suita‐
ble to use the one-dimensional rod theory.

Since the dynamic behavior of high-rise buildings is already stated to govern by the shear
stiffness and bending stiffness determined from the structural property. The deformations of
high-rise buildings are composed of the axial deformation, bending deformation, transverse
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shear deformation, shear-lag deformation, and torsional deformation. The problem is to be
how to take account of these deformations under keeping the simplification.

There are many rod theories. The most simple rod theory is Bernonlli-Euler beam theory
which may treat the bending deformation excluding the transverse shear deformation. The
Bernonlli-Euler beam theory is unsuitable for the modeling of high-rise buildings.

The transverse resistance of the frame depends on the bending of each structural member
consisted of the frame. Therefore, the transverse deformation always occurs corresponding
to the transverse stiffness κGA. Since the transverse shear deformation is independent of the
bending deformation of the one-dimensional rod, this shear deformation cannot neglect as
for equivalent rod theory. This deformation behavior can be expressed by Timoshenko beam
theory. Timoshenko beam theory may consider both the bending and the transverse shear
deformation of high-rise buildings. The transverse deformation in Timoshenko beam theory
is assumed to be linear distributed in the transverse cross section.

Usual high-rise buildings have the form of the three-dimensional structural frame. Therefore
the structures produce the three dimensional behaviors. The representative dissimilarity
which is differ from behavior of plane frames is to cause the shear-lag deformation. The
shear-lag deformation is noticed in bending problem of box form composed of thin-walled
closed section.

Reissner [1] presented a simplified beam theory including the effect of the shear-lag in the
Bernonlli-Euler beam for bending problem of box form composed of thin-walled member. In
this theory the shear-lag is considered only the flange of box form. This phenomenon ap‐
pears in high-rise buildings the same as wing of aircrafts. Especially the shear-lag is remark‐
able in tube structures of high-rise buildings and occurs on the flange sides and web ones of
the tube structures. The shear-lag occurs on all three-dimensional frame structures to a
greater or lesser degree. Thus the one-dimensional rod theory which is applicable to analyze
simply high-rise buildings is necessary to consider the longitudinal deformation, bending
deformation, transverse shear deformation, shear-lag deformation, and torsional deforma‐
tion. In generally, high-rise buildings have doubly symmetric structural forms from view‐
point the balance of facade and structural simplicity. Therefore the torsional deformation is
considered to separate from the other deformations. Takabatake [2-6] presented a one-di‐
mensional rod theory which can consider simply the above deformations. This theory is
called the one-dimensional extended rod theory.

The previous works for continuous method are surveyed as follows: Beck [7] analyzed cou‐
pled shear walls by means of beam model. Heidenbrech et al. [8] indicated an approximate
analysis of wall-frame structures and the equivalent stiffness for the equivalent beam. Dy‐
namic analysis of coupled shear walls was studied by Tso et al. [9], Rutenberg [10, 11], Da‐
nay et al. [12], and Bause [13]. Cheung and Swaddiwudhipong [14] presented free vibration
of frame shear wall structures. Coull et al. [15, 16] indicated simplified analyses of tube
structures subjected to torsion and bending. Smith et al. [17, 18] proposed an approximate
method for deflections and natural frequencies of tall buildings. However, the aforemen‐
tioned continuous approaches have not been presented as a closed-form solution for tube
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structures with variable stiffness due to the variation of frame members and bracings. In this
chapter high-rise buildings are expressed as tube structures in which three dimensional
frame structures are included naturally.

2. Formulation of the one-dimensional extended rod theory for high-rise
buildings

Frame tubes with braces and/or shear walls are replaced with an equivalent beam. Assum‐
ing that in-plane floor’s stiffness is rigid, the individual deformations of outer and inner
tubes in tube-in-tube are restricted. Hence, the difference between double tube and single
tube depends on only the values of bending stiffness, transverse shear stiffness, and torsion‐
al stiffness. Therefore, for the sake of simplicity, consider a doubly symmetric single tube
structure, as shown in Figure 1. Cartesian coordinate system, x, y, z is employed, in which
the axis x takes the centroidal axis, and the transverse axes y and z take the principal axes of
the tube structures. Since the lateral deformation and torsional deformation for a doubly
symmetric tube structure are uncouple, the governing equations for these deformations can
be formulated separately for simplicity.

Figure 1. Doubly symmetric tube structure

2.1. Governing equations for lateral forces

Consider a motion of the tube structure subjected to lateral external forces such as winds
and earthquakes acting in the y-direction, as shown in Figure 1. The deformation of the tube
structures is composed of axial deformation, bending, transverse shear deformation, and
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shear-lag, in which the in-plane distortion of the cross section is neglected due to the in-
plane stiffness of the slabs. The displacement composes Ū (x, y, z, t) , V̄ (x, y, z, t) , and
W̄ (x, y, z, t) in the x-, y-, and z-directions on the middle surface of the tube structures as

Ū (x, y, z, t)=u(x, t) + yϕ(x, t) + φ ∗(y, z)u∗(x, t) (1)

V̄ (x, y, z, t)=v(x, t) (2)

W̄ (x, y, z, t)=0 (3)

in which u and v =  longitudinal and transverse displacement components in the x-and y-di‐
rections on the axial point, respectively; ϕ =  rotational angle on the axial point along the z-

axis; u * =  shear-lag coefficient in the flanges; φ *(x, y)=  shear-lag function indicating the
distribution of shear-lag. These displacements and shear-lag coefficient are defined positive
as the positive direction of the coordinate axes. However, the rotation is defined positive as
counterclockwise along the z axis, as shown in Figure 2. The shear-lag function for the
flange sections is used following function given by Reissner [1] and for the web sections sine
distribution [5, 6] is assumed:

φ ∗(y, z)= ± 1− (
z
b1

)
2

for flange (4)

φ ∗(y, z)=sin( π y
b2

) for web (5)

in which the positive of ±  takes for the flange being the positive value of the y-axis and vice
versa b

1
 and b

2
 are hafe width of equivalent flange and web sections, as shown in Figure 1.

Figure 2. Positive direction of rotation 

The governing equation of tube structures is proposed by means of the following Hamil‐
ton’s principle.
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δI =δ∫t1

t2
(T −U −V )dt =0 (6)

in which T =  the kinetic energy; U =  the strain energy; V =  the potential energy produced by
the external loads; and δ =  the variational operator taken during the indicated time interval.

Using linear relationship between strain and displacement, the following expressions are
obtained.

εx =
∂Ū
∂ x =u ′ + yϕ ′ + φ ∗u∗′ (7)

γxy =
∂Ū
∂ y +

∂ V̄
∂ x =ϕ + φ ∗

,y
u∗ + v ′ (8)

γxz =
∂Ū
∂ z +

∂W̄
∂ x =φ ∗

,z
u∗ (9)

in which dashes indicate the differentiation with respect x and the differentiations with re‐
spect y and z are expressed as

φ,y
* =
∂φ *

∂ y
(10)

φ,z
* =
∂φ *

∂ z
(11)

The relationships between stress and strain are used well-known engineering expression for
one-dimentional structural member of the frame structure.

σx = Eεx (12)

τxy =Gγxy (13)

τxz =Gτxz (14)

in which E is Yound modulus and G shear modulus.

Assuming the above linear stress-strain relation, the strain energy U  is given by

U =
1
2 ∫0

L
EA(u ′)2 + EI (ϕ ′)2 + E I ∗(u∗′)2 + κGF ∗(u∗)2 + 2ES ∗ϕ ′u∗′ + κGA(v ′ + ϕ)2 dx (15)
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in which L =  the total height of the tube structure; k =  the shear coefficient; and A, I , I *, S *,
and F * =  the sectional stiffnesses. These sectional stiffnesses vary discontinuously with re‐
spect to x for a variable tube structure and are defined as

A= ∫∫dydz =∑ Ac (16)

I = ∫∫y 2dydz (17)

A * = ∬φ *dydz = ∬ φf
* + φw

* dydz (18)

I * = ∬ (φ *)2dydz =2t2∫−b1

b1 (φf
*)2

d z + 2t1∫−b2

b2 (φw
*)2d y (19)

S * = ∬ yφ *dydz =2t2∫−b1

b1
b2φf

*dz +2t2∫−b2

b2
yφw

*dy (20)

F * = ∬ (φ,z
* )2dydz + ∬ (φ,y

* )2dydz = ∬ (φ f ,z
* + φw ,z

* )2dydz + ∬ (φ f ,y
* + φw ,y

* )2dydz (21)

in which ∑ Ac =  the total cross-sectional area of columns per story.

The kinetic energy, T  , for the time interval from t1 to t2 is

T =∫
t1

t2{ 1
2 ∫

0

L

ρA(u̇)2 + ρI (ϕ
⋅

)
2

+ ρI *(u̇*)2 + 2ρS *ϕ
⋅
u̇* + ρA(v̇)2 dx}dt (22)

in which the dot indicates differentiation with respect to time and ρ =  mass density of the
tube structure. Now assuming that the variation of the displacements and rotation at t = t1

and t = t2 is negligible, the variation δT  may be written as

δT = − ∫t1

t2{∫0L ρAüδu + ρI ϕ̈δϕ + ρI *ü*δu * + ρS *(ϕ̈δu * + ü*δϕ) + ρAv̈δv dx}dt (23)

When the external force at the boundary point (top for current problem) prescribed by the
mechanical boundary condition is absent, the variation of the potential energy of the tube
structures becomes

δV = − ∫0
L ∫∫(pxδŪ + pyδV̄ )dydz dx + ∫0

L
(cuu̇δu + cvv̇δv)dx (24)
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in which px and py =  components of external loads in the x- and y-directions per unit are,

respectively; cu , and cv =  damping coefficients for longtitudinal and transverse motions, re‐

spectively. The substitution of Eqs. (1) and (2) into Eq. (24) yields

δV = − ∫0
L (Pxδu + mδϕ + m *δu * + Pyδv −cuu̇δu −cvv̇δv)dx (25)

in which Px , Py , m , and m * are defined as

Px = ∫∫pxdydz (26)

Py = ∫∫pydydz (27)

m = ∫∫px ydydz (28)

m * = ∫∫pxφ *dydz =0 (29)

Since for a doubly symmetric tube structure the distribution of the shear-lag function on the

flange and web surfaces confronting each other with respect to z axis is asymmetric, m * van‐
ishes. Hence, Eq. (25) reduces to

δV = − ∫0
L

(Pxδu + mδϕ + Pyδv −cuu̇δu −cvv̇δv)dx (30)

Substituting Eqs. (15), (28), and (30) into Eq. (6), the differential equations of motion can be
obtained

δu :ρAü + cuu̇ − (EAu ′)′−Px =0 (31)

δv :ρAv̈ + cvv̇ − κGA(v ′ + ϕ) ′−Py =0 (32)

δϕ :ρI ϕ̈ + ρS * ü * − (EI ϕ ′ + ES * u * ′)′ + κGA(v ′ + ϕ)−m =0 (33)

δu * :ρI * ü * + ρS * ϕ̈ − (EI * u * ′ + ES * ϕ ′)′ + κGF * u * =0 (34)

together with the associated boundary conditions at x =0 and x = L  .
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   0 or 0u EAu¢= = (35)

v =0 or κ GA(v ′ + ϕ)=0 (36)

ϕ  =0 or EI ϕ ′ + ES * u * ′ =0 (37)

u * =0 or EI * u * ′ + ES * ϕ ′ =0 (38)

2.2. Governing equations for torsional moment

The displacement components for current tube structures subjected to torsional moments,
mx , around the x-axis are expressed by

Ū = w̄(y, z)θ '(x, t) (39)

V̄ = − zθ (40)

W̄ = yθ (41)

in which W̄ =  the displacement component in the z-direction on the tube structures; θ =  tor‐
sional angle; and w̄(y, z)=  warping function. Using the same manner as the aforementioned
development, the differential equation of motion for current tube structures can be obtained

δθ :ρIpθ̈ − (GJ θ ')'−mx =0 (42)

together with the association boundary conditions

'0 or xLGJ mq = q = (43)

at x =0 and L  , in which GJ =  the torsional stiffness.

2.3. Sectional constants

The sectional constants are defined by Eqs. (16) to (21). For doubly symmetric single-tube
structures as shown in Figure 1, these sectional constants are simplified as follow.

A * =0 (44)

I * =
8
15 Af +

1
2 Aw (45)
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S * =
2
3 b2Af +

b2
π Aw

(46)

F * =
4

3(b1)2 Af +
π 2

2b22 Aw (47)

in which Af =  the total cross-sectional area of columns in the flanges and webs, respectively,
per story. For the cross-section of tube structures, as shown in Figure 1, Af  and Aw are given
as Af =4t1b1 and Aw =4t2b2 .

2.4. Equivalent transverse shear stiffness κGA

When the tube structure are composed of frame and bracing, the equivalent transverse shear
stiffness κGA for each story is given by

κGA=∑ (κGA) frame +∑ (κGA)brace (48)

in which ∑  is taken the summation of equivalent transverse shear stiffnesses of web frame
and of braces per story. The shear stiffnesses of web frame and web double-brace
∑ (κGA) frame and ∑ (κGA)brace for each side of the web surfaces, respectively, are given by

1
(κGA) frame

=
h ( 1
∑ Kc

+
1
∑ Kb

)
12E +

1
∑

c(κGAcw) +
h

∑
b(ℓκGAbw)

(49)

(κGA)brace =
h
ℓ kbraceABEBcos2θB (50)

in which the first term on the right side of Eq. (49) indicates the deformation of the frame
with the stiffnesses of columns and beams Kc and Kb , respectively; the second and third
terms indicate the shear deformation of only the columns and beams in the current web-
frame, respectively. Acw and Abw =  the web's cross-sectional area of a column and of a beam,

respectively. ∑
c
 and ∑

b
=  the sums of columns and beams, respectively, in a web-frame at

the current story of the frame tube. If the shear deformations of columns and beams are ne‐
glected, these terms must vanish. Furthermore, ℓ=  the span length; AB =  the cross-sectional
area of a brace; EB =  the Young's modulus; and θB =  the incline of the brace. The coefficient
kbrace indicates the effective number of brace and takes kbrace =1 for a brace resisting only ten‐
sion and kbrace =2 for two brace resisting tension and compression, as shown in Figure 3.
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Figure 3. Brace resisting tension and compression

2.5. Equivalent bending stiffness EI

The equivalent bending stiffness EI  for each storey is determined from the total sum of the
moment of inertia about the z-axis of each column located on the storey.

E I =∑
i=1

n
Ei I0i + Aiei

2 (51)

in which Ei , I0i
 and Ai =  Young modulus, moment of inertia and the cross section of the ith

column; and ei =  the distance measured from the z-axis.

3. Static analysis by the finite defference method

3.1. Expression of static analysis

The governing equations for the one-dimensional extended rod theory are differential equa‐
tions with variable coefficients due to the variation of structural members and forms in the
longitudinal direction. Furthermore, although the equations of motion and boundary condi‐
tions for the vertical displacement u are uncoupled from the other displacement compo‐
nents, the governing equations take coupled from concerning variables v , ϕ , and u * .

Takabatake [2, 3] presented the uncoupled equations as shown in section 7 by introducing
positively appropriate approximations into the coupled equations and proposed a closed-
form solution. For usual tube structures this method produces reasonable results. However
the analytical approach deteriorates on the accuracy of numerical results for high-rise build‐
ings with the rapid local variations of transverse shear stiffness and/or braces. Especially the
difference appears on the distributions of not dynamic deflection but story acceleration and
storey shear force. It is limit to express these rapid variations by a functional expression. So,
the above governing equations are solved by means of the finite difference method.

The equations of motion and boundary conditions for the longitudinal displacement u are
uncoupled from the other displacement components. So we consider only the lateral motion
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given by the governing equation coupled about the lateral displacements v , rotational angle

ϕ , and shear-lag displacement u * .

Using ordinary central finite differences, the finite difference expressions of the current
equilibrium equations, obtained from the equations of motion Eqs. (32)-(34), may be written,
respectively, as follows:

−
κGA
Δ 2 +

(κGA)'

2Δ vi−1 +
κGA
2Δ ϕi−1 +

2κGA
Δ 2 vi

− (κGA)'ϕi −
κGA
Δ 2 +

(κGA)'

2Δ vi+1−
κGA
2Δ ϕi+1 = Pyi

(52)

−
κGA
2Δ vi−1 + −

EI
Δ 2 +

(EI ) '
2Δ ϕi−1 + −

ES *

Δ 2 +
(ES *)'

2Δ ui−1
* + ( 2EI

Δ 2 + κGA)ϕi

+
2ES *

Δ 2 ui
* +

κGA
2Δ vi+1 + −

EI
Δ 2 +

(EI )'

2Δ ϕi+1 + −
ES *

Δ 2 −
(ES *)'

2Δ ui+1
* =mzi

(53)

−
ES *

Δ 2 +
(ES *) '

2Δ ϕi−1 + −
E I *

Δ 2 +
(E I *)'

2Δ ui−1
* +

2ES *

Δ 2 ϕi + ( 2E I *

Δ 2 + κGF *)ui
*

+ −
ES *

Δ 2 −
(ES *)'

2Δ ϕi+1 + −
E I *

Δ 2 −
(E I *)'

2Δ ui+1
* =0

(54)

in which Δ =  the finite difference mesh; vi−1 , vi , vi+1 ,... represent displacements at the (i-1)th,

ith, and (i+1)th mesh points, respectively, as shown in Figure 4; and Pyi and mzi =  the lateral

load and moment, respectively, at the ith mesh point. In the above equations, the rigidities
κGA , EI  ,... at the pivotal mesh point i are taken as the mean value of the rigidities of cur‐
rent prototype tube structures located in the mesh region, in which the mesh region is de‐
fined as each half height between the mesh point i and the adjoin mesh points, i-1 and i+1,
namely from (xi + xi−1) / 2 to (xi + xi+1) / 2 , as shown in Figure 5. Hence, the stiffness k(i) at a

mesh point i is evaluated

k(i) =
ai1ki1 + ai2ki2 + ⋯ + ainkin

h (i)
(55)

in which ai1 , ai2 ,.., ain and ki1 , ki2 ,..., kin =  the effective story heights and story rigidities, lo‐

cated in the mesh region, respectively; and h (i) =  the current mesh region for the pivotal

mesh point i. The first mesh region in the vicinity of the base is defined as region from the
base to the mid-height between the mesh points 1 and 2.
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Now, the boundary conditions for a doubly-symmetric tube structure are assumed to be

fixed at the base and free, except for the shear-lag, at the top. The shear-lag at the top is con‐

sidered for two cases: free and constrained. Hence, from Eqs. (36) to (38)

0 at   0v x= = (56)

ϕ =0 at x =  0 (57)

* 0 at   0u x= = (58)

v ' + ϕ =0 at x =  L (59)

ES *u *' + EI ϕ ' =0 at x =  L (60)

EI * u*' + ESϕ ' =0 at x =  L ( Shear− lag is free.) (61a)

( )* 0 at    Shear lag is constraint. u x L= = - (61b)

Figure 4. Mesh point in finite difference method [6]
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Let us consider the finite difference expression for the boundary conditions (56) - (61). Since
tube structures are replaced with an equivalent cantilever in the one-dimensional extended
rod theory, the inner points for finite difference method take total numbers m as shown in
Figure 6, in which the mesh point m locates on the boundary point at x = L  .

Since the number of each boundary condition of the base and top for v , ϕ and u * is one,
respectively, the imaginary number of the boundary mesh in finite differences can be taken
one for each displacement component at each boundary.

Figure 5. Equivalent rigidity in finite difference method [6]

Figure 6. Inner points and imaginary point

The finite differences expressions for the boundary conditions (56)-(58) at the base (x=0) are

vbase =0 (62)

ϕbase =0 (63)

u*base =0 (64)

in which vbase , ϕbase , and ubase
*  represent quantities at the base.
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On the other hand, using central difference method, the finite difference expressions for the
boundary conditions (59), (60), and (61a), in case where the shear-lag is free at the top(x=L),
are expressed as

−vm−1 + vm+1
1

2Δ + ϕm =0 (65)

EI −ϕm−1 + ϕm+1
1

2Δ + ES * −um−1
* + um+1

* 1
2Δ =0 (66)

ES * −ϕm−1 + ϕm+1
1

2Δ + E I * −um−1
* + um+1

* 1
2Δ =0 (67)

in which the mesh point m locates on the boundary point at the free end of x = L  ; the mesh
point m + 1 is imaginary point adjoining the mesh point m ; and the mesh point m−1 is inner
point adjoining the mesh point m . Solving the above eqations for the variables vm+1 , ϕm+1 ,

um+1
*  at the imaginary point m + 1 , we have

vm+1 =vm−1−2Δ ⋅ϕm (68)

ϕm+1 =ϕm−1 (69)

um+1
* =um−1

* (70)

On the other hand, the finite difference expressions for boundary conditions (59), (60), and
(61b), in case where the shear-lag is constraint at the top, use the central diference for v and ϕ

but backward difference for u * , because um+1
*  is unsolvable in the use of the central difference.

−vm−1 + vm+1
1

2Δ + ϕm =0 (71)

EI −ϕm−1 + ϕm+1
1

2Δ + ES * −um−1
* + um

* 1
Δ =0 (72)

um
* =0 (73)

Solving the above eqations for the variables vm+1 , ϕm+1 , um
* , we have

vm+1 =vm−1−2Δ ⋅ϕm (74)
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ϕm+1 =ϕm−1 +
2ES *

EI um−1
* (75)

um
* =0 (76)

Static solutions are obtained by solving a system of linear, homogeneous, simultaneous alge‐
braic equation (77) with respect to unknown displacement components at the internal mesh
points. In finite difference method the equilibrium equations are formulated on each inner
point from 1 to m.

A v =P (77)

in which the matrix  A  is  the total  stiffness  matrix  summed the individual  stiffness  ma‐
trix at each mesh point. v and P are the total displacement vector and total external load
vector, respectively.

Figure 7 shows stencil of equilibrium equations at a general inner point i. Figure 8 shows
stencil of equilibrium equations at inner point 1 adjoining the base. Figure 9 shows stencil of
equilibrium equations at inner point i=m for the case that the shear-lag is free at the top.
Figure 10 shows stencil of equilibrium equations at inner point i=m for the case that the
shear-lag is constrained at the top.

3.2. Axial forces of columns

Let us consider the axial forces of columns. The axial stress σx of the tube structure is given
from Eq. (12) by

σx = E yϕ '(x, t) + φ *(z)u *'(x, t) (78)

Hence, the axial force N i in the ith column with the column’s sectional area Ai is

N i = E{yϕ 'Ai ± z −
z 3

3bz
2

z1

z2
tiu

*'} (79)

for columns in flange surfaces,

N i = E
1
2 (y2 + y1)Aiϕ

' (80)

for columns in web surfaces, and
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N i = E{yϕ 'Ai ± z −
z 3

3bz
2

z1

z2
tiu

*'} + E
1
2 (y2

2− y1
2)ϕ ' ti (81)

for corner columns, in which y1 , y1 and y1 , z2 =  lower and upper coordinate values of the
half between the ith column and both adjacent columns, respectively, and ti =  the cross-sec‐
tional area Ai of the ith column divided by the sum of half spans between the ith column and
the both adjacent columns.

Figure 7. Stencil of equilibrium equations at inner point i

Figure 8. Stencil of equilibrium equations at inner point 1
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Figure 9. Stencil of equilibrium equations at inner point i=m for the case that the shear-lag is free at the top

Figure 10. Stencil of equilibrium equations at inner point i=m for the case that the shear-lag is constrained at the top

4. Free transverse vibrations by finite difference method

Consider free transverse vibrations of the current doubly-symmetric tube structures by
means of the finite difference method. Now, v(x, t) , ϕ(x, t) , and u *(x, t) are expressed as
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v(x, t)= v̄(x, t)exp{iωt} (82)

ϕ(x, t)= ϕ̄(x, t)exp{iωt} (83)

u *(x, t)= ū*(x, t)exp{iωt} (84)

Substituting the above equations into the equations of motion for the free transverse vibra‐
tion obtained from Eqs. (32)-(39), the equations for free vibrations become

δv :ω 2mv̄ + κGA(v̄ ' + ϕ̄) ' =0 (85)

δϕ :ω 2ρI ϕ̄ + ω 2ρS *ū* + (EI ϕ̄)'−κGA(v̄ ' + ϕ̄) + (ES *ū*')' =0 (86)

δu * :ω 2ρS *ϕ̄ + ω 2ρI *ū* + (E I *ū*')' + (ES *ϕ̄ ')−κGF *ū* =0 (87)

The finite difference expressions of the above equations reduce to eigenvalue problem for v̄ ,
ϕ̄ , and ū* .

A−ω 2B v =0 (88)

Here the matrix A is the total stiffness matrix as given in Eq. (78). On the other hand, the
matrix B is total mass matrix which is the sum of individual mass matrix. The individual
mass matrix at the ith mesh point is given in Figure 11. The ith natural frequencies ωi can be
obtained from the ith eigenvalue.

Figure 11. Individual mass matrix at mesh point i
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5. Forced transverse vibrations by finite difference method

Forced lateral vibration of current tube structures may be obtained easily by means of modal
analysis for elastic behavior subject to earthquake motion. Applying the finite difference
method into Eq. (32), the equation of motion of current tube structures with distributed
properties may be changed to discreet structure with degrees of freedom three times the to‐
tal number of mesh points because each mesh point has three freedoms for the displacement
components. Hence, Eq. (32) for current tube structure, subjected to earthquake acceleration
v̈0 at the base may be written in the matrix form as

M {v̈} + cv {v̇}− (κGA(v ' + ϕ))' = − M {1}{v̈0} (89)

in which M =  mass matrix; cv =  the damping coefficient matrix; and {v̈} , {v̇} , and {v} are
the relative acceleration vector, the relative velocity vector and relative displacement vector,
respectively, measured from the base. {1}=  unit vector. It is assumed that the dynamic de‐
flection vector {v} and the rotational angle vector {ϕ} may be written as

{v}=∑
j=1

n
βj{v} jqj(t) (90)

{ϕ}=∑
j=1

n
βj{ϕ} jqj(t) (91)

in which βj =  the j-th participation coefficient; {v} j and {ϕ} j =  the j-th eigenfunctions for v
and ϕ , respectively; qj(t)=  the j-th dynamic response depending on time t  ; and n =  the total
number of degrees of freedom taken into consideration here. Substituting Eqs. (90) and (91)
into Eq. (89) and multiplying the reduced equation by {v}i

T  , we have

{v}i
T M {v}i βi q̈ i(t) + {v}i

T cv {v}i βi q̇ i(t)−

{v}i
T (κGA) {v}i

" qi + {v}i
T (κGA)' {v}i

' qi βi = − {v}i
T M {1} v̈0

(92)

Now, Eq. (86) may be rewritten as

ω 2 M {v}i − κGA({v}i
' + {ϕ}

i) ' =0 (93)

Multiplying the above equation by {v}i
T  and substituting the reduced equation into Eq. (93),

we have

{v}i
T M {v}iβiq̈ i(t) + {v}i

T c {v}iβiq̇ i(t) + βiω
2{v}i

T M {v}iqi = − {v}i
T M {1}v̈0 (94)
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Here, the damping coefficient matrix cv  and the participation coefficients βi are assumed to
satisfy the following expressions:

{v}i
T cv {vi}

{v}i
T M {vi}

=2h iωi (95)

βi =
{v}i

T M {1}
{v}i

T M {vi}
(96)

in which h i is the ith damping constant. Thus, Eq. (94) may be reduced to

q̈ i(t) + 2h iωiq̇ i(t) + ωi
2qi(t)= − v̈

0 (97)

The general solution of Eq. (98) is

qi(t)=exp(−h iωit)(C1sinωDit + C2cosωDit)− 1
ωDi

∫0
t
exp −h iωi(t −τ) sinωDi(t −τ)v̈0dτ (98)

in which ωDi =ωi 1−h i
2 and C1 and C2 are constants determined from the initial conditions.

The Duhamel integral in Eq. (98) may be calculated approximately by means of Paz [19] or
Takabatake [2].

6. Numerical results by finite difference method

6.1. Numerical models

Numerical models for examining the simplified analysis proposed here have are shown in
Figure 12. These numerical models are determined to find out the following effects: (1) the
effect of the aspect ratio of the outer and inner tubes; (2) the effect of omitting the corners;
and (3) the effect of bracing. Model T1 is a doubly symmetric single frame-tube prepared for
comparison with the numerical results of the doubly symmetric frame-double-tube. T7 and
T8 are made up steel reinforced concrete frame-tubes, and the other models are steel frame-
tubes. The total number of stories is 30. The difference between models T2 to T5 concerns
the number of story and span attached bracing. The members of the single and double tubes
are shown in Figures 13 and 14.

In the numerical computation, the following assumptions are made:

1. the static lateral force is a triangularly distributed load, as shown in Figures 13 and 14;
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2. the dynamic loads are taken from El Centro 1940 NS, Taft 1952 EW, and Hachinohe
1968 NS, in which each maximum acceleration is 200 m/s2;

3. the damping ratio for the first mode of the frame-tubes is h 1 =  0.02, and the higher
damping ratio for the n-th mode is h 1 =h 1ωn / ω1 ;

4. the weight of each floor is 9.807 kN/m-2 and the mass of the frame-tube is considered to
be only floor's weight;

5. in the modal analysis, the number of modes for the participation coefficients is taken
five into consideration as five.

Figure 12. Numerical models [6]
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Figure 13. Member of numerical models T1 and T5 [6]

Figure 14. Member of numerical models T7 and T8 [6]

6.2. Static numerical results

First, the static numerical results are stated. Tables 1 and 2 show the maximum values of the
static lateral displacements and shear-lags, calculated from the present theory, NASTRAN
and DEMOS, in which a discrepancy between results obtained from NASTRAN and DE‐
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MOS is negligible, in practice. The ratios are those of the values obtained from the present
theory to the corresponding values from the three-dimensional frame analysis using NAS‐
TRAN and DEMOS. The distributions of the static lateral displacements are shown in Figure
15. These numerical results show the simplified analysis is in good agreement, in practice,
with the results of three-dimensional frame analysis using NASTRAN and DEMOS. Since
the shear-lag is far smaller than the transverse deflections, as shown in Table 2 the discrep‐
ancy in shear-lag is negligible in practice.

Maximum static lateral deflection (m)

Model

(1)

Present theory

(2)

Frame analysis

(3)

Ratio(2)/(3)

(4)

T1 0.441 0.430 1.026

T2 0.327 0.343 0.953

T3 0.307 0.318 0.965

T4 0.299 0.319 0.937

T5 0.312 0.330 0.945

T6 0.329 0.311 1.058

T7 0.151 0.158 0.956

T8 0.157 0.166 0.946

Table 1. Maximum values of static lateral deflections [6]

Maximum shear-lag (m)

Model

(1)

Present theory

(2)

Frame analysis

(3)

Ratio(2)/(3)

(4)

T1 0.0145 0.0079 1.835

T2 0.0149 0.0085 1.753

T7 0.0090 0.0052 1.731

T8 0.0103 0.0028 3.679

Table 2. Maximum values of static shear-lags [6]

Figure 16 shows the distribution of axial forces of model T2. A discrepancy between the re‐
sults obtained from the proposed theory and those from three-dimensional frame analysis is
found. However, this discrepancy is within 10 % and is also allowable for practical use be‐
cause the axial forces in tube structures are designed from the axial forces on the flange sur‐
faces, being always larger than those on the web surfaces.
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Figure 15. Distribution of static lateral deflection [6]

Figure 16. Axial force [6]

Natural frequency (rad/s)

Model

(1)

Analytical

methods

(2)

First

(3)

Second

(4)

Third

(5)

Fourth

(6)

Fifth

(7)

T1

Present theory 1.998 6.077 10.942 15.759 20.397

Frame analysis 2.062 6.211 11.048 15.907 20.648

Ratio 0.969 0.978 0.990 0.991 0.988

T2 Present theory 2.080 6.255 11.150 15.977 20.614
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Natural frequency (rad/s)

Model

(1)

Analytical

methods

(2)

First

(3)

Second

(4)

Third

(5)

Fourth

(6)

Fifth

(7)

Frame analysis 2.058 6.223 11.076 16.020 20.826

Ratio 1.011 1.005 1.007 0.997 0.990

T3

Present theory 2.137 6.197 11.694 15.924 21.740

Frame analysis 2.138 6.290 11.687 16.198 22.062

Ratio 1.000 0.985 1.001 0.983 0.985

T4

Present theory 2.192 6.186 11.112 16.805 21.334

Frame analysis 2.152 6.296 11.224 16.813 21.756

Ratio 1.019 0.983 0.990 1.000 0.981

T5

Present theory 2.126 6.266 11.559 16.073 21.390

Frame analysis 2.100 6.260 11.464 16.136 21.636

Ratio 1.012 1.001 1.008 0.996 0.989

T6

Present theory 2.055 6.045 11.631 16.053 22.019

Frame analysis 2.147 6.369 11.848 16.662 22.610

Ratio 0.957 0.949 0.982 0.963 0.974

T7

Present theory 3.458 9.920 17.924 25.863 32.626

Frame analysis 3.462 10.037 17.983 26.246 34.675

Ratio 0.999 0.988 0.997 0.985 0.941

T8

Present theory 3.401 9.811 17.825 25.786 32.696

Frame analysis 3.382 9.856 17.729 26.028 34.561

Ratio 1.006 0.995 1.005 0.991 0.946

Table 3. Natural frequencies [6]. Note. Ratio = present theory/frame analysis

6.3. Free vibration results

Secondly, consider the natural frequencies. Table 3 shows the natural frequencies of the
above-mentioned numerical models. It follows that, in practical use, the simplified analysis
gives in excellent agreement with the results obtained from the three-dimensional frame
analysis using NASTRAN and DEMOS. Since the transverse stiffness of the bracing is far
larger than for frames, the transverse stiffness of current frame-tube with braces varies dis‐
continuously, particularly at the part attached to the bracing. However, such discontinuous
and local variation due to bracing can be expressed by the present theory.

6.4. Dynamic results

Thirdly, let us present dynamic results. The maximum values of dynamic deflections, story
shears, and overturning moments are shown in Tables 4-6, respectively. Figure 17 shows the
distribution of the maximum dynamic deflections and of the maximum story shear forces of
model T7 for El Centro 1949 NS. Figure 18 indicates the distribution of the absolute accelera‐
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tions and of the maximum overturning moments for model T7. Thus, the proposed approxi‐
mate theory is in good agreement with the results of the three-dimensional frame analysis
using NASTRAN and DEMOS in practice. These excellent agreements may be estimated
from participation functions as shown in Figure 19. The present one-dimensional extended
rod theory used the finite difference method can always express discontinuous and local be‐
havior caused by the part attached to the bracing.

Maximum dynamic lateral deflection (m)

Model

(1)

Earthquake

type

(2)

Present theory

(3)

Frame analysis

(4)

Ratio(3)/(4)

(5)

T1

El Centro NS 0.263 0.293 0.898

Hachinohe NS 0.453 0.411 1.102

Taft EW 0.213 0.208 1.024

T2

El Centro NS 0.311 0.291 1.069

Hachinohe NS 0.420 0.419 1.002

Taft EW 0.212 0.213 0.995

T3

El Centro NS 0.327 0.329 0.994

Hachinohe NS 0.460 0.465 0.989

Taft EW 0.205 0.206 0.995

T4

El Centro NS 0.318 0.324 0.981

Hachinohe NS 0.515 0.469 1.098

Taft EW 0.196 0.201 0.975

T5

El Centro NS 0.327 0.315 1.038

Hachinohe NS 0.454 0.429 1.058

Taft EW 0.207 0.212 0.976

T6

El Centro NS 0.297 0.321 0.925

Hachinohe NS 0.424 0.437 0.970

Taft EW 0.211 0.207 1.019

T7

El Centro NS 0.155 0.150 1.033

Hachinohe NS 0.202 0.195 1.036

Taft EW 0.221 0.215 1.028

T8

El Centro NS 0.158 0.154 1.026

Hachinohe NS 0.232 0.235 0.987

Taft EW 0.219 0.210 1.043

Table 4. Maximum dynamic lateral deflections [6]

The above-mentioned numerical computations are obtained from that the total number of
mesh points, including the top, is 60. Figure 20 shows the convergence characteristics of the
static and dynamic responses for model T7, due to the number of mesh points. The conver‐
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gence is obtained by the number of mesh points, being equal to the number of stories of the

tube structures.

Maximum story shear (kN)

Model

(1)

Earthquake

type

(2)

Present theory

(3)

Frame analysis

(4)

Ratio(3)/(4)

(5)

T1

El Centro NS 5482 6659 0.823

Hachinohe NS 12494 10003 1.249

Taft EW 4972 4835 1.028

T2

El Centro NS 11464 11082 1.035

Hachinohe NS 17260 17309 0.997

Taft EW 8414 8071 1.043

T3

El Centro NS 12239 11768 1.040

Hachinohe NS 18937 19378 0.977

Taft EW 9248 9012 1.026

T4

El Centro NS 14749 12258 1.203

Hachinohe NS 27498 21084 1.304

Taft EW 9316 9307 1.001

T5

El Centro NS 11484 11180 1.027

Hachinohe NS 18172 17515 1.038

Taft EW 8865 8659 1.024

T6

El Centro NS 11562 12160 0.951

Hachinohe NS 17632 20270 0.870

Taft EW 9807 9150 1.072

T7

El Centro NS 38746 37167 1.042

Hachinohe NS 56153 53642 1.047

Taft EW 56731 54819 1.035

T8

El Centro NS 41306 40109 1.030

Hachinohe NS 59595 57957 1.028

Taft EW 49004 44718 1.096

Table 5. Maximum story shears [6]

Maximum overturning moment (MN m)

Model

(1)

Earthquake type

(2)

Present theory

(3)

Frame analysis

(4)

Ratio(3)/(4)

(5)

T1

El Centro NS 3.233 3.991 0.810

Hachinohe NS 6.099 5.599 1.089

Taft EW 2.731 2.863 0.954
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Maximum overturning moment (MN m)

Model

(1)

Earthquake type

(2)

Present theory

(3)

Frame analysis

(4)

Ratio(3)/(4)

(5)

T2

El Centro NS 7.118 6.531 1.090

Hachinohe NS 9.829 9.413 1.044

Taft EW 4.928 4.849 1.016

T3

El Centro NS 8.090 7.972 1.015

Hachinohe NS 11.277 11.122 1.014

Taft EW 5.129 5.070 1.012

T4

El Centro NS 8.140 7.727 1.053

Hachinohe NS 13.827 10.983 1.259

Taft EW 4.984 5.021 0.993

T5

El Centro NS 7.879 7.315 1.077

Hachinohe NS 10.778 10.250 1.052

Taft EW 5.053 5.007 1.009

T6

El Centro NS 6.566 8.070 0.814

Hachinohe NS 9.593 11.431 0.839

Taft EW 4.968 5.091 0.976

T7

El Centro NS 22.148 21.574 1.027

Hachinohe NS 29.914 28.929 1.034

Taft EW 32.186 31.675 1.016

T8

El Centro NS 21.662 21.659 1.000

Hachinohe NS 32.693 33.462 0.977

Taft EW 28.779 28.246 1.019

Table 6. Maximum overturning moments [6]

Figure 17. Distribution of dynamic lateral deflection and story shear force [6]
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Figure 18. Distribution of absolute acceleration and overturning moment [6]

Figure 19. Participation functions [6]
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Figure 20. Convergence characteristics [6]

7. Natural frequencies by approximate method

7.1. Simplification of governing equation

In the structural design of high-rise buildings, structure designers want to grasp simply the
natural frequencies in the preliminary design stages. Takabatake [3] presented a general and
simple analytical method for natural frequencies to meet the above demands. This section
explains about this simple but accurate analytical method.

The one-dimensional extended rod theory for the transverse motion takes the coupled equa‐
tions concerning v , ϕ , and u *  , as given in Eqs. (32) to (34). Now consider the equation of
motion expressed in terms with the lateral deflection. Neglecting the differential term of the
transverse shear stiffness, κGA , in Eq. (32), the differential of rotational angle with respect
to x may be written as

ϕ = −v '' +
1

κGA (−Py + ρAv̈ + cvv̇) (99)

From (33) and (34), u *  becomes

u * =
1

κGF *
I *
S * ρÎ ϕ̈ −E Î ϕ ″ + κGA(v ′ + ϕ) (100)
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in which Î  is defined as

Î = I 1−
(S * )2

I I *
(101)

Differentiating Eq. (33) with respect to x and substituting Eqs. (32), (99), and (100) into the
result, the equation of motion expressed in terms with the transverse deflection may be writ‐
ten as

EI v ‴′ + ρAv̈ + cvv̇ −Py −ρI v̈″−
EI

κGA (−P ″
y + ρAv̈″ + cvv̇″)− EI *

κGF * (−P ″
y

+ ρAv̈″ + cvv̇″)
+( ρI

κGA +
ρI *

κGF * )(−Py + ρAv̈ + cvv̇)⋅⋅ +
ρI *

κGF * E Î v̈″″−
ρI *

κGF *
E Î

κGA (−P ″
y + ρAv̈″ + cvv̇″)⋅⋅″

+
ρI *

κGF *
ρÎ

κGA (−Py + ρAv̈ + cvv̇)⋅⋅⋅− ρI *
κGF * ρÎ v ″

⋅⋅⋅⋅

+
EI *

κGF * ρÎ v̈″″

−
EI *

κGF *
ρÎ

κGA (−Py + ρAv̈ + cvv̇)

−
EI *

κGF * E Î v ‴‴ +
EI *

κGF *
E Î

κGA (−Py + ρAv̈ + cvv̇)'''' =0

(102)

Eq. (102) is a sixth-order partial differential equation with variable coefficients with respect
to x . In order to simplify the future development, considering only bending, transverse
shear deformation, shear lag, inertia, and rotatory inertia terms in Eq. (102), a simplified
governing equation is given

EI v ″″ + ρAv̈ + cvv̇ −Py −ρI v̈″−
EI

κGA (1 +
κGAI *
I κGF *
_

)(−P ″
y + ρAv̈″ + cvv̇″)=0 (103)

The equation neglecting the underlined term in Eq. (103) reduces to the equation of motion
of Timoshenko beam theory, for example, Eq. (9.49) Craig [20]. Since Eq. (103) is very simple
equation, the free transverse vibration analysis is developed by means of Eq. (103). To sim‐
plify the future expression, the following notation is introduced

( ) 1
*1

*

GA GA GA I
G F I

k = k
k

+
k

(104)

Hence, Eq. (104) may be rewritten
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( ) ( ) 0v y y v
EIEI v Av c v P I v P Av c v
GA

¢¢¢¢ ¢¢ ¢¢ ¢¢ ¢¢+ r + - -r - - +r + =
k

&& & && && & (105)

The aforementioned equation suggests that in the simplified equation the transverse shear

stiffness κGA must be replaced with the modified transverse shear stiffness .

7.2. Undamped free transverse vibrations

Let us consider undamped free transverse vibration of high-rise buildings. The equation for

undamped free transverse vibrations is written from Eq. (105) as

( )
0A I EI Av v v

E I A E IGA

é ùr r r¢¢¢¢ ¢¢ê ú- + + =
r kê úë û

&& && (106)

Using the separation method of variables, v(x, t) is expressed as

(107)

Substituting the above equation into Eq. (106), the equation for free vibrations becomes

(108)

in which the coefficients, b and c , are defined as

( )
24

2
0

1
ˆ

k L
b

L
æ ö

= ç ÷ç ÷lè ø
(109)

c = −k 4 (110)

in which k 4 and λ̂0 are defined as

k 4 =
ρA
EI ω 2 (111)
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2 2 2

*
0 00

1 1 1
ˆ

æ ö æ ö æ ö
= +ç ÷ ç ÷ ç ÷ç ÷ l ll è ø è øè ø

(112)

in which λ0
* and λ0 are defined as

λ0
* = L

ρA
ρI

(113)

( )
0

G A
L

E I

k
l = (114)

λ0
* and λ0 are pseudo slenderness ratios of the tube structures, depending on the bending

stiffness and the transverse shear stiffness, respectively. Since for a variable tube structure
the coefficients, b and c , are variable with respect to x , it is difficult to solve analytically Eq.
(108). So, first we consider a uniform tube structure where these coefficients become con‐
stant. The solution for a variable tube structure will be presented by means of the Galerkin
method.

Thus, since for a uniform tube structure Eq. (108) becomes a fourth-order differential equa‐
tion with constant coefficients, the general solution is

(115)

in which C1 to C4 are integral constants and λ1 and λ2 are defined as

( )2
*

1 1

kL
L

l = a (116)

( )2
*

2 2

kL
L

l = a (117)

in which α1
* and α2

* are

*
1

0

1 1
ˆ 2

+a
a =

l
(118)
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*
2

0

1 1
ˆ 2

- +a
a =

l
(119)

in which

( )
4

4

0

41
1
ˆkL

a = +
æ ö
ç ÷
lè ø

(120)

Meanwhile, ϕ ' for the free transverse vibration is from Eq. (99)

( )
Av v
GA
r¢ ¢¢f = - +
k

&& (121)

in which κGA is replaced with . The substitution of Eqs. (108) and (111) into the afore‐
mentioned equation yields

(122)

The integration of the aforementioned equation becomes

( ) ( ) ( ) ( )4, i tEIx t x k x dx e
GA

w
é ù

¢ê úf = - F + F
kê úë û

ò (123)

The boundary conditions for the current tube structures are assumed to be constrained for
all deformations at the base and free for bending moment, transverse shear and shear-lag at
the top. Hence the boundary conditions are rewritten from Eqs. (35) to (38) as

0 at 0v x= = (124)

ϕ =0 at x =0 (125)

* 0 at 0u x= = (126)
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v ′ + ϕ =0 at x = L (127)

E S * u*′ + E I ϕ ′ =0 at x = L (128)

EI * u*′ + ES * ϕ ′ =0 at x = L (129)

Eqs. (128) and (129) reduce to

ϕ ′ =0 at x = L (130a)

* 0 atu x L¢ = = (130b)

Hence the boundary conditions for current problem become as Eqs. (124), (125), (127), and

(130a). Using Eq. (107), these boundary conditions are rewritten as

0 at 0xF = = (131)

( ) ( ) ( )4 0 at 0EIx k x dx x
GA

¢F + F = =
k ò (132)

( ) 0 atx dx x LF = =ò (133)

( ) ( ) ( )4 0 atEIx k x x L
GA

¢¢F + F = =
k (134)

Substituting Eq. (115) into the aforementioned boundary conditions, the equation determin‐

ing  a  nondimensional  constant  (knL)2  corresponding  to  the  nth  natural  frequency  is  ob‐

tained as

(α1
*)2−

1
λ0

2 (k̄ 2cosλ1L − k̄ 1sinλ1L ) + (α2
*)2 +

1
λ0

2 (sinhλ2L + k̄ 2coshλ2L )=0 (135)

in which k̄ 1 and k̄ 2 are defined as
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k̄ 1 = −
α2

* +
1

α2
*λ0

2

α1
* +

1
α1

*λ0
2

(136)

k̄ 2 = −
−

k̄ 1

α1
* cosλ1L +

1
α2

* cosh λ2L

−
1

α1
* sinλ1L +

1
α2

* sinh λ2L
(137)

The value of (knL)2 is determined from Eq. (135) as follows:

STEP 1. From Eqs. (113) and (114), determine λ0
* and λ0 .

STEP 2. From Eq. (112), determine λ̂0 .

STEP 3. Assume the value of (knL)2.

STEP 4. From Eq. (120), determine α .

STEP 5. From Eqs. (116) to (119), determine λ1 , λ2 , α1
* and α2

* , respectively.

STEP 6. From Eqs. (136) and (137), calculate k̄ 1 and k̄ 2 .

STEP 7. Substitute these vales into Eq. (135) and find out the value of (knL)2 satisfying Eq.
(135) with trial and error.

Hence, the value of (knL)2 depends on the slenderness ratios, λ0
* and λ0 , of the uniform tube

structure. So, for practical uses, the value of (knL)2 for the given values λ0
* and λ0 can be pre‐

sented previously as shown in Figure 21. Numerical results show that the values of (knL)2

depend mainly on λ0 and are negligible for the variation of λ0
* . When λ0 increases, the value

of (knL)2 approaches the value of the well-known Bernoulli-Euler beam. The practical tube
structures take a value in the region from λ0 =  0.1 to λ0 =  5.

Thus, substituting the value of (knL)2 into Eq. (111), the nth natural frequency, ωn , of the
tube structure is

( )2

2
n

n

k L EI
L A

w =
r

(138)

Using Figure 21, the structural engineers may easily obtain from the first to tenth natural
frequencies and also grasp the relationships among these natural frequencies.

The nth natural function,  , corresponding to the nth natural frequency is

Advances in Vibration Engineering and Structural Dynamics270



(139)

Now, neglecting the effect of the shear lag, the solutions proposed here agree with the re‐
sults for a uniform Timoshenko beam presented by Herrmann [21] and Young [22].

7.3. Natural frequency of variable tube structures

The natural frequency of a uniform tube structure has been proposed in closed form. For a
variable tube structure the proposed results give the approximate natural frequency by re‐
placing the variable tube structure with a pseudo uniform tube structure having an appro‐
priate reference stiffness.

Figure 21. Values of (knL )2 [3]

On the other hand, the natural frequency for a variable tube structure is presented by means
of the Galerkin method. So, Eq. (108) may be rewritten as
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(140)

 is expressed by a power series expansion as follows

(141)

in which cn =  unknown coefficients; and (x) = functions satisfying the specified boundary

conditions of the variable tube structure. Approximately, (x) take the natural function of
the pseudo uniform tube structure, as given in Eq. (139). Applying Eq. (141) into Eq. (140),
the Galerkin equations of Eq. (140) become

δcm :∑
n=1

∞
cn(Amn −ω 2Bmn)=0 (142)

in which the coefficients, Amn and B
mn

 , are defined as

(143)

(144)

Hence, the natural frequency of the variable tube structure is obtained from solving eigen‐
value problem of Eq. (142).

7.4. Numerical results for natural frequencies

The natural frequencies for doubly symmetric uniform and variable tube structures have
been presented by means of the analytical and Galerkin methods, respectively. In order to
examine the natural frequencies proposed here, numerical computations were carried out
for a doubly symmetric steel frame tube, as shown in Figure 22. This frame tube equals to
the tube structure used in the static numerical example in the Section 6, except for with or
without bracing at 15 and 16 stories. The data used are as follows: the total story is 30; each
story height is 3 m; the total height, L  , is 90 m; the base is rigid; Young’s modulus E  of the
material used is 2.05 x 1011 N/m2. The weight per story is 9.8 kN/m2 x 18 m x 18 m = 3214 kN.
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The cross sections of columns and beams in the variable frame tube shown in Figure 22 vary
in three steps along the height. On the other hand, the uniform frame tube is assumed to be
the stiffness at the midheight (L/2) of the variable tube structure.

Table 7 shows the natural frequencies of the uniform and variable frame tubes, in which the
approximate solution for the variable frame tube indicates the value obtained from replac‐
ing the variable frame tube with a pseudo uniform frame tube having the stiffnesses at the
lowest story. The results obtained from the proposed method show excellent agreement
with the three-dimensional frame analysis using FEM code NASTRAN. The approximate
solution for the variable frame tube is also applicable to determine approximately the natu‐
ral frequencies in the preliminary stages of the design.

Figure 22. Numerical model of frame tube [3]
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NATURAL FREQUENCIES (rad/s)

UNIFORM FRAME TUBE VARIABLE FRAME TUBE

Mode

(1)

Analytical solution

(2)

Frame

theory

(3)

Approximate

solution

(4)

Galerkin

method

(5)

Frame theory

(6)

First

Second

Third

Fourth

Fifth

1.956

5.907

10.458

14.708

19.053

2.011

6.196

11.121

15.822

20.672

2.059

6.218

10.994

15.460

20.024

1.906

6.203

11.056

15.341

20.002

2.044

6.141

10.908

15.683

20.359

Table 7. Natural frequencies of uniform and variable frame tubes [3]

8. Expansion of one-dimensional extended rod theory

In order to carry out approximate analysis for a large scale complicated structure such as a
high-rise building in the preliminary design stages, the use of equivalent rod theory is very
effective. Rutenberg [10], Smith and Coull [23], Tarjan and Kollar [24] presented approxi‐
mate calculations based on the continuum method, in which the building structure stiffened
by an arbitrary combination of lateral load-resisting subsystems, such as shear walls, frames,
coupled shear walls, and cores, are replaced by a continuum beam. Georgoussis [25] pro‐
posed to asses frequencies of common structural bents including the effect of axial deforma‐
tion in the column members for symmetrical buildings by means of a simple shear-flexure
model based on the continuum approach. Tarian and Kollar [24] presented the stiffnesses of
the replacement sandwich beam of the stiffening system of building structures.

Takabatake et al. [2-6, 26-28] developed a simple but accurate one-dimensional extended rod
theory which takes account of longitudinal, bending, and transverse shear deformation, as
well as shear-lag. In the preceding sections the effectiveness of this theory has been demon‐
strated by comparison with the numerical results obtained from a frame analysis on the basis
of FEM code NASTRAN for various high-rise buildings, tube structures and mega structures.

The equivalent one-dimensional extended rod theory replaces the original structure by a
model of one-dimensional rod with an equivalent stiffness distribution, appropriate with re‐
gard to the global behavior. Difficulty arises in this modeling due to the restricted number
of freedom of the equivalent rod; local properties of each structural member cannot always
be properly represented, which leads to significant discrepancy in some cases. The one-di‐
mensional idealization is able to deal only with the distribution of stiffness and mass in the
longitudinal direction, possibly with an account of the averaged effects of transverse stiff‐
ness variation. In common practice, however, structures are composed of a variety of mem‐
bers or structural parts, often including distinct constituents such as a frame-wall or coupled
wall with opening. Overall behavior of such a structure is significantly affected by the local
distribution of stiffness. In addition, the individual behavior of each structural member
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plays an important role from the standpoint of structural design. So, Takabatake [29, 30]
propose two-dimensional extended rod theory as an extension of the one-dimensional ex‐
tended rod theory to take into account of the effect of transverse variations in individual
member stiffness.

Figure 23 illustrates  the difference between the one-  and two-dimensional  extended rod
theories in evaluating the local stiffness distribution of structural components. In the two-
dimensional approximation, structural components with different stiffness and mass distri‐
bution are continuously connected. On the basis of linear elasticity, governing equations are
derived from Hamilton’s principle. Use is made of a displacement function which satisfies
continuity conditions across the boundary surfaces between the structural components.

Figure 23. The difference between one- and two-dimensional rod theories [29]

Two-dimensional extended rod theory has been presented for simply analyzing a large or
complicated structure such as a high-rise building or shear wall with opening. The principle
of this theory is that the original structure comprising various different structural compo‐
nents is replaced by an assembly of continuous strata which has stiffness equivalent to the
original structure in terms of overall behavior. The two-dimensional extended rod theory is
an extended version of a previously proposed one-dimensional extended rod theory for bet‐
ter approximation of the structural behavior. The efficiency of this theory has been demon‐
strated from numerical results for exemplified building structures of distinct components.
This theory may be applicable to soil-structure interaction problems involving the effect of
multi-layered or non-uniform grounds.

On the other hand, the exterior of tall buildings has frequently the shape with many setback
parts. On such a building the local variation of stress is considered to be very remarkable
due the existence of setback. This nonlinear phenomenon of stress distribution may be ex‐
plained by two-dimensional extended rod theory but not by one-dimensional extended rod
theory. In order to treat exactly the local stress variation due to setback, the proper boun‐
dary condition in the two-dimensional extended rod theory must separate into two parts.
One part is the mechanical boundary condition corresponding to the setback part and the
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other is the continuous condition corresponding to longitudinally adjoining constituents.
Thus, Takabatake et al. [30] proved the efficiency of the two-dimensional extended rod theo‐
ry to the general structures with setbacks.

Two-dimensional extended rod theory has been presented for simply analyzing a large or
complicated structure with setback in which the stiffness and mass due to the existence of
setback vary rapidly in the longitudinal and transverse directions. The effectiveness of this
theory has been demonstrated from numerical results for exemplified numerical models.
The transverse-wise distribution of longitudinal stress for structures with setbacks has been
clarified to behave remarkable nonlinear behavior. Since the structural form of high-rise
buildings with setbacks is frequently adapted in the world, the incensement of stress distri‐
bution occurred locally due to setback is very important for structural designers. The
present theory may estimate such nonlinear stress behaviors in the preliminary design
stages. The further development of the present theory will be necessary to extend to the
three-dimensional extended rod theory which is applicable to a complicated building with
three dimensional behaviors due to the eccentric station of many earthquake-resistant struc‐
tural members, such as shear walls with opening.

9. Current problem of existing high-rise buildings

High-rise buildings have relative long natural period from the structural form. This charac‐
teristic is considered to be the most effective to avoid structural damages due to earthquake
actions. However, when high-rise buildings subject to the action of the earthquake wave in‐
cluded the excellent long period components, a serious problem which the lateral deflection
is remarkably large is produced in Japan. This phenomenon is based on resonance between
the long period of high-rise buildings and the excellent long period of earthquake wave.

The 2011 Tohoku Earthquake (M 9.0) occurred many earthquake waves, which long period
components are distinguished, on everywhere in Japan. These earthquake waves occur
many physical and mental damages to structures and people living in high-rise buildings.
The damage occurs high-rise buildings existing on all parts of Japan which appears long dis‐
tance from the source. People entertain remarkable doubt about the ability to withstand
earthquakes of high-rise buildings. This distrust is an urgent problem to people living and
working in high-rise buildings. Existing high-rise buildings are necessary to improve ur‐
gently earthquake resistance. This section presents about an urgency problem which many
existing high-rise buildings face a technical difficulty.

Let us consider dynamic behavior for one plane-frame of a high-rise building, as shown in
Figure 24.
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Figure 24. Numerical model

Figure 25. Time histories of acceleration (a) EL-Centro 1940 NS, (b) JMA Kobe 1995 NS, (c) Shinjuku 2011 NS, and (d)
Urayasu 2011 NS
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This plane frame is composed of uniform structural members. The sizes of columns and
beams are □-800 x 800 x 25 (BCP) and H-400 x 300 x 11 x 18 (SN400B), respectively. The iner‐
tia moment of beams takes twice due to take into account of slab stiffness. This plane frame
is a part of a three-dimensional frame structure with the span 6 m between adjacent plane-
frames. The width and height are 36 m and 120 m, respectively. The main data used in nu‐
merical calculations are given in Table 8. Four kinds of earthquake waves are given in Table
9. El-Centro 1940 NS is converted the velocity to 0.5 m/s; JMA Kobe 1995 NS is the original
wave with the maximum velocity 0.965 m/s; Shinjuku 2011 NS is the original wave with the
maximum velocity 0.253 m/s; and Urayasu 2011 NS is the original wave with the maximum
velocity 0.317 m/s. Figures 25(a) to 25(d) indicate time histories of accelerations for the four
earthquake waves. In these earthquake waves, Shinjuku 2011 NS and Urayasu 2011 NS are
obtained from K-net system measured at the 2011 Tohoku Earthquake. These earthquake
waves are considered as earthquake waves included the excellent long periods. The excel‐
lent periods obtained from the Fourier spectrum of Shinjuku 2011 NS and Urayasu 2011 NS
earthquake waves are 1.706 s and 1.342 s, respectively. The maximum acceleration and max‐
imum velocity of these earthquake waves are shown in Table 9.

Structure shape
Width: @6 m x 6 = 36 m

Height: @4 m x 30 floors = 120 m

Weight per floor (kN/m2) 12

Young modulus E (N/m2) 2.06 x 1011

Shear modulus G (N/m2) 7.92 x 1010

Mass density ρ (N/m3) 7850

Damping constant 0.02

Poisson ratio 0.3

Table 8. Main data for numerical model

Figure 26(a) shows the dynamic maximum lateral displacement subjected to the four kinds of
earthquake waves. The maximum dynamic lateral displacement subject to Urayasu 2011 NS
is remarkable larger than in the other earthquake waves. Figures 26(b) and (c) indicate the
maximum shear force and overturning moment of the plane high-rise building subject to these
earthquake actions, respectively. Earthquake wave Urayasu 2011 NS which includes long
period components influence remarkable dynamic responses on the current high-rise building.

Earthquake Wave

Maximum Acceleration

m/s2

Maximum Velocity

m/s

EL-CENTRO 1940 NS

JMA KOBE 1995 NS

SHINJUKU 2011 NS

URAYASU 2011 NS

5.11

8.18

1.92

1.25

0.500

0.965

0.253

0.317

Table 9. Maximum acceleration and maximum velocity of each earthquake wave
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It is very difficult to sort out this problem. If the existing structure stiffens the transverse shear
rigidity of overall or selected stories, the dynamic responses produced by the earthquake wave
included excellently long period decrease within initial design criteria for dynamic calcula‐
tions. However, inversely the dynamic responses produced by both EL-Centro 1940 NS with
the maximum velocity 0.5 m/s and JMA Kobe 1995 NS exceed largely over the initial design
criteria. The original design is based on flexibility which is the most characteristic of high-
rise buildings. This flexibility brings an effect which lowers dynamic responses produced by
earthquake actions excluding long period components. Now, changing the structural stiff‐
ness from relatively soft to hard, this effect is lost and the safety of the high-rise building
becomes dangerous for earthquake waves excluding the long period components.

Figure 26. Distribution of dynamic responses (a) dynamic lateral deflection, (b) story shear force, and (c) overturn‐

ing moment

Author has not in this stage a clear answer to this problem. This problem includes two situa‐
tions. The first point is to find out the appropriate distribution of the transverse stiffness.
The variation of the transverse stiffness is considered to stiffen or soften. In general, existing
high-rise buildings are easily stiffening then softening. However, there is a strong probabili‐
ty that the stiffening of the transverse shear stiffness exceeds the allowable limit for the lat‐
eral deflection, story shear force, and overturning moment in the dynamic response
subjected to earthquake waves used in original structural design. Therefore, the softening of
the transverse shear stiffness used column isolation for all columns located on one or more
selected story is considered to be effective. It is clarified from author’s numerical computa‐
tions that the isolated location is the most effective at the midheight. The second point is to
find out an effective seismic retrofitting to existing high-rise buildings without the move‐
ment of people living and working in the high-rise building. These are necessary to propose
urgently these measures for seismic retrofitting of existing high-rise buildings subject to
earthquake waves included excellently long wave period. This subject will be progress to
ensure comfortable life in high-rise buildings by many researchers.

A Simplified Analytical Method for High-Rise Buildings
http://dx.doi.org/10.5772/51158

279



10. Conclusions

A simple but accurate analytical theory for doubly symmetric frame-tube structures has
been presented by applying ordinary finite difference method to the governing equations
proposed by the one-dimensional extended rod theory. From the numerical results, the
present theory has been clarified to be usable in the preliminary design stages of the static
and dynamic analyses for a doubly symmetric single or double frame-tube with braces, in
practical use. Furthermore, it will be applicable to hyper high-rise buildings, e.g. over 600m
in the total height, because the calculation is very simple and very fast. Next the approxi‐
mate method for natural frequencies of high-rise buildings is presented in the closed-form
solutions. This method is very simple and effective in the preliminary design stages. Fur‐
thermore, the two-dimensional extended rod theory is introduced as for the expansion of
the one-dimensional extended rod theory. Last it is stated to be urgently necessary seismic
retrofitting for existing high-rise buildings subject to earthquake wave included relatively
long period.

Author details

Hideo Takabatake*

Address all correspondence to: hideo@neptune.kanazawa-it.ac.jp

Department of Architecture, Kanazawa Institute of Technology, Institute of Disaster and En‐
vironmental Science, Japan

References

[1] Reissner, E. (1946). Analysis of shear lag in box beams by the principle of minimum
potential energy. Quarterly of Applied Mathematics, 4(3), 268-278.

[2] Takabatake, H., Mukai, H., & Hirano, T. (1993). Doubly symmetric tube structures- I:
Static analysis. Journal of Structural Engineering ASCE, 119(7), 1981-2001.

[3] Takabatake, H., Mukai, H., & Hirano, T. (1993). Doubly symmetric tube structures- II:
Static analysis. Journal of Structural Engineering ASCE, 119(7), 2002-2016.

[4] Takabatake, H., Mukai, H., & Hirano, T. (1996). Erratum for “Doubly symmetric tube
structures- I: Static analysis. Journal of Structural Engineering ASCE, 122(2), 225.

[5] Takabatake, H., Takesako, R., & Kobayashi, M. (1995). A simplified analysis of dou‐
bly symmetric tube structures. The Structural Design of Tall Buildings, 4(2), 137-153.

[6] Takabatake, H. (1996). A simplified analysis of doubly symmetric tube structures by
the finite difference method. The Structural Design of Tall Buildings, 5(2), 111-128.

Advances in Vibration Engineering and Structural Dynamics280



[7] Beck, H. (1962). Contribution to the analysis of coupled shear walls. Journal of the
American Concrete Institute, 59(8), 1055-1069.

[8] Heidenbrech, A. C., & Smith, B. S. (1973). Approximate analyses of tall wall-frame
structures. Journal of the Structural Division ASCE, 99(2), 199-221.

[9] Tso, W. K., & Chan, H. (1971). Dynamic analysis of plane coupled shear walls. Journal
of Engineering Mechanics Division ASCE, 97(1), 33-48.

[10] Rutenberg, A. (1975). Approximate natural frequencies for coupled shear walls.
Earthquake Engineering and Structural Dynamics, 4(1), 95-100.

[11] Rutenberg, A. (1977). Dynamic properties of asymmetric wall-frame structures.
Earthquake Engineering and Structural Dynamics, 5(1), 41-51.

[12] Danay, A., Gluck, J., & Geller, M. (1975). A generalized continuum method for dy‐
namic analysis of asymmetric tall buildings. Earthquake Engineering and Structural Dy‐
namics, 4(2), 179-203.

[13] Bause, A. K., Nagpal, A. K., Bajaj, R. S., & Guiliani, A. K. (1979). Dynamic characteris‐
tics of coupled shear walls. Journal of the Structural Division ASCE, 105(8), 1637-1652.

[14] Cheung, Y. K., & Swaddiwudhipong, S. (1979). Free vibration of frame shear wall
structures on flexible foundations. Earthquake Engineering and Structural Dynamics,
7(4), 355-367.

[15] Coull, A., & Smith, B. S. (1973). Torsional analyses of symmetric structures. Journal of
the Structural Division ASCE, 99(1), 229-233.

[16] Coull, A., & Bose, B. (1975). Simplified analysis of frame-tube structures. Journal of the
Structural Division ASCE, 101(11), 2223-2240.

[17] Smith, B. S., Kuster, M., & Hoenderkamp, J. C. D. (1984). Generalized method for es‐
timating drift in high-rise structures. Journal of Structural Engineering ASCE, 110(7),
1549-1562.

[18] Smith, B. S., & Crowe, E. (1986). Estimating periods of vibration of tall buildings.
Journal of Structural Engineering ASCE, 112(5), 1005-1019.

[19] Paz, M. (2006). Structural Dynamics. , 3rd Edn. Van Nostrand Reinhold New York.,
74-75.

[20] Craig, R. R. (1981). Structural dynamics. John Wiley and Sons, New York.

[21] Herrmann, G. (1955). Forced motions of Timoshenko beams. J. Appl. Mech. Trans.
ASME, 22(2), 53-56.

[22] Young, D. (1962). Continuos systems: Handbook of engineering mechanics. , W.
Flügge, ed., McGraw-Hill. New York, N.Y. , 1-34.

[23] Smith, B. S., & Coull, A. (1991). Tall building structures: analysis and design:. John
Willy & Sons, New York.

A Simplified Analytical Method for High-Rise Buildings
http://dx.doi.org/10.5772/51158

281



[24] Tarjian, G., & Kollar, L. P. (2004). Approximate analysis of building structures with

identical stories subjected to earthquake. International Journal of Solids and Structures,

41(5), 1411-1433.

[25] Georgoussis, G. K. (2006). A simple model for assessing periods of vibration and mo‐

dal response quantities in symmetrical buildings. The Structural Design of Tall and Spe‐

cial Buildings, 15(2), 139-151.

[26] Takabatake, H., & Nonaka, T. (2001). Numerical study of Ashiyahama residential

building damage in the Kobe Earthquake. Earthquake Engineering and Structural Dy‐

namics, 30(6), 879-897.

[27] Takabatake, H., Nonaka, T., & Tanaki, T. (2005). Numerical study of fracture propa‐

gating through column and brace of Ashiyahama residential building in Kobe Earth‐

quake. The Structural Design of Tall and Special Buildings, 14(2), 91-105.

[28] Takabatake, H., & Satoh, T. (2006). A simplified analysis and vibration control to su‐

per-high-rise buildings. The Structural Design of Tall and Special Buildings, 15(4),

363-390.

[29] Takabatake, H. (2010). Two-dimensional rod theory for approximate analysis of

building structures. Earthquakes and Structures, 1(1), 1-19.

[30] Takabatake, H., Ikarashi, F., & Matsuoka, M. (2011). A simplified analysis of super

building structures with setback. Earthquakes and Structures, 2(1), 43-64.

Advances in Vibration Engineering and Structural Dynamics282


