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1. Introduction 

The main theoretical goal of the present exposé is to extend the results presented in 

Hürlimann [1] to the Markov chain model of life insurance, which enables modeling all 

single life/multiple life traditional contracts subject to biometric risk with multiple causes of 

decrement. In particular, a complete risk modeling of single-life insurance products with 

mortality and disability risks requires the specification of a Markov model with three states. 

As novel illustration we offer to the interested practitioner an in-depth treatment of 

endowment contracts with waiver of premium by disability. 

The present investigation is restricted to biometric risks encountered in traditional insurance 

contracts within a discrete time Markov chain model. The current standard requirements for 

the Solvency II life risk module have been specified in QIS5 [2], pp.147-163. QIS5 prescribes 

a solvency capital requirement (SCR), which only depends on the time of valuation (=time at 

which solvency is ascertained) but not on the portfolio size (=number of policies). It accounts 

explicitly for the uncertainty in both trends (=systematic risk) and parameters (=parameter 

risk) but not for the random fluctuations around frequency and severity of claims (=process 

risk). In fact, the process risk has been disregarded as not significant enough, and, in order 

to simplify the standard formula, it has been included in the systematic/parameter risk 

component. For the purpose of internal models and improved risk management, it appears 

important to capture separately or simultaneously all risk components of biometric risks. A 

more detailed account of our contribution follows. 

As starting point, we recall in Section 2 the general solvency rule for the prospective liability 

risk derived in [1], Section 2, which has resulted in two simple liability VaR & CVaR target 

capital requirements. In both stochastic models, the target capital can be decomposed into a 

solvency capital component (liability risk of the current period) and a risk margin 

component (liability risk of future periods), where the latter must be included (besides the 
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best estimate liabilities) in the technical provisions. This general decomposition is in 

agreement with the current QIS5 specification. The proposed approach is then applied to 

determine the biometric solvency risk capital for a portfolio of general traditional life 

contracts within the Markov chain model of life insurance. For this, we assume that the best 

estimate liabilities of a general life contract coincide with the so-called “net premium 

reserves”. After introduction of the Markov chain approach to life insurance in Section 3, we 

recall in Section 4 the ubiquitous backward recursive actuarial reserve formula and the 

theorem of Hattendorff. Based on this we determine in Section 5 the conditional mean and 

variance of a portfolio’s prospective liability risk (=random present value of future cash-

flows at a given time of valuation) and use a gamma distribution approximation to obtain 

the liability VaR & CVaR solvency capital as well as corresponding solvency capital ratios. 

These first formulas include only the process risk and not the systematic risk. To include the 

latter risk in solvency investigations we propose either to shift the biometric transition 

probabilities, as done in Section 6.2, or apply a stochastic model, which allows for random 

biometric transition probabilities, as explained in Section 6.3. Section 7 illustrates 

numerically and graphically the considered VaR & CVaR solvency capital models for a 

cohort of endowment contracts with waiver of premium by disability and compares them 

with the current Solvency II standard approach. Finally, Section 8 summarizes, concludes 

and provides an outlook for possible alternatives and extensions. 

2. A general prospective approach to the liability risk solvency capital 

Starting point is a multi-period discrete time stochastic model of insurance. Given is a time 

horizon T  and a probability space  , ,F P  endowed with a filtration  
0

T

t t
F


 such that 

 0 ,F     and TF F . Let  tL F  be the space of essentially bounded random variables 

on  , ,F P  and B  the space of essentially bounded stochastic processes on  , ,F P  

which are adapted to the filtration  
0

T

t t
F


. The basic discrete time stochastic processes are 

,t tA L : the assets and actuarial liabilities at time t  

In a total balance sheet approach, their values depend upon the stochastic processes in B , 

which describe the random cash-in and cash-out flows of any type of insurance business: 

1tP  : loaded premiums to be paid at time 1t   (assumed invested at time 1t  ) 

tX : insurance costs to be paid at time t  (includes insurance benefits, expenses and bonus 

payments paid during the time period  1,t t  ) 

tR : accumulation factor for return on investment for the time period  1,t t   

We assume that tX  is tF -measurable and tR  is 1tF  -measurable. The random cumulated 

accumulation factor for return over the period  , , 0 ,s t s t T     is denoted by ,
1

t

s t j
j s

R R
 

  . 

Since tR  is 1tF  -measurable ,s tR  is 1tF  -measurable, and therefore  , ,s tR t s  is a 
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predictable stochastic process. The quantity 1
, ,s t s tD R  is called random discount rate. 

Consider the 1t jF   -measurable discrete time stochastic process  , 0,1,..., 1t jCF j T t     of 

future insurance cash-flows defined by 

 , 1 1 0,1,..., 1.t j t j t j t j t jCF D X P j T t             (1) 

The actuarial liabilities at time t , also called time- t  prospective insurance liability, coincide 

with the random present value of all future insurance cash-flows at time t  given by 

 
1

,
0

, 0,1,..., 1.
T t

t t t j t j
j

L D CF t T
 

 


    (2) 

Using (1)-(2) and the relationship , 1 , 1 1, 1t t k t t t t kD D D       , one obtains the recursive 

equation  1 1 1 , 1,..., 1t t t t tL L P R X t T        . On the other hand, the random assets over 

the time horizon 0,T    satisfy by definition the recursive equation 

 1 1 1 , 1,..., 1t t t t tA A P R X t T        . Through subtraction it follows that 

 1 1 1( ) , 1,..., 1,t t t t tA L A L R t T         (3) 

which implies the following equivalent probabilistic conditions (use that trivially 0TL  ) 

  0 1 ,T tP A F     (4) 

  , 1,2,..., 1 1 ,t t tP A L T t F           (5) 

   1 .t t tP A L F     (6) 

Given a default probability 0  , the liability VaR solvency criterion (6) says that at time t  the 

initial (deterministic) capital requirement tA  should exceed the random present value of 

future cash-flows with a probability of at least 1  . By (4)-(5) this criterion automatically 

implies that assets will exceed liabilities with the same probability at each future time over 

the time horizon T . Let 1
VaR
t t tA VaR L F      be a minimum solution to (6), and assume 

that the best estimate insurance liabilities at time t  coincide with the net premium reserves (in 

the sense defined later in (35), that is let Z
t t tE L F V    . Then, the liability VaR solvency capital 

1
VaR VaR Z Z
t t t t t tSC A V VaR L F V        represents the capital available at time t  to meet 

the insurance risk liabilities with high probability. A risk margin is added to this capital 

requirement (recall that in Solvency II the sum of the best estimate insurance liabilities and 

the risk margin determines the Technical Provisions). The liability VaR target capital is the 

sum of the liability VaR solvency capital and the risk margin defined by 

 .VaR VaR VaR
t t tTC SC RM   (7) 
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The cost-of-capital risk margin with cost-of-capital rate 6%CoCi   is defined by 

 
1

,
T t

VaR k VaR
t CoC f t k

k

RM i v SC





     (8) 

where T  denotes the time horizon, and fv  is the risk-free discount rate. For comparison 

with other solvency rules, one considers the VaR solvency capital ratio at time t  defined by 

 / .VaR VaR Z
t t tSR SC V   (9) 

Alternatively, let 1 1 ,t t t t t t tCVaR L F E L L VaR L F F  
           be the conditional value-at-

risk of the random present value of future cash-flows at the confidence level 1   given the 

information available at time t . The liability CVaR target capital 

1
CVaR Z CVaR CVaR CVaR
t t t t t t tTC CVaR L F V RM SC RM         also meets the insurance risk 

liabilities and it defines the CVaR solvency capital ratio at time t : 

 / .CVaR CVaR Z
t t tSR SC V  (10) 

3. The Markov chain approach to general life contracts 

Consider the Markov chain model of a general life insurance (GLIFE) contract with state space 

S  and arbitrary payments. The state space S is the finite set of states a contract can be during 

its lifetime. Payments are induced by two kinds of events: 

Type 1: payments induced by being in a certain state 

Type 2: payments induced by a jump of state 

The payment function vector of a contract at time 0,1,2,...k   is expressed as a vector 

 ( ) ( ), ( )i ija k a k a k i j S   , where the payment functions are defined by 

Type 1: ( ),ia k i S , is the payment if the contract at time k  is in state i . 

Type 2: ( ), , 1ija k i j S k   , is the payment if the contract was in state i  at time 1k   and is 

in state state j  at time k . For convenience set (0) 0ija   for i j S   and ( ) 0ija k   for 

i j S  . 

For better interpretation one splits the payment ( )ia k  into a benefit part and a premium part 

such that ( ) ( ) ( ), , 0,1,2,...i i ia k b k k i S k    , where ( ) 0i k   denotes the non-negative 

premium paid at time k  when the contract is in state i . Note that in most applications one 

has ( ) 0i k   if the state i  is different from the state of being “active” (premiums are only 

paid in this situation). Restricting the attention to biometric risk only, we assume 

throughout a flat term structure of interest rates with annual interest rate i  and discount 

factor 1 / (1 )v i  . The state of a GLIFE contract over time is described by the discrete time 
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stochastic process  
0,1,2,...k k

X


 with values in S . The event  kX s  means that the contract 

at time k  is in state s . We assume that  
0,1,2,...k k

X


 is a Markov chain, which implies that the 

joint distributions of the random states can be represented in terms of the one-step transition 

probability matrix    
,

( )ij i j S
p k p k


 , which is defined by 

    1 , 0,1,2,...ij k kp k P X j X i k     (11) 

The set  , ( ), , 0,1,2,...kS a k X k   defines the Markov chain model widely discussed in life 

insurance (Amsler [3]; Hoem [4], [5]; Koller [6]; Milbrodt & Helbig [7]; Wolthuis [8]; etc.). 

Now, using the indicator function ( )I  , consider the random cash-flow of the GLIFE contract 

in year  , 1k k    valued at time 0,1,2,...k  , which is defined by 

      1( ) ( ) ( 1) .k i i k ij k k
i S i j S

C b k k I X i v a k I X i X j 
  

             (12) 

The insurance loss random variable of a GLIFE contract is defined by 

 
0

.k
k

k

L v C



  (13) 

This identifies the insurance loss with the random present value of all future cash-flows. 

Furthermore, for an arbitrary non-negative integer 0,1,...  , one defines the time-  

prospective loss random variable 

  1 ,k
k

k

L i v C








    (14) 

whose (conditional) expected value defines the time-  actuarial reserve 

 , .k k

k S

V E L X V V E L X k      


           (15) 

The quantity kV  is called state- k  time-  actuarial reserve. In particular, one has 0L L  and 

0V E L     is the initial actuarial reserve, which is not assumed to vanish. 

4. Backward recursive reserve formula and the theorem of Hattendorff 

In a first step, we derive a recursion formula for the actuarial reserves. Recall the recursion 

formula for the random prospective loss 

 1.L C vL      (16) 

Assume that the contract is in state . k S  at time  . Inserting (16) into (15) yields 
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 1 .kV E C X k v E L X k                (17) 

Using (12) the first expectation in (17) can be rewritten as 

     1( 1) ( ) ( )

( 1) ( ) ( ) ( ).

ij i i
i j S i S

kj kj k k
j k S

v a P X i X j X k b P X i X k

v a p b

       

    


  

 

           

     

 


 

The second expectation equals 

 1 1 1 1 1 ( ).j
kj

j S j S

E L X k E L X j P X j X k V p           
 

                

Inserting both expressions into (17) and using the made convention ( 1) 0kka     as well as 

the relationship ( ) 1kj
j S

p 


 , one obtains the backward recursive reserve formula 

  1( ) ( 1) ( ) ( ).jk
kj kj k k

j S

V p v V v a b     


         (18) 

The actuarial reserve at time   given the contract is in state k S  equals the one-year 

discounted sum over all possible states of the 

 actuarial reserves at time 1  , 

 payments at time 1   due to a jump in states, 

 payments at time   due if being in a certain state, 

which is weighted by the one-step transition probabilities and reduced by the premium paid 

at time   when the contract is in state k . The representation (18) is a discrete version of 

Thiele’s differential equation. Thiele's differential equation is a simple example of a 

Kolmogorov backward equation, which is a basic tool for determining conditional expected 

values in intensity-driven Markov processes, e.g. Norberg [9]. 

Let us rearrange (18) in order to obtain the Markov chain analogue of the classical 

decomposition of the premium into risk premium and saving premium (Gerber [10], [11]), 

Section 7.5, equation (5.3), and [1], equation (19). 

Theorem 4.1 The premium ( )k   at time   if the contract is in state k S  is the sum of a 

saving premium ( )S
k   and a risk premium ( )R

k  , which are defined as follows: 

 1( )S k k
k v V V       (19) 

  1 1( ) ( ) ( ) ( 1) jR k
k k kj kj

j S

b v V v p a V      


         (20) 
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Proof. Making use of the recursion (18) and the relationship ( ) 1kj
j S

p 


 , one obtains 

 
 

1 1 1

1

( ) ( ) ( ) ( ) ( 1)

( ) ( 1) ( ) ( ),

jS R k k k
k k k kj kj

j S

jk
kj kj k k

j S

v V V b v V v p a V

V p v a v V b

   

 

      

    

  





           

         




 

which shows the desired decomposition. ◊ 

The saving premium represents the expected change in actuarial reserve at time   for a 

contract in state k  while the risk premium is the expected value at time   of a contract in 

state k  needed to cover the insurance risk in time period  , 1    . Rewrite the latter as 

  1 1( ) ( ) ( ) ( 1) .jR k
k k kj kj

j S

b v p a V V       


        (21) 

This is the sum of the benefit payment at time   for a contract in state k  and the probability 

weighted sum of the sums at risk  1 1( 1) j k
kja V V       due to transitions from state k  to 

state j  at time 1  . The sum at risk is the amount credited to the insured’s contract upon a 

transition, namely the lump sum payable immediately plus the adjustment of the actuarial 

reserve. The obtained results constitute a discrete time version of those mentioned in 

Norberg [12], p.10. 

To evaluate the mean and variance of the random insurance loss (13) of a GLIFE contract, 

we follow the martingale approach to the Theorem of Hattendorff (Bühlmann [13]; Gerber [14]; 

Gerber et al. [15]; Hattendorff [16]; Kremer [17]; Patatriandafylou & Waters [18]; etc.). For 

this consider the set of 1   contract states  , 0,1,...,S X      at time   and the 

sequence of random variables 

 0 0, 1,2,..., .Y E L S Y E L V            (22) 

The discrete time stochastic process  Y  is a martingale with respect to  S . The 

martingale differences 1 , 0,1,2,...Y Y v        , represent the discounted one-year 

insurance losses and form a sequence of uncorrelated random variables such that 

 
0

0

0, , 0, 0 , .E Cov L V v   


 




                  (23) 

Through detailed calculation one obtains the following result. 

Theorem 4.2 The variance of the random insurance loss of a GLIFE contract is determined 

by the following formulas 

 2

0

,Var L v Var C








         (24) 
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  2 2( ) , ( ) ( ),S S S
k

k S k S

Var C E C X k P X k         
 

              (25) 

 

22 ( ) ( )

( 1) ( ) ( ) ( 1) ( ).

k k

kj k k kj kj
j S

E C X k b

va b va p

    

     


       
          (26) 

Proof. Similarly to Gerber et al. [15], formula (89), one has 

 
1

0

.j
j

j

Y v C v E L S



  





      (27) 

Using (15) one obtains 

 

 
   

1 1 1

1 1 ( ) ,S

k S

v Y Y v C vE L S E L S

v C vE L X k E L X k v C

 
       

 
       

  

 


           
 

             
 


 (28) 

 ( ).SC       (29) 

Since 0E      one gets ( )SE C        and further 

  22 2 2( ) ,S

k S

Var Var C E C E C E C X k P X k        


                          (30) 

which is (25). To obtain (26) one uses (12) and the convention ( 1) 0iia     to get 

 

 

 

22

1
,

( ) ( )

( 1) ( ) ( ) ( 1) ,

i i
i S

ij i i ij
i j S

C b I X i

va b va I X i X j

 

 

  

    





     

           




 (31) 

which implies that 

 
22 ( ) ( ) ( 1) ( ) ( ) ( 1) ( ).k k kj k k kj kj

j S

E C X k b va b va p          


                     (32) 

Remark 4.1 In the single life case, the variance formulas in Theorem 4.2 should be compared 

with the ones for the GLIFE contract with one and multiple causes of decrement in [1], 

formulas (24)-(26). One can ask if the formula (25) is equivalent to the following one (at least 

in the single life case) 
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    
2

2 2
1 1( 1) ( ) ( ) .j k R

kj kj k
k S j S

Var C a V V v p P X k       
 

 
             

   (33) 

5. The liability VaR & CVaR solvency capital for portfolios of GLIFE 

contracts 

We begin with risk calculations for a single GLIFE contract, and use them to determine the 

liability VaR & CVaR solvency capital for a portfolio of GLIFE contracts. 

5.1. Risk calculations for a single GLIFE contract 

Given is a single GLIFE contract with random future cash-flows  kC  defined by (12). We 

assume that the state space contains a unique distinguished “void” state  kX   

meaning that the contract has terminated at time k . We assume contract survival, i.e. a 

contract is still alive at time of valuation t , which implies that the conditional event 

 t tE X    is fulfilled. We note that the random present value of future cash-flows at 

time t  defined by 

 
0

, 0,1,...,j
t t j

j

Z v C t





   (34) 

coincides with the time- t  prospective loss defined in (14), that is , 0,1,...t tZ L t  . 

Therefore, the expected value given contract survival equals 

    
  .tZ k k

t t t t t t t
k S k S t

P X k
V E Z E V P X k E V

P E 


           (35) 

In contrast to (15) the reserve defined in (35) is state independent and called net premium 

reserve, see Bowers et al. [19], Chap.17.7, p. 500, for a special case. Following Section 2, this 

value can been chosen as best estimate of the contract liabilities. 

Remarks 5.1 (i) The motivation for state-independent reserves is second-to-die life 

insurance, where during lifetime the insurer may not be informed about the first death. An 

endowment with waiver of premium during disability, which is our illustration in Section 7, 

seems to contradict this concept because it cannot be argued that the insurer is unaware of 

the state occupied while the premium is being waived. However, at a given arbitrary time of 

valuation (including starting dates of contracts) future states of contracts are unknown, and 

therefore it is reasonable in a first step to assume state independent reserves for the design 

of a general method. Later refinement might be necessary to cover all possible cases. 

(ii) State independent reserves have been introduced by Frasier [20] for the last-survivor 

status, see also The Actuary [21] and Margus [22]. The choice between state independent 

and state dependent reserves depends upon loss recognition in the balance sheet 

(recognition or not of a status change). With state independent reserves, the insurance 
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company administers the contract as if it had no knowledge of any decrements, as long 

as the contract is not terminated. Only the latter situation is considered in the present 

work. 

In a first step, we determine the mean and variance of the conditional distribution of tZ  

given tE . Similarly to [1], Section 5.1, the variance formulas (24)-(26) generalize to an 

arbitrary discrete time 1,2,...t  . Formula (23) generalizes as 

   k t
t t t k

k t

L V I E v





    . (36) 

Noting further that , 0,1,...t tZ L t  , one obtains from (36) the following conditional 

variance formulas (conditional version of Theorem 4.2). 

Theorem 5.1 The conditional variance is determined by the following formulas 

  

22

2 2

2
0 0

2 2

22

( )
,

( )

, ( ) ( )

( ) ( )

t t t

t t t t

t

S S
t t t t t k

k S k S

t t k k

kj

E C P E E C
Var Z E v Var C E v

P E

E C E C X k P X k E C t t

E C X k b t t

va

  


 

    

 

   

  

   


 

    
 

 

                    
 
 

                

         



 

 

( 1) ( ) ( ) ( 1) ( ).k k kj kj
j S

t b t t va t p t     


            

 (37) 

As shown in the next Subsection, these formulas can be used to determine the target capital 

and solvency capital ratio of a portfolio of GLIFE contracts using appropriate 

approximations for the distribution of the random present value of future cash-flows 

associated to this portfolio under the condition that the contracts are still alive. 

5.2. Solvency capital and solvency capital ratio for a portfolio of GLIFE contracts 

Towards the ultimate goal of solvency evaluation for an arbitrary life insurance portfolio, 

we consider now a set of n  policyholders alive at time t . From Section 3 one knows that the 

i -th contract  1,...,i n  is characterized by the following data elements: 

 contract duration it  at time t  

 state space ( )iS  

 states  ( )

0,1,2,...

i
k

k
X


 of the contract over time with values in ( )iS  

 condition for contract survival  ( ) ( )

i i

i i
t t

E X    at time t  

 one-step transition probabilities    ( ) ( ) ( )
1 , 0,1,2,...i i i

rs k kp k P X s X r k    , defining the 

Markov chain model of the contract 
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 payment function vector  ( ) ( ) ( ) ( )( ) ( ), ( )i i i i
r rsa k a k a k r s S    of the contract at time 

0,1,2,...k   with the two types of payment: 

Type 1: ( ) ( )( ),i i
ra k r S , is the payment if the contract at time k  is in state r . 

Type 2: ( ) ( )( ), , 1i i
rsa k r s S k   , is the payment if the contract was in state r  at time 1k   

and is in state state s  at time k  

 splitting ( ) ( ) ( ) ( )( ) ( ) ( ), , 0,1,2,...i i i i
r r ra k b k k r S k     into a benefit & premium part 

To the i -th contract one associates its random future cash-flows  ( )i
kC  as defined in (12), 

the corresponding ( )

i

i
t

L  time- it  random prospective loss (14) and time- it  net premium 

reserve ,( ) ( ) ( )

i i i

Z i i i
t t t

V E L E    
 obtained from (35). The random present value of future cash-

flows of the portfolio is obtained by summing (34) over all contracts and is given by 

 ( ) ( )

1 0 0 1

, 0,1,... .
i i

n n
j ji i

t t j t j
i j j i

Z v C v C t
 

 
   

 
    

 
    (38) 

Similarly, summing the individual net premium reserves, one gets the portfolio reserve 

 ,( )

1

.
i

n
Z iZ

t t
i

V V


  (39) 

Following Section 2, one defines the portfolio VaR solvency capital 

 ( )
1 , 1,..., ,

i

iVaR Z
t t tt

SC VaR Z E i n V
     

 (40) 

as well as the portfolio CVaR solvency capital 

 
( )

1 , 1,..., ,
i

iCVaR Z
t t tt

SC CVaR Z E i n V
       (41) 

and the corresponding solvency capital ratios 

 / , / .VaR VaR Z CVaR CVaR Z
t t t t t tSR SC V SR SC V   (42) 

To determine these quantities it is necessary to determine the distribution of tZ  conditional 

on contract survivals at time t , and under the assumption that the remaining lifetimes of all 

contracts are independent of each other. From Theorem 5.1 we have 

 

( ) ( ) ( )2

0 1

2
( ) ( ) ( )2

2

( ) 2
0 1

, 1,..., , , 1,...,

( ) ( )
,

( )

i i i

i i i

i

n
i i iZ

t t tt t t
i

i i i
n

t t t

i
i t

E Z E i n V Var Z E i n v Var C

E C P E E C
v

P E






 






 

  

 

                 

        

 

 
 (43) 
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 
( )

( )

( ) ,( ) ,( )

( ) ( ) ( ) ( )2 2

2
( ) ( )2 ( ) ( )

( ) ( )

( ) ( ),

( ) ( ) ,

( ) ( ) ( )

( 1) ( )

i
i

i i i i
i

i i

i S i S i
i k it

k S

i i i i
t t t t

k S

i i i i
k i k it t

i i
kj i k i

E C t t

E C E C X k P X k

E C X k b t t

va t b t



   

 

   

  

  




   


 

      

          

           

     





( )

( ) ( ) ( )( ) ( 1) ( ).
i

i i i
k i kj i kj i

j S

t va t p t  


       

  (44) 

Based on the conditional mean and variance we approximate the distribution function of tZ  

by a gamma distribution as in [1], Section 5. Denote this approximation by 

 ( )( ) Pr , 1,...,
i

i
t t t

F x Z x E i n   . Then, recalling the gamma distribution function, one has 

 1

2 2
0

1 1 1
( ) ( ; ) , , ,

( )

t

t

x
t

t t t t t
t t t t

F x G x t e dt
k k


   

 
     

   (45) 

where ,t tk  are the conditional mean and coefficient of variation of tZ  (obtained from (43)-

(44)). In this setting, the solvency capital ratio formulas (42) take the forms 

  2 2
1 1,VaR

t t tSR z k k


       2 2
12 2

1

;
,

t tCVaR
t t t

g z k k
SR z k k


 

 


    (46) 

where 1
1 ( ) : (1 ; )z G   
    denotes the (1 ) -quantile of the standardized gamma 

( ; )G x   and ( ; ) '( ; )g x G x   denotes its probability density. The limiting results for a 

portfolio of infinitely growing size are similar to those in [1], Remark 5.1. If the coefficients 

of variation tend to zero, the gamma distributions converge to normal distributions and the 

solvency capital ratios converge to zero. This holds under the following assumption. 

Whenever insured contracts are independent and identically distributed, and if the portfolio 

size is large enough, then the ratio of observed state transitions to portfolio size is close to 

the given rates of transition with high probability. This assumption is related to the process 

risk, which describes the random fluctuations in the biometric transition probability matrix. 

However, if the ratio of observed state transitions to portfolio size is not close to the given 

rates of transition, even for large portfolio sizes, systematic risk exists, e.g. Olivieri & Pitacco 

[23], Section 2.1. In this situation, the rates of transition are uncertain and assumed to be 

random, and we consider stochastic models that include the process and systematic risk 

components. This is the subject of Section 6.3. 

6. Comparing the standard approach with variants of the stochastic 

approach 

Since the present Section has some overlap with [1], Section 6, it is treated more briefly, but 

can be read independently. Facts peculiar to the Markov chain approach are added 

whenever felt necessary. Recall that biometric risks in QIS5 accounts for the uncertainty in 
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trends and parameters, the so-called systematic/parameter risk, but not for the process risk. We 

note that the solvency capital models of Section 5.2 only apply to the process risk. For full 

coverage of the process and systematic risk components, these solvency models are revised 

and extended. For this, we either shift the biometric transition probability matrix (see 

Section 6.2) or apply a stochastic biometric model with random biometric rates of transition 

(see Section 6.3). For completeness we briefly recall the QIS5 standard approach. 

6.1. Solvency II standard approach 

To value the net premium reserves a biometric “best estimate” life table is chosen. In the 

Markov chain model the life table is replaced by the one-step transition probabilities 

   1 , 0,1,2,...ij k kp k P X j X i k    . Given is a single life policy at time of valuation t  

with net premium reserve Z
tV . Denote by ,Z

tV   the value of the reserves subject to a 

biometric shock  . The one-year solvency capital requirement (SCR) for this single policy is 

 , .Z Z
t t tSCR V V   (47) 

Similarly to the decomposition (7) the Solvency II target capital (upper index S2 in quantities) 

is understood as the sum of the SCR and a risk margin defined by 

 2 .S
t t tTC SCR RM   (48) 

 
1

,
T t

k
t CoC f t k

k

RM i v SCR





   6%,CoCi   (49) 

where T  denotes the time horizon, which may depend on the life policy, and fv  is the risk-

free discount rate. Since Solvency II uses a total balance sheet approach, the defined single 

policy quantities must be aggregated on a portfolio and/or line of business level. For 

comparison with internal models it is useful to consider the solvency capital ratio at time t  

under the Solvency II standard approach defined by the quotient 

 2 / .S Z
t t tSR SCR V  (50) 

By using a matrix of transition shocks  ij   , we obtain formulas for the Markov chain 

model. Consider the shifted biometric transition probabilities defined by 

   ,ij

ijp k


 (51) 

which is associated to  ijp k , for a permanent shift of amount ij  over all contracts and 

years 0,1,2,...k  . In the current specification one has 0.15AD   (permanent 15% increase 

in mortality rates at each age for jumping from the alive state “A” to the dead state “D” for 

the mortality risk), 0.20AD    (permanent 20% decrease in mortality rates at each age for 

jumping from “A” to “D” for the longevity risk), and 0.35AJ   respectively 0.25AJ   

(increase of 35% in disability rates for the next year, respectively a permanent 25% increase 



 
Risk Management – Current Issues and Challenges 16 

in disability rates at each age in following years for jumping from “A” to the disability state 

“J” for the disability risk). To calculate the portfolio reserve Z
tV  in (39) and the 

corresponding shifted value ,Z
tV   under a matrix of transition shocks  ij   , we use (34) 

and the backward recursion formula (18) to get 

 
 

 

,( ) ,( ) ( ) ( )

1 1

,( ),( ) ( ) ( ) ( )
1

,

( ) ( 1) ( ) ( ),

i i i i

i i

n n
Z i k i i iZ

t t t t t
i i k S

j ik i i i i
kj i kj i k i k it t

j S

V V V P X k E

V p t v V v a t b t t
  




   

       

 


 (52) 

 
 

 

,( ), ,( ), ( ), ( ),,

1 1

,( ),,( ), ( ) ( ) ( ),
1

,

( ) ( 1) ( ) ( ).

i i i i

kj

i i

n n
Z i k i i iZ

t t t t t
i i k S

j ik i i i i
kj i kj i k i k it t

j S

V V V P X k E

V p t v V v a t b t t

   

  
  




   

       

 


 (53) 

Similarly to (47)-(50) and using (52)-(53) we obtain the risk capital formulas 

  

, 2

max ( )
2

1

, ,

, .
i i

Z Z S
t t t t t t

x t
k S t

t CoC f t k t Z
k t

SCR V V TC SCR RM

SCR
RM i v SCR SR

V





 




   

  
 (54) 

6.2. Stochastic approach: Shifting the biometric transition probability matrix 

Following the Sections 5.2 and 6.1, we consider the “shifted” random present value tZ  of 

future cash-flows of the portfolio at time t  with conditional mean and variance 

 

( ), ( ), ( ),, 2

0 1

2
( ), ( ), ( ),2

2

( ), 2
0 1

, 1,..., , , 1,...,

( ) ( )
,

( )

i i i

i i i

i

n
i i iZ

t t tt t t
i

i i i
n

t t t

i
i t

E Z E i n V Var Z E i n v Var C

E C P E E C
v

P E






 




    


 

  
  


 

                 

        

 

 
 (55) 

 
 

( )

( )

( ), ,( ), ,( ),

( ), ( ), ( ), ( ),2 2

2
( ), ( ),2 ( ) ( ),

( )

( ) ( ),

( ) ( ) ,

( ) ( ) ( )

(

i
i

i i i i
i

i i

i S i S i
i k it

k S

i i i i
t t t t

k S

i i i i
k i k it t

i
kj

E C t t

E C E C X k P X k

E C X k b t t

va t


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 

   

  

  




   
   



  
 

      

          

           







( )

( ),( ) ( ), ( )1) ( ) ( ) ( 1) ( ).kj

i

ii i i
i k i k i kj i kj i

j S

b t t va t p t     



            

 (56) 

The distribution of tZ  conditional on contract survivals at time t  is again approximated by 

a gamma distribution denoted by 
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 2 2( ) ( ; ), ( ) , ( ) / ,t t t t t t t tF x G x k k                 (57) 

where the conditional mean and coefficient of variation ,t tk   of tZ  are obtained from the 

formulas (55)-(56). Making use of (46) and (47) one sees that the portfolio VaR & CVaR 

solvency capitals under the shifted biometric transition probability matrix are given by the 

expressions 

 
2 2

( ),, , ,
1 1, 1,..., 1 ,

i

iVaR Z Z
t t t t t t tt

SC VaR Z E i n V SCR z k k V 

     
 

                         
 (58) 

 

( ),, ,
1

2 2

12 2
,

1

, 1,...,

;

.

i

iCVaR Z
t t tt

t t
Z

t t t t

SC CVaR Z E i n V

g z k k

SCR z k k V





 

  


  
  



     
                          

 (59) 

The observations in [1], Section 6.2, hold for the Markov chain model. By small coefficients 

of variation the gamma distributions converge to normal distributions, and the 

corresponding solvency capitals converge to those of normal distributions such that 

 

1

, 1 , , ,
(1 )

(1 ) , .VaR Z CVaR Z
t t t t t t t tSC SCR k V SC SCR k V

 





      

          (60) 

Asymptotically, the solvency capital ratios tend to the following minimum values 

 , ,

0 0
lim lim .
t t

VaR CVaR t
t t Z

k k
t

SCR
SR SR

V 

 

 
   (61) 

By vanishing coefficients of variation the VaR & CVaR solvency capital ratios converge to 

the Solvency II solvency capital ratio. In this situation, the process risk has been fully 

diversified away, and, as expected, only the parameter/systematic risks remain. 

6.3. Stochastic approach: Poisson-gamma model of biometric transition 

For simplicity let us fix the states ,i j  of the transition probabilities   , 0,1,2,...ijp k k  . In 

case the ratio of observed state transitions to portfolio size is not close to the given rates of 

transition, even for large portfolio sizes, systematic risk exists. In this situation, the 

transition rates are uncertain and assumed to be random. This situation is modelled 

similarly to [1], Section 6.3. We assume a Bayesian Poisson-Gamma model such that the 

number of transitions is conditional Poisson distributed with a Gamma distributed random 

transition probability, which results in a negative binomial distribution for the 

unconditional distribution of the number of transitions. Then, we consider a Poisson-

Gamma model with time-dependence of the type introduced in Olivieri & Pitacco [23], 

which up-dates its parameters to experience. Given is a fixed time t  and biometric 
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transition probabilities   , 0,1,2,...ijp k k  , for the given fixed states, which is based on an 

initial cohort of size t  at time t . Let 1tD    denote the random number of transitions 

produced by the cohort in the time period  1, , 1,2,...t t      . For the first time period 

1  , we assume that there is no experience available and that the random number of 

transitions is conditional Poisson distributed such that 

  ~ , ~ , .
( )t t t t

ij

D Po Q Q Gamma
p t


 
 
 
 

  (62) 

It follows that the unconditional distribution of the number of transitions in the first time 

period is negative binomially distributed such that 

 1
1

1

~ , , .
1 ( )t

ij

D NB
p t

  


 
   

 (63) 

In contrast to the expected number of transitions ( )t ijp t  predicted by the biometric 

transition probability matrix, one has 

 ( ).t t ijE D p t



      . (64) 

To model a systematic deviation from the expectation, one assumes that the quotient /    

is different from one, for example greater than one for transitions produced by the 

mortality and disability risks and less than one for those produced by the longevity risk. 

Suppose that at time 1t  , the number of transitions td  observed in the cohort over the 

first time period is available, and let 1t t td     be the up-dated cohort size. A calculation 

shows that the posterior distribution of tQ  conditional on the information t tD d  is 

Gamma distributed 

 
( )

~ , ,
( )

t ij

t t t
ij

p t
Q d Gamma d

p t



 
 
 
 


 (65) 

which shows that the initial structural systematic risk parameters are up-dated as follows: 

    , , ( ) .t t ijd p t        (66) 

Passing to the second time period  1, 2t t    , we assume similarly to the first period that 

  1 1 1 1

( )
~ , ~ , .

( 1)

t ij

t t t t t t t
ij

p t
D d Po Q Q d Gamma d

p t


   

 
 
  


  (67) 

This implies a so-called predictive distribution of negative binomial type 
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 2
1 2

2 1

( )
~ , , .

1 ( )

t ij

t t t
t ij

p t
D d NB d

p t


 




 
    




 (68) 

Iterating the above Bayesian scheme, one generalizes as follows. At time 1, 2t     , 

having observed the annual number of transitions 1 2, , ...,t t td d d    , the up-dated cohort 

size for the next time period  1,t t       is obtained from the recursion 

1 2 2 ,t k t k t kd         2,3,...,k  . The corresponding predictive negative binomial 

distribution of the number of transitions is then given by 

 

1

12
1

1 1 2
0 1

( 1)

, ,..., ~ , , .
1 ( 1)

t k ij
k

t t t t t k
k t ij

p t k

D d d d NB d
p t






  
 




 
 



 


     
  

  
 

      







  (69) 

The conditional expected number of transitions compares with the given expected number 

as follows: 

 

1

1
1

1 1 2 11

1
1

1 1

, ,..., ( 1)

( 1)

( ) ( 1).

t k
k

t t t t t ij

t k ij
k

t t ij ij

d

E D d d d p t

p t k

E D p t p t



  

 










 


      

 


  


      

  


      










 (70) 

If biometric experience is consistent with what is expected, the quotient of both expected 

values remains constant over time. On the other hand, if experience is better (worse) than 

expected, the same quotient will increase (decrease) over time. 

In practice one proceeds as follows. Given a fixed time t , consider for each pair of fixed 

states the Poisson-Gamma transition probabilities obtained from (64) and (70) defined by 

 

 

1
1

1
1

1 0

( ) ( ), ( ) ( ), 1,2,...,

( 1)

( ) ( ) 1 ( ) , (0) 1, 0,1,...

t k
PG PG k
ij ij ij ij

t k ij
k

PG PG PG PG
k ij k ij ij ij

d

p t p t p t p t

p t k

p t p t p t k p






   




   

 


 





      

  

         



   (71) 

Replacing everywhere in the formulas (55)-(59) the superscripts ij  by the superscript PG  

for the relevant transition probabilities and using (71) in calculations, we obtain portfolio VaR 

& CVaR solvency capital formulas under the Poisson-Gamma model of biometric transition 

similar to (58) and (59). Similar limiting results apply. An implementation requires a detailed 

specification. To be consistent with the Solvency II standard approach, one can assume that 

future transitions deviate systematically from the biometric life table according to the 

prescribed shock ij    for the given fixed states, such that 
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 1 1 1 1 1, (1 ) , 1,2,... .s t k s t k s t k s t k s t k s t kd d q k                          (72) 

This choice is consistent with the expected number of transitions in the first period 

s t s tE D d      if in (64) one sets (1 )    . Assume further that 100  , which implies a 

coefficient of variation for s tD   equal to 10%. One shows that the choice (72) with 

(1 )     implies that the transition probabilities (71) coincide with the corresponding 

shifted entries in the biometric life table. In this special case, we observe that the stochastic 

model of Section 6.3 provides the same results as the shift method of Section 6.2. In general, 

the stochastic model of Section 6.3 is more satisfactory and flexible because it allows the use 

of effective observed numbers of transitions as time elapses. 

7. The endowment contract with waiver of premium by disability 

For a clear and simple Markov chain illustration we restrict the attention to a single cohort 

of identical n -year endowment contracts with waiver of premium in the event of disability 

and fixed one-unit of sum insured payable upon death or survival at maturity date. The 

treatment of other similarly complex disability contracts is left to future research. For some 

further possibilities consult Example 2.1 in Christiansen et al. [24]. 

7.1. Markov model for mortality and disability risks 

A complete risk model for single-life insurance products with mortality and disability risks 

requires the specification of a Markov model with three states. A policyholder aged x  at 

contract issue changes state at time 0t   according to the following diagram 

 

Figure 1. Markov chain states and their jump probabilities 

The possible state changes occur with the following probabilities 

x ti  : one-year probability of disability at time t  

a
x tq  : one-year probability of active mortality at time t  

i
x tq  : one-year probability of disabled mortality at time t  

x tr  : one-year probability of recovery at time t  

The states are    1,2,3 , ,S a i d  . The one-step transition probabilities are given by 

a i

d

active disabled

dead

tx
i 

tx
r 

a

tx
q 

i

txq 
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1

( ) 1 ,

0 0 1

a a
x k x k x k x k

i i
ij x k x k x k x k

i q i q

p k r r q q

   

   

  
 
   
 
 
 

 , 1,2,3 , 0,1,2,...i j k   (73) 

For a n -year endowment contract with waiver of premium by disability without recovery 

from disability, one has 0, 1,2,..., 1x kr k n    . This simplifying assumption is sometimes 

made in practice and justified in economic environments with a small number of disabled 

persons, for which the probability of recovery can be neglected. For example, the Swiss 

Federal Insurance Pension applies such a model and uses a biometric life table called “EVK 

Table”, where EVK is the abbreviation for “Eidgenössische VersicherungsKasse“, e.g. Koller 

[6], p.129, or Chuard [25] for a detailed historical background. 

7.2. State dependent actuarial reserves and net level premiums 

The net level premium of the n -year endowment with waiver of premium and one unit of 

sum insured for a life in the active state at age x  is denoted by ( : )a aP P x n , where the 

upper index indicates that the premium is only due if the contract remains in the active life 

state. In our notations the payment functions of this contract are defined by 

Type 1: 

1( )a k
 


, 0,1,..., 1

1,

aP k n

k n

  
 2, ( )a k

 


0, 1,2,..., 1

1,

k n

k n

 
 3, ( ) 0a k   

Type 2: 

12( )a k
 


0, 1,2,..., 1

1,

k n

k n

 
 13, ( ) 1, 1,2,..., ,a k k n  21( ) 0.a k   

To describe the state and time dependent actuarial reserves  , 1,2,3 , 0,1,...,i
kV i k n  , one 

needs the survival probabilities of staying in the active or disabled state. Denote by   the 

maximum attainable age. Then, the active survival probabilities (probability a life in the active 

state at age x  will attain age x k  in the active state without disablement) are given by 

  1 1 1 01 , 1, 1, ..., .a a a a
k x k x x k x k xp p q i p k x            (74) 

Similarly, the disabled survival probabilities (probability a life in the disabled state at age x  

will attain age x k  in the disabled state without recovery) are given by 

  1 1 01 , 1, 1, ...,i i i i
k x k x x k xp p q p k x         (75) 

Corresponding to these survival probabilities one associates n -year life annuities for a life 

aged x  being in the active or disabled state whose actuarial present values are defined by 
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1

0

( : ) ,  for the
n

a k a
k x

k

a x n v p



    n year active life annuity  (76) 

 
1

0

( : ) ,  for the
n

i k i
k x

k

a x n v p



    n year disabled life annuity  (77) 

The actuarial present value (APV) of future benefits for the n -year endowment with waiver 

of premium and one unit of sum insured for a life in the active (respectively disabled) state 

at age x  is denoted by ( : )aA x n  (respectively ( : )iA x n ). Using the backward recursive 

formulas for the state dependent actuarial reserves let us determine formulas for the 

evaluation of the introduced APVs. In particular, an explicit formula for the net level 

premium is derived. The backward recursive reserve formulas are given by 

 
 
 

1 1 2 1
1 1

2 2 2
1

, 0,1,..., 1, 1,

, 2,3,..., 1, 1.

a a a
k x k x k k x k k n

i i
k x k x k k n

V v q p V i V P k n V

V v q p V k n V

    

  

       

     
 (78) 

One has 2
0 0V   because the life is in the state “a” at contract issue, 2

1 0V   because the life 

can only be in the state “i” after at least one year and then no actuarial reserve is available, 

and 3 0, 0,1,...,kV k n  , because no actuarial reserve is required in case the insured life 

has died. Since actuarial reserves represent differences between APVs of future benefits and 

future premiums one has further the relationships 

 
1

2

( : ) ( : ) ( : ), 0,1,..., 1,

( : ), 2,3,..., 1.

a a a
k

i
k

V A x k n k P x n a x k n k k n

V A x k n k k n

        

    
 (79) 

On the other hand the APVs of the active life annuities in (79) satisfy the recursions 

 ( : ) 1 ( 1 : 1), 0,1,..., 1.a a a
x ka x k n k v p a x k n k k n             (80) 

Inserting (79) and (80) into (78) one obtains the backward recursions for APVs 

 

 

( 1 : 1)
( : ) , 2,3,..., ,

( 1 : 1)

( : ) ( 1 : 1) , 2,3,..., 1,

a a a
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i A x n k k

A x n k k v q p A x n k k k n
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 

   

     
     
      

          

 (81) 

with the starting values ( 1 : 1) ( 1 : 1)a iA x n A x n v      . One sees that the second 

relationship in (81) is satisfied by the formula 

 ( : ) 1 ( : ), 1,2,..., 1,i iA x n k k d a x n k k k n          (82) 

which reminds one of the usual formula for an endowment insurance with disability as 

single cause of decrement, e.g. Gerber [10], formula (2.15), p.37. Inserting (77) and 

rearranging one obtains the corresponding explicit sum representation 
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1

1 1 1
1

( : ) , 2,3,..., 1.
k

ji i i k i
j x n k x n k j k x n k

j

A x n k k v p q v p k n


         


          (83) 

Using these results and proceeding through backward induction, one obtains the following 

explicit formula for the evaluation of the APV of future benefits for a life in the active state 
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 



  
 (84) 

The net level premium is determined by the actuarial equivalence principle, which states 

that at contract issue 1
0 0V  . Using (79) one obtains the explicit formula (use (76), (84)) 

 ( : ) ( : ) / ( : ).a a aP x n A x n a x n  (85) 

7.3. Conditional mean and variance of the prospective insurance loss 

We determine the conditional mean and variance given survival of the time- t  prospective 

insurance loss 
1
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, 0,1,..., 1.
n t

k
t t k

k

Z v C t n
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


   Besides the state dependent actuarial 

reserves (79), we consider the net premium reserve (35), which coincides with the 

conditional mean 
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 (87) 

Furthermore, a calculation based on Theorem 5.1 yields the following conditional variances 
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where the savings premiums are determined by the formulas 
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and the probabilities ( )kP E  are defined in (87). Neglecting the probabilistic terms of second 

order 1 1
i i

x k x x ki p q   , one obtains the following simpler approximations to (88): 
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7.4. Numerical illustration 

The Markov chain parameterization of the present contract type has been given at the 

beginning of Section 7.2. We assume that all the policyholders are aged x  at time 0t  . Our 

construction of the biometric life table with mortality and disability risk factors is based on 

the classical textbook Saxer [26], Section 2.5. Besides the one-year probabilities introduced in 

Section 7.1, one considers further the partial or independent rates of decrement, see Saxer 

[26], Section 2.4, or Bowers et al. [19], Section 9.5, denoted by 

* a
x tq  : one-year independent rate of active mortality at time t  

*
x ti  : one-year independent rate of disability at time t  

The independent rates of decrement are linked to the probabilities of active mortality and 

disability through the relationship, e.g. Saxer [26], formulas (2.5.1) and (2.5.2), 

    * *1 1 1 .a a
x t x t x t x tq i q i         . (91) 

For the purpose of illustration only and by lack of another reference, we base our 

calculations on Table 1, which is obtained by combining the Tables 4 and 5 in Saxer [26], 

p.240. The entries * a
x tq  , *

x ti   and i
x tq   are taken from the “EVK Table 1950” and the entry 

x ti   is taken from the “VZ Table 1950”, where VZ stands for “Versicherungskasse Zürich“. 

The missing entries between the 5-year ages are linearly interpolated. 

While the standard solvency capital ratio does not depend on the initial cohort size, this is 

the case for the stochastic approaches. The age at contract issue is either 30x   or 40x   

and the contract duration is 20n  . We compare the stochastic approach with the standard 

approach for the contract times  0,1,2,3,4,5,10,15,18t . We use the shifted biometric life 

table with Solvency II standard like specifications, namely at each age 20% decrease for the 

probability to die as active (longevity risk) respectively 15% increase for the probability to 

die as disabled (mortality risk), 35% increase for the first year probability to disable and then 

25% increase at each future age (disability risk). The interest rate and the risk-free interest 
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rate is 3%. Table 2 displays shifted coefficients of variation under varying cohort sizes. The 

values are sufficiently small so that the normal approximation to the gamma distribution 

can be applied. Table 3, which is based on (60), displays the cohort size dependent solvency 

capital ratios and their limiting values (61) for a portfolio of infinitely growing size. The 

chosen confidence level is 99.5% for VaR and 99% for CVaR (the accepted level, which 

corresponds to a 99.5% Solvency II calibration). 

Table 1. One-step transition probabilities for the mortality and disability Markov chain 

In the present case study, we observe that for all cohort sizes and contract times, the 

current standard approach prescribes almost negligible solvency capital ratios. For 

small cohort sizes and early contract times, the discrepancies between the stochastic and 

standard approach increase with age and contract duration attaining solvency capital 

ratios above 200% for small cohort sizes with 100 insured lives. In fact, as already 

explained, the current QIS5 specification neglects the process risk. Moreover, we note 

x *qax qax *ix ix qix

30 0.183% 0.106% 0.064% 0.141% 4.348%

31 0.181% 0.097% 0.064% 0.148% 4.324%

32 0.178% 0.087% 0.064% 0.154% 4.300%

33 0.176% 0.078% 0.063% 0.161% 4.276%

34 0.173% 0.069% 0.063% 0.167% 4.252%

35 0.171% 0.060% 0.063% 0.174% 4.228%

36 0.174% 0.059% 0.072% 0.186% 4.204%

37 0.177% 0.059% 0.080% 0.198% 4.180%

38 0.180% 0.059% 0.089% 0.210% 4.156%

39 0.183% 0.058% 0.097% 0.222% 4.132%

40 0.186% 0.058% 0.106% 0.234% 4.108%

41 0.207% 0.079% 0.129% 0.257% 4.084%

42 0.227% 0.099% 0.153% 0.280% 4.061%

43 0.248% 0.120% 0.176% 0.304% 4.037%

44 0.268% 0.141% 0.200% 0.327% 4.014%

45 0.289% 0.161% 0.223% 0.350% 3.990%

46 0.335% 0.218% 0.285% 0.401% 3.966%

47 0.382% 0.275% 0.347% 0.452% 3.942%

48 0.428% 0.331% 0.408% 0.504% 3.919%

49 0.475% 0.388% 0.470% 0.555% 3.895%

50 0.521% 0.444% 0.532% 0.606% 3.871%

51 0.586% 0.532% 0.694% 0.743% 3.848%

52 0.650% 0.620% 0.856% 0.881% 3.824%

53 0.715% 0.708% 1.019% 1.018% 3.801%

54 0.779% 0.795% 1.181% 1.156% 3.777%

55 0.844% 0.883% 1.343% 1.293% 3.754%

56 0.909% 0.892% 1.765% 1.766% 3.731%

57 0.974% 0.900% 2.187% 2.240% 3.707%

58 1.040% 0.908% 2.609% 2.713% 3.684%

59 1.105% 0.916% 3.031% 3.187% 3.660%

60 1.170% 0.923% 3.453% 3.660% 3.637%
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that the chosen results for the normal distribution are only approximate, especially for 

small cohort sizes. In this respect, we think that the displayed figures are most likely 

lower bounds due to the fact that often a normal approximation rather underestimates 

than overestimates risk. A more detailed analysis of this point is left as open issue for 

further investigation (however, the use of the gamma approximation makes no big 

difference). On the other hand, solvency capital ratios of cohort sizes exceeding 10’000 

policyholders and late contract times tend more and more to the lower limiting bound 

as expected from the central limit theorem. Fig. 2 visualizes these findings. In virtue of 

the made confidence level calibration, the VaR & CVaR solvency capital ratios are of the 

same order of magnitude. Finally, the considered example points out to another 

difficulty. Though almost negligible in absolute value, we note that the standard 

solvency capital ratios change their signs repeatedly over the time axis. In this respect, 

one can ask whether fixed transition shifts are the “crucial scenarios”. As a response  

to this “biometric worst- and best-case scenarios” are proposed in Christiansen  

[27], [28]. 

 

Table 2. Coefficients of variation of the shifted prospective insurance loss 

 

Table 3. VaR solvency capital ratios for the endowment with waiver of premium 

Cohort size

0 1 2 3 4 5 10 15 18

(x,n)=(30,20)

100 53.815% 26.466% 17.602% 13.150% 10.483% 8.714% 4.628% 2.525% 1.464%

500 24.067% 11.836% 7.872% 5.881% 4.688% 3.897% 2.070% 1.129% 0.655%

1'000 17.018% 8.369% 5.566% 4.158% 3.315% 2.756% 1.463% 0.798% 0.463%

10'000 5.381% 2.647% 1.760% 1.315% 1.048% 0.871% 0.463% 0.252% 0.146%

100'000 1.702% 0.837% 0.557% 0.416% 0.332% 0.276% 0.146% 0.080% 0.046%

(x,n)=(40,20)

100 91.895% 45.158% 30.663% 23.298% 18.838% 15.846% 8.844% 5.223% 3.176%

500 41.097% 20.195% 13.713% 10.419% 8.425% 7.087% 3.955% 2.336% 1.421%

1'000 29.060% 14.280% 9.696% 7.368% 5.957% 5.011% 2.797% 1.652% 1.004%

10'000 9.190% 4.516% 3.066% 2.330% 1.884% 1.585% 0.884% 0.522% 0.318%

100'000 2.906% 1.428% 0.970% 0.737% 0.596% 0.501% 0.280% 0.165% 0.100%

Contract Time

Cohort size

0 1 2 3 4 5 10 15 18

(x,n)=(30,20)

100 138.7% 68.9% 45.7% 34.1% 27.1% 22.5% 11.8% 6.4% 3.8%

500 62.0% 31.1% 20.6% 15.3% 12.2% 10.1% 5.2% 2.8% 1.7%

1'000 43.9% 22.1% 14.6% 10.9% 8.6% 7.1% 3.7% 2.0% 1.2%

10'000 13.9% 7.3% 4.8% 3.5% 2.8% 2.3% 1.1% 0.6% 0.4%

100'000 4.4% 2.6% 1.7% 1.2% 0.9% 0.7% 0.3% 0.1% 0.1%

Limiting QIS5 ratio SCRt/VZt 0.0% 0.5% 0.3% 0.1% 0.1% 0.0% -0.1% -0.1% 0.0%

QIS5 TC ratio = (SCRt + RMt)/VZt -0.3% 0.3% 0.1% 0.0% 0.0% -0.1% -0.1% -0.1% 0.0%

(x,n)=(40,20)

100 235.6% 117.2% 79.3% 60.1% 48.5% 40.7% 22.7% 13.4% 8.1%

500 105.2% 52.6% 35.5% 26.9% 21.7% 18.2% 10.1% 6.0% 3.6%

1'000 74.3% 37.4% 25.2% 19.0% 15.3% 12.8% 7.1% 4.2% 2.5%

10'000 23.3% 12.1% 8.1% 6.0% 4.8% 4.0% 2.2% 1.3% 0.8%

100'000 7.1% 4.1% 2.7% 1.9% 1.5% 1.2% 0.7% 0.4% 0.2%

Limiting QIS5 ratio SCRt/VZt -0.3% 0.4% 0.2% 0.0% 0.0% -0.1% -0.1% 0.0% 0.0%

QIS5 TC ratio = (SCRt + RMt)/VZt -0.7% 0.2% 0.0% -0.1% -0.1% -0.1% -0.1% 0.0% 0.0%

Contract Time
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Figure 2. Time evolution of VaR solvency capital ratios, ( , ) (40,20)x n   

8. Conclusions and outlook 

Let us summarize the present work. We have derived a general solvency rule for the 

prospective liability, which has resulted in two simple liability VaR & CVaR target capital 

requirements. The proposed approach has been applied to determine the biometric 

solvency risk capital for a portfolio of general traditional life contracts within the Markov 

chain model of life insurance. Our main actuarial tools have been the backward recursive 

actuarial reserve formula and the theorem of Hattendorff. Based on this we have 

determined the conditional mean and variance of a portfolio’s prospective liability risk 

and have used a gamma approximation to obtain the liability VaR & CVaR solvency 

capital. Since our first formulas include only the process risk and do not take into account 

the possibility of systematic risk, we have proposed either to shift the biometric transition 

probabilities, or apply a stochastic model, which allows for random biometric transition 

probabilities. 

Similarly to [1], Section 8, the adopted general methodology is in agreement with 

several known facts as (i) the process risk is negligible for portfolios with increasing 

size and has a small impact on medium to large insurers (ii) all else equal, process risk 

will increase (decrease) with higher (lower) coefficients of variation (aggregated effect 

of both decrement rates and sums at risk). Another interesting observation has been 

made at the end of Section 6.3 that the model with shifted biometric transitions can be 
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viewed as a sub-model of the model with Poisson-Gamma time dependent biometric 

transitions. 

Moreover, a detailed analysis for a single cohort of identical endowment contracts with 

waiver of premium by disability has been undertaken in Section 7. Besides a complete 

Markov chain specification, which seems to be missing in the literature, the numerical 

illustration has shown, as expected, that the cohort size is a main driving factor of process 

risk. Due to the statistical law of large numbers, the larger the cohort size the less solvency 

capital is actually required. In contrast to the life annuity “longevity risk” study in [1], the 

stochastic approach penalizes almost all insurers (except the very large ones) because the 

current standard approach prescribes almost negligible solvency capital ratios and does not 

measure explicitly the process risk effects. 

The interested actuary might challenge the proposed approach with alternatives from 

other regulatory environments than Solvency II. Moreover, it is important to point out 

that a lot of technical issues remain to be settled properly. They are not only regulatory 

specific but also related to the complex mathematics of related software products and go 

beyond the Markov chain model. Today’s life insurance contracts include many 

embedded options and are henceforth even more complex. A challenging issue is the 

definition of capital requirements for unit-linked contracts without and with guarantee 

and variable annuities with guaranteed minimum benefits (so-called variable GMXB 

annuities). 
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