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1. Introduction 

Polymeric coatings such as polyurethanes, acrylic, epoxies and silicones have been used for 

over 40 years to protect printed wiring boards (PWB) from moisture, handling and 

environmental influences. Special semiconductor grade polymers have been developed for 

chip passivation layers. Polyimide became the standard passivation layer for memory chips 

and other devices needing surface protection for handling and testing procedures. 

Photosensitive resins have been developed to reduce processing costs. Thin film polymers are 

used widely in the area of electronic packaging and as an interlayer dielectric (ILD) in nearly 

every electronic device. Typical layer thickness ranges from 5 µm up to 15 µm. These polymers 

films should be temperature stable up to range of 150°C (permanent), and for a short time up 

to 250°C and higher, depending on the soldering process of the components. This is the reason 

to use thermoset polymers in most cases. The coating process is the spin-coating technology. 

Spray coating and other techniques are only niche processes. The polymer supplied by the 

chemical company is a so-called pre-cursor consisting of a partially polymerized polymer in an 

organic solvent. Nearly all of the thin film polymers need a polymerization step, which is done 

in most cases by a thermal process after the deposition on the wafer. Polymerization changes 

the pre-polymer into a long-term stable and much more inherent polymerized dielectric layer. 

The polymerization process is generally called the cure or cure step of the process. But the 

definition “cure” does not mean in every case a fully finished polymerization reaction. Also 

partly cured polymer films are possible and becoming important if multiple layers have to be 

deposited. Partly polymerized layers have better adhesion to the following layer compared to 

fully cured ones. To get something more precise the following definitions have been used:  

partly cured or soft cured polymers for a 60 – 80 degree of polymerization, and full cured or 

hard cured for a complete polymerized layer.  

There are a huge range of different polymer materials which are used as interlayer dielectric 

such as polyimides, polybenzoxazole and benzocyclobutene [1]. An example of such a 

polymer layer on a CMOS-wafer is shown in figure 1:  



 
New Polymers for Special Applications 114 

 

Figure 1. A thin film polymer (BCB from Dow Chemical) as protection layer on a CMOS-wafer 

In the last few years, the development of new polymer materials for thin film applications 

has increased more and more. One main driver for this is the 3-D integration technology 

which demands optimized material behaviors of the polymers, such as a low coefficient of 

thermal expansion (CTE) or higher tensile strength. The 3-D technology also demands more 

and more the low temperature processing. The material combinations get more temperature 

critical. The reliability will be increased at the same time with low cure temperature, because 

of a decreased thermal stress in the material stack. In contrast to the demand of low cure 

temperature, a tough polymer layer is desired with a high decomposition temperature. 

Analyzing and engineering the polymerization process will help enormous to reach these 

goals.  

This chapter will focus on the benzocyclobutene (BCB) from The Dow Chemical Company 

being a well-known material for thin-film applications. The full cured BCB has a 

decomposition temperature well above 350°C. The cure temperature of 250° has been 

reported in dozens of publications. The analyzing and modeling of the BCB polymerization 

process will be discussed here in detail. Understanding the behavior of the polymerization 

process in different states and their kinetic modeling shows the potential for decreasing the 

cure temperature for a BCB layer which has nearly the same material stability and 

decomposition temperature as standard processed BCB layers. 

2. The relevance of thin film polymers in micro electronics  

The Dow Chemical Co. (Midland, MI) has developed a variety of low-dielectric (low-k) 

polymers which are based on different benzocyclobutene monomers (BCB, also known as 

biscyclo[4.2.0]octa-1,3,5-triene or 1,2-dihydrobenzocyclobutene). Based on these studies, the 

Dow Chemical Co. commercializes a BCB-Polymer under the registered trademark 

CYCLOTENE. CYCLOTENE is a family of thermosetting polymers prepared from 1,3 

divinyl-1,1,3,3-teramethyldisiloxane-bis-benzocyclobutene (DVS-bis-BCB) monomer. The 

structure of the DVS-bis-BCB monomer is illustrated in figure 2.  Today CYCLOTENE is just 
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called BCB in most of the literature. BCB has been developed for electronic coating 

applications. Based on the low-k characteristic of BCB, the material is very attractive as an 

interlayer dielectric for RF-components [2] [3]. The BCB has been widely used for multilayer 

re-distribution on wafer level (wafer level packaging-WLP). Since the early 90’s, there are 

hundreds of application notes for BCB (e.g. bumping and redistributing chips, and for 

planarization and isolation in flat-panel displays, MEMS hermetization, wafer bonding, 

passivation, gap filling). The wide field of application is based on the material properties 

such as good planarization, no outgassing, and low copper migration. The Dow Chemical 

Co. also releases the chemical structure of the monomer and the final polymer, which is not 

common for the most commercialized thin film polymers. Knowledge of the structure 

allows for a better understanding of material behavior and material analyzing, which leads 

to the fact that BCB is used very often for academic research. Most of the newer polymers 

are years away from such a comprehensive database. BCB is available as photosensitive 

(CYCLOTENE 4000 series) and non-photosensitive (CYCLOTENE 3000 series) in the form of 

a spin-on solution. CYCLOTENE can be purchased in different viscosities to obtain a wide 

film thickness range of <1 µm up to 26 µm (see table 1). CYCLOTENE is shipped in a partly 

cross-linked state in mesitylene solvent (trimethylbenzene). The non-photosensitive 

CYCLOTENE can be structured by dry etch processes or laser ablation. On account of this, it 

is often called dry-etch BCB. The initial extent of polymerization is slightly different when 

comparing dry etch BCB with photo BCB. The dry etch version is stable at room 

temperature, in contrast to the photosensitive parts of the 4000 series, which have a shelf life 

of a week at room temperature, due to the photo-sensitizer. In a frozen state, the durability 

increases up to a couple of years. 

 

 

Figure 2. Structure of a DVS-bis-BCB monomer [4] 

In contrast to polyimides, which are also often used as thin film layers, BCB has a couple of 

advantages. BCB is highly cross-linked, based on the small monomer, which leads to higher 

thermal stability in comparison to the cure temperature [4]. It also leads to a complete 

isotropic behavior of the polymer film. On the other hand, the long-chain characteristic of 

the polyimide leads to a higher elongation at break, which is an important factor in 

reliability [1]. The polymerization reaction of the BCB does not emit any volatile by-

products, resulting in low cure shrinkage (less than 5 %).  The non-polar chemical structure 

of BCB leads to low dielectric constant (εr=2.65) and a high breakdown voltage (530 V/µm) 

in combination with a low water uptake (less than 0.2 %). The good planarization properties 

also make BCB attractive for 3-D and adhesive bonding [5] [6]. 
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Notation Viscosity (cST@25°C) Thickness (µm) Solid content (%) b-stage (%) 

3022-35 14 1.0 – 2.4 35 35 

3022-46 52 2.4-5.8 46 35 

3022-57 259 5.7-15.6 57 35 

3022-63 870 9.5-26.0 63 35 

4022-35 192 2.5-5.0 35 47 

4024-40 350 3.5-7.5 40 47 

4026-46 1100 7.0-14.0 46 47 

Table 1. CYCLOTENE with different solid content 

3. Overview of the polymerization process 

3.1. General polymerization behavior of thermosets 

BCB is a thermoset like most other ILD polymers. The polymerization is the process which 

forms the small molecules or monomers into large polymers structures. The chemical 

reaction (polymerization) of the thermoset during the processing allows an easy processing 

of thin film layers. In most cases, a liquid solvent is deposited by spin coating on a substrate, 

and after the polymerization a tough solid state with a high glass transition temperature is 

formed. In contrast to thermosets, thermoplastics need a physical condition change for the 

polymerization. The disadvantage of thermoplastics is the low glass transition temperature 

ranging from below room temperature up to 180°C, which is a result of the low Van der 

Waals forces between the polymer chains. For the following processes, such as sputtering, a 

high thermal stability above 200°C is necessary. A softening of the polymer based on low Tg 

during sputtering could lead to buckling of the deposited metal layer.  

The result of the polymerization of thermosets is a more or less strong 3-D cross-linking of 

the polymer chains with strong covalent connections in combination with solidification of 

the polymer layer, which leads to an insolubility of the material. In most cases, thermal 

energy is used for the polymerization reaction, but there are also other methods like 

radiation or hardener materials which work like a catalyzer being used for other polymers. 

The polymerization is not a monotonic reaction, because it progresses through different 

stages which change the characteristics of the reaction significantly. The reaction starting 

point is an ideal solvent in which there are only monomer structures in the solvent. The 

material is in a “liquid phase” (also called an a-stage). With the supply of enough energy in 

the system, the cross-linking of the monomers starts and polymer chains build up. The 

degree of cure describes the rate between reacted parts and unreacted parts (reactants and 

products). In literature there is a different notation which means more or less the same 

thing, like extent of cure, extent of reaction, extent of conversion and fraction 

transformation.  The reaction rate is nearly constant in a viscous liquid stage up to the 

gelation point, which described the abrupt and irreversible transformation of the material 

into an elastic gel or rubber, and the material loses its ability to flow. At this point, there are 

infinitesimal networks which are more or less cross-linked to each other (b-stage).  The 
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gelation leads only to a small change in the reaction rate, but could be estimated with 

rheological measurement. The point of gelation is for a thermoset on a fixed degree of cure 

with the conclusion, that it is independent of the polymerization method (radiation, 

convection oven or microwave). Because of that, the measurement of the gelation point 

allows for calculating the activation energy of the polymerization reaction [7]. 

With the increase in the polymer network, the material becomes more and more rigid. The 

movement of the monomer reactants slows down abruptly when the glass transition point 

(Tg) of the polymer overwhelms the process temperature. The material vitrificates as a solid 

state, for polymers often called the glassy state, based on their more or less amorphous 

structure. The reaction rate drops down by an order of two or three magnitudes, and is 

significantly dependent on the mobility of the reactive monomers. In gel state, the 

polymerization is controlled by a chemical reaction rate, but in glassy formation, the 

reaction is controlled by the diffusion of the reactants. The glass transition temperature 

increases with the polymerization degree.  Based on that, the glass transition temperature is 

highly dependent on the cure process. The vitrification is, in contrast to the gelation, 

reversible by heating. When the process temperature is again above the Tg devitrification 

occurs. A fully cured thermoset (c-stage) has a glass transition temperature near the 

dissociation temperature, which makes the measurement of such a Tg in most cases 

impossible. Based on that it can be postulated that a fully polymerized thermoset does not 

have glass transition temperature anymore [8].   

3.2. The polymerization reaction of BCB 

The fully polymerized BCB has a high 3-D cross-linked network, which leads to isotropic 

properties. The polymerization reaction consists of two steps. The first step is a thermal activated 

BCB four-membered ring opening reaction. This reactive intermediate readily undergoes a [2+4] 

Diels-Alder reaction (see figure 3). The Diels-Alder reaction is a reaction where a conjugated 

diene will be added on a double bond, building a six terms ring. Both reaction partners are 

named dien and dinophile. The reaction is also called a [4+2] cycloaddition. 

After ring opening, the BCB monomer has two diens and dinophiles, which allow a highly 

cross-linked polymer. The ring opening is a first order reaction, and depends on the 

concentration of the pre-polymer. The reaction rate of the ring opening and the Diels-Alder 

reaction was measured by ROTH et. al. The ring opening has a 10 times higher reaction rate 

constant [9] [10].  

 

 

Figure 3. Ring opening reaction and Diels-Alder reaction of BCB 
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The polymerization reaction could be described by a pseudo first-order reaction equation, 

because the Diels-Alder reaction is the reaction rate limited factor. The thermal activated 

polymerization process of BCB or the reaction rate depends on temperature, time and extent 

of cure. Figure 4 show a Time-Temperature-Transformation diagram (TTT-diagram) for the 

polymerization reaction of BCB. The numbers in the diagram describes the extent of cure 

which could be measured by different methods. 

The reactions rate is strongly influenced by the mobility of the molecule chains which 

generally increase with the temperature, but also decrease with the extent of cure, because 

increased cross-linking decreases the mobility. During the cure, the reaction kinetic runs 

through different stages, from liquid pre-polymer through a gelation to a vitrification.  

 

Figure 4. Extent of cure of photo BCB in relation to soak temperature and soak time. The colors describe 

the material conditions: liquid state (green), gel state (blue) and solid state (red) [11] 

The gelation point has no significant effect on the polymerization reaction.  The change into 

the solid state impacts the reaction rate based on the change from a chemical controlled to a 

diffusion controlled regime. That leads to a significant drop in molecule mobility, which 

could decrease the reaction rate down to nearly zero. The slowdown factor of BCB is 

relatively weak because of the small monomers. 

The commercially available CYCLOTENE (see table 1) has been pre-cured (b-stage resin). 

Especially for structured photo BCB layers, a viscous liquid state during processing is 

avoided by a higher molecular weight of the b-stage state. After the evaporation of the 

solvent, the polymer layer lost its flow ability and the layer could be structured. A flowing 

of polymer during the cure would limit the critical structure dimension. The reaction rate is 

nearly constant during the entire gelation phase. The fully cured BCB has a Tg near the 

decomposition temperature above 350°C. But the Tg of an uncured CYCLOTENE will 

exceed approximately 60°C, and will rise dependent upon the degree of cure (figure 5) [6].  
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Figure 5. Glass transition temperature of photo BCB [6] 

It is shown for some other polymers that the degree of cure is nearly fixed after vitrification 

without a temperature rise, because of the extremely slow reaction rate [12]. This means for 

polymerization process optimization a full cure is not possible if the temperature is 

decreased. A lower processing temperature leads to the glass transition temperature 

occurring earlier, which can be seen in figure 4. The polymerization process stops at a lower 

degree of cure, because the reaction changed earlier from a reaction controlled to diffusion 

controlled characteristic. 

The slowdown of the reaction rate of BCB after vitrification has been described in previous 

publications [13] [14]. However, the reaction does not stop and proceeds to the solid state. In 

contrast to many other polymers, the diffusion controlled reaction rate is high enough to 

continue the polymerization process. DIBBS et. al. specifies only that above 95 % the 

diffusion controlled reaction rate will slow down so that it could be seen as a fixed state [2]. 

A degree of cure of about 95 % can be accepted as nearly fully cured. There is no significant 

difference measurable because of the approximation failures of measuring methods for the 

degree of cure. 

4. Measurement of the polymerization degree of BCB 

The datasheet of CYCLOTENE describes a cure at 250°C for 90 minutes to get a full cured 

film. Any change in the cure process or the creation of a kinetic model needs knowledge 

about the extent of cure. There are a couple of methods to monitor it, like Fourier 

transformed infrared-spectroscopy (FT-IR spectroscopy), change of the refractive index or 

the difference scanning calorimetric (DSC). 

The determination of the reaction rate, and the extent of reaction by time and temperature 

are investigated further to develop a kinetic reaction model. Real-time measurements during 

the cure process are necessary to monitor the degree of cure. DSC measurement was used 

for kinetic model creation. Based on the kinetic model, cure processes were set-up and the 

expected extent of cure was controlled by FT-IR spectroscopy. The FT-IR spectroscopy 
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allows the measurement on product wafers, but for the creation of a kinetic model, a special 

oven with integrated measurement equipment is necessary. The discrete IR wavelength gets 

into resonance with the rotation or vibration of some molecule groups. The rate of reactants 

and products of the polymerization could be estimated by the peak height [15]. The samples 

were measured before and after the curing by the “FT-IR 2000 System” from Perkin-Elmer. 

The broadly used method for the investigation of thermal processes like polymerization is 

difference scanning calorimetric. The DSC is preferred because of an accurate temperature 

regulation and good recording of the energy dissipation [12] [16]. The DSC-analysis was 

done with 7 mg CYCLOTENE 4024-40 in an inert atmosphere using a “Q2000” machine 

from the TA Instruments Company. The samples were dried and exposed before they were 

analyzed. The DSC analyzer could perform high heat-up and cool-down rates, up to 

300°C/min. Higher heat-up rates leads to more inaccuracy based on a stronger overshoot of 

the thermal system. 

The DSC records the heat flow to a sample during a tempering in comparison to a reference 

cell. The integration of the heat flow over time gives the heat dissipation of the sample. The 

polymerization reaction is an exothermic reaction and occurs in DSC plot by a dip/peak of 

the heat flow curve [14]. The integration of the heat flow peak over time allows the 

estimation of the heat transformation (enthalpy change) of the reaction.  

The DSC experiments for the estimation of the BCB polymerization has been done in 

isothermal and non-isothermal mode with a constant heat rate. In figure 6 a non-isothermal 

signal of a BCB DSC sample is shown. The heat of the reaction of 294.4 J/g is calculated by a 

linear baseline. A more accurate calculation can be done by using a blind curve, which 

means a second measurement of the fully polymerized sample. The difference between the 

two curves gives the energy dissipation of the polymerization process. The blind curve also 

compensates the parasitic endothermic signal which came from heating up the aluminum 

sample pan [8]. 

The heat of the reaction could be set in relation to the extent of reaction. The reaction rate 

dα/dt at any state of the polymerization can be estimated at any stage of the reaction by the 

following relation: 

 
/

total

d dH dt

dt H





 (1) 

The total heat of reaction ΔHtotal describes the integral of heat flow from the initiation of 

reaction up until the full polymerized material form. The constant heat rate β allows for 

applying the extent of reaction over the heat rate, instead of the extent of reaction over time, 

which is measured with a higher inaccuracy:  

 
/

total

d dH dt

dT H

  


 (2) 
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Figure 6. DSC plot of the polymerization of a photo BCB sample during a non-isothermal experiment 

with a heat rate of 2 K/min 

This is the reason why non-isothermal experiments are often used to analyze the reaction. 

The degree of cure at any state could be estimated by the rate of the heat of reaction ΔH to 

the total reaction heat ΔHtotal of a fully cured layer: 

 
1

i
total total

H dH
dt

H H dt
 
  
    (3) 

where αi is the initial degree of cure of the b-stage resin. The estimation has included an 

inaccuracy by the calculation of the total heat reaction of the complete polymerization. Linear 

heating experiments at different heating rates are performed. The ΔHtotal of the non-

isothermal experiments with different heat rates are printed in table 2. The blind curve 

corrected DSC-curves are shown in figure 7. By increasing the heat rate, the reaction is shifted 

more and more into higher temperatures. The average total heat of reaction of the fully cured 

BCB film is about 281.8 ± 5.3 J/g. The results are in good correlation to the measurement of 

CHAN, who measured a heat of reaction for CYCLOTENE 4024-40 of 291.3 ± 8.8 J/g [17]. The 

measurement of the heat reaction is strongly dependent on base line settings.  The estimation 

of the total heat reaction has in general an inaccuracy of 3 to 5%. It should be noted that the 

photosensitive CYCLOTENE will be shipped out with an initial degree of cure of about 47 %. 

Based on this, the true total heat of the reaction is around 531.7 J/g. The value is confirmed by 

BAIR et. al. which shows a value of 515 ± 10 J/g for the complete polymerization of a 

monomer BCB resin [18]. T An increased heat rate leads to more intensive reaction peak but 

with less time resolution, which increases the inaccuracy for a kinetic model development. 
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Heat rate [K/min] Reaction heat ΔH [J/g] TPeak [°C] 

2 289,6 233,35 

5 283,6 245,24 

10 276,4 255,52 

20 281,8 266,00 

40 277,4 277,12 

Average ΔHtotal 281,8 ± 5,3  

Table 2. Heat reaction and the peak temperature of photo BCB 

 

 

 
 

Figure 7. Non-isothermal DSC measurement of CYCLOTENE 4026-46 versus temperature and time 

The state change at the glass transition temperature caused more or less a peak in the DSC 

curve. This peak increases significantly with higher heat rates [19]. The uncured coated BCB 

has a Tg of around 60°C. In figure 7 the parasitic peak which is caused by the overwhelming 

of the glass transition temperature (gelation) could be seen for the two heat rates at 20K/min 

and 40K/min in the temperature range from 60°C up to 100°C.  

The vitrification of the polymer is the important factor for the reaction kinetic caused by the 

gradual decreasing of the rate. When the material returns to a glassy state, the same peak is 

generated, but the high slope of the reaction signal absorbs the additional peak. The 

vitrification could only be observed by the gradual change of the reaction rate.  
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The gradual change is in the case of non-isothermal experiments softened by the permanent 

increase in the temperature. The heat signal of the state change is calculated into the total 

heat of reaction.  

Based on the knowledge of the Tg (figure 5), the influence of the vitrification could be 

estimated for the different heat rate experiments. The theoretical development of the Tg for 

the non-isothermal experiments is plotted in figure 8. The influence of the diffusion 

controlled part decreases with higher heat rates and has shifted the vitrification to higher 

temperatures.  

 

Figure 8. Prediction of the glass transition temperature for the non-isothermal experiments of photo 

BCB 

Low heat rates or isothermal experiments allow to analyze better the influence of the 

virtification on the reaction rate. An isothermal measurement is based on a heat up phase, a 

soak temperature and a cool down phase. An isothermal experiment also gives a better 

prediction for the real cure process in a convection oven. But an isothermal measurement 

method has some disadvantages in contrast to an experiment with a continuous heat rate. 

The extent of cure is calculated by the integration of the reaction peak signal to get the 

reaction heat ΔHds over the soak temperature. The higher time resolution of the reaction 

signal is in relation to a much smaller reaction peak. The small peak and the possibility of 

not a fully polymerized layer at the soak temperature, caused by vitrification or short 

process time, are critical impacts in estimating the total heat reaction ΔHtotal. A simple 

estimation of the total heat reaction can lead to an inaccurate interpretation of cure degree 

(see Eq.(3)). The reaction already starts during the heat up and cool down phases, which 

takes into account the integration of heat flow over time. The discontinuity of the 

temperature function produce parasitic signals. The DSC signal of a BCB soft cure at 210°C 

at 30 minutes is plotted in figure 9. The heat flow signal shows that there is a parasitic signal 

peak between isothermal and dynamic heat phases. The reaction start during the heat up 

phase, which can also be seen. The short process time leads only to a soft cured layer, which 
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means that the measured reaction heat does not equates to the total reaction heat. After the 

soft cure, the sample was again heated up to 350°C with a constant heat rate. A leftover heat 

of reaction ΔHres can be measured. The sum of ΔHds and ΔHres leads to the total heat of 

reaction ΔHtotal [12].  

  

Figure 9. DSC measurement of a BCB soft cure process with additional non-isothermal heat up step to 

estimate the cure degree. 

5. Development of a kinetic model of the polymerization reaction 

The extent of cure for a dedicated cure program can be measured by DSC experiments. But 

the prediction of the extent of cure and the polymerization behavior based on any 

temperature – time program is necessary for any process optimization  with respect to 

energy consumption, process time or material properties. On account of the DSC 

experiments, a kinetic model can be set up to characterize the polymerization reaction and 

can be used to design and optimize the cure process. The reaction is described by a 

mathematical relation between time, temperature and the extent of cure. In general, special 

software is required to develop the kinetic equation. The kinetic model in combination with 

a chemical-rheological model allows a simulation of the complete polymerization reaction 

[14] [8]. 

The kinetic models are generally sorted into two types: 

A phenomenological model and 

A chemical model. 

The phenomenological model describes the reaction by a relative simple equation. This 

model type intentionally ignores details of the reaction with the benefit of simple 

application. Detailed relations and progression of the different chemical reaction steps and 

the relationship of the reaction groups will be ignored. The chemical reaction model takes 

into account the chemical steady state of the partial reactions. These types of models have a 

much better prediction and interpretation potential, but it is often not useable, especially for 

complex reactions. In contrast to a phenomenological model, the efforts involved for such a 



 
Polymerization of Thin Film Polymers 125 

model are much higher, because many more reactions parameters are necessary, and the 

users need to do a chemical analysis of every reaction step. The phenomenological model 

can be used without chemical understanding, and can be created only by a comparison of 

reactants and products. The extent of cure behavior, which has been estimated by DSC 

experiments, was used to create a phenomenological model for BCB. The simple application 

makes the phenomenological model the most preferred for polymerization reactions [20] 

[21]. 

The two-step polymerization reaction of BCB can be described by a pseudo first-order 

equation. Based on that simplification, the BCB reaction could described as follows: 

 ( ) ( )e

d
k T f

dt

   (4) 

Where α is the degree of cure, ke(T) is the reaction rate constant which depends on the 

temperature, and f(α) is the reaction model which describes the reaction order [22]. The 

kinetic equation such as Eq.(4) is a simplified assumption which describes the reaction rate 

as a product of a temperature-depending function and a fraction-transformed-depending 

function. There is a range of empirical mathematical forms for the reaction model [23]. Some 

particularly idealized reaction models are proposed in table 3.  

 

Reaction model f(α) 

Power law ૝ࢻ૜/૝
Power law ૜ࢻ૛/૜
One-dimensional diffusion ૚/૛ିࢻ૚
Mampel (first order) ૚ − ࢻ
Avrami-Erofeev ૝(૚ − −](ࢻ ૚)ܖܔ −  ૜/૝[(ࢻ

Three dimensional diffusion ૛(૚ − −]૛/૜(ࢻ ૚)ܖܔ −  ૚/૜]ି૚(ࢻ

Contracting sphere ૜(૚ − ૛/૜(ࢻ
Table 3. A range of reaction models which are often used in kinetic analytics  

The reaction rate constant could be realized for the simplest case by the Arrhenius relation: 

 exp A
e

E
k A

RT

 
  

 
 (5) 

Where R is the universal gas constant, EA is the activation energy, T is the temperature and 

A is the reaction rate constant at an infinite temperature [24]. The Arrhenius equation 

describes a reaction in gas phase. In approximation, the relation can be used for liquid and 

solid materials. But influence by molecule mobility and vitrification are ignored and could 

be added by the adaptation of the reaction function. 

The determination of the three important kinetic parameters, the two Arrhenius parameter 

EA and A and the reaction model f(α) is an interlinking problem. The measurement of one of 

the parameters, and especially the accurate estimation, influence the other two parameters. 
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Based on this problem they are often called a kinetic triplet [25]. There are many different 

methods for the determination based on DSC measurements. The method of KISSINGER 

has been used for the investigation of the polymerization process of BCB. It allows for a 

simple application with a small inaccuracy, which is also described in detail by STARINK.  

The KISSINGER method is focusing on the determination of activation energy as first 

parameter with the most accuracy possible. The reaction rate in Eq.(4) is calculated by the 

Eq.(1) from a DSC experiment. The Eq.(5) is inserted into the Eq.(4). The logarithm of Eq.(4) 

leads to the following equation: 

 ln ln ( )
d E

f
dt RT

     (6) 

For non-isothermal experiments with constant heat rate (β=dT/dt) the Eq.(6) could be 

changed to:   

 ln ln ( )
d E

f
dT RT

     . (7) 

The activation energy could be obtained from the slope of plots of ln(dα/dT) versus 1/T. It is 

estimated without any knowledge of the reaction model f(α). In literature, the principle is 

also termed model free kinetic (MFK). The slope in the plot should be constant. If there is a 

change in the slope, it indicates a phase change in the reaction. The calculation of the 

reaction rate by Eq.(1) leads to an inaccuracy which could have a huge impact on the kinetic 

equation caused by the triplet relation. The assumption of the reaction rate can be replaced 

by correlation of a set of non-isothermal DSC experiments. Based on Kissinger, the Eq.(7) is 

integrated by separation of variables and the following approach was postulated:  
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The Eq.(5) have been logarithm and lead to following equation: 

 ln
f

E
C

RTT


    (9) 

C is a constant for different heating rates at a constant degree of polymerization and belongs 

to the reaction model. Tf means the temperature of experiments with different heat rates 

where the same extent of cure occurs. The variable κ is a correction factor in the range of 

1,92 up to 2. With the Eq.(9) the EA can determined as the slope of the plot ln	(ߚ/ ௙ܶச) versus 

1/ ௙ܶ independent of constant C. Three or more experiments with different heating rate β are 

necessary to determine the activation energy with MFK. The correct estimation of Tf is the 

main challenge at this method. For the normal reaction, analyzing the maximum rate 

method or peak method is used, which is described also in the ASTM E698 norm [26]. The 



 
Polymerization of Thin Film Polymers 127 

peak method avoids the defective calculation of cure rate by Eq.(1). It was found that the 

extent of cure is approximately fixed at the maximum reaction rate, but a small error will be 

introduced. The peak temperatures of the non-isothermal experiment are shown in table 2. 

The temperature of the peak is shifted with the heat rate. The results of Eq.(9) for the five 

non-isothermal experiments are plotted in figure 10. 

 

Figure 10. Non-isothermal measurement of BCB. The slope approximate the activation energy of the 

polymerization reaction cure degree of around 73% 

A value of 149.5kJ/mol ±1.75 kJ/mol was measured, which acknowledges the declarations of 

DIBBS et. al.. Different literature sources describe an activation energy in a range from 146 

kJ/mol  up to 197,6 kJ/mol [27] [17] [28]. A disadvantage of this method is that the values are 

only estimated at one degree of cure (around 73 % conversion). Therefore, in relation to the 

used heat rates, the value describes only the chemically controlled kinetic. With a first-order 

reaction model, the A has a value of 1,35 h-1 for a reference temperature T0 of 210°C: 

 1

0

149,5 / 1 1
1,35 exp (1 )

d kJ mol
h

dt T T T

    
         

 (10) 

The plot for the non-isothermal experiments (Figure 11) shows that the model fits the 

chemically controlled regime very well. The estimated model is in good agreement with the 

already proposed kinetic model for BCB [2] [6]. There is a poor estimation for the diffusion 

controlled part, which is also described in previous publications [6] [28]. With the focus on 

lower cure temperatures, the influence of the diffusion controlled part increases.  

The polymerization analysis aims for a better understanding of the influence of the vitrification. 

That demands a modulation of the normal kinetic model Eq.(10). There are many different 

methods for correcting the conventional reaction model by a conversion-dependent diffusion 

contribution. One of the most popular methods for thermosetting systems is to modify the 

kinetic equation by a “diffusion control function” which is described by SCHAWE [29].  
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Figure 11. Extent of polymerization based on the non-isothermal experiments and calculation based on 

Eq.(10) 

 ( ) ( ) ( ; )e d

d
k T f f T

dt

    (11) 

The diffusion control function works in an electro-technical analogy like a low-pass filter. 

During the polymerization up to the change in the solid state, the function should not 

influence the reaction which means fd(T<Tg)=1. After the vitrification, the function decreases 

down to zero. A function which achieves this condition is proposed by SCHAWE:  

 

1
3

0 ( )
( ; ) ( ( )) 1 1

g

d d g

T T
f T f T

D


 


            

 (12) 

where T0 is the temperature at which the diffusion control function is zero and A is an 

empirical constant to smooth the function. The function is focused for a reaction which is 

nearly stopped in a glassy state. The difficulty of this method is to estimate the empirical 

diffusion control function which leads to the best fit. Another problem is the influence of the 

diffusion control function for the chemically controlled part. 

MENCZEL describe an alternative model from RABINOWITCH for small-molecule 

reactions, where the rate constant k is based on a sum of a chemically controlled and 

diffusion controlled rate constant [8]: 

 
1 1 1

( , ) ( ) ( , )e r dk T k T k T 
   (13) 

where ke is the overall rate constant, kr is the Arrhenius ratio constant for the chemical 

reaction and kd is the diffusion rate constant. The overall reaction rate constant ke is 

governed prior the vitrification by the Arrhenius rate constant, and after vitrification is 

dominated by the diffusion rate constant. The disadvantage is an extended interlink 

problem of the parameters. 
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A combination of both models from SCHAWE and RABINOWITCH has been used to create 

an advanced model for the polymerization reaction of CYCLOTENE. Two different rate 

constants (kr;kd) were calculated. The overall reaction rate constant is the sum of both, but 

the terms are combined with a step-function, which works like a switch and allows the 

change between gel and glassy state kinetic models. 

 ( ) ( ) ( ; ) ( ) ( )(1 ( ; ))r step d step

d
k T f f T k T f f T

dt

        (14) 

The step-function belongs to the process temperature and the glass transition temperature 

and gets a value between one and zero. For both reaction regimes, a first-order reaction 

model was used based on a good fit, but the model allows for the declaration of two 

different reaction models for chemically controlled and diffusion controlled states. The 

following expression was used for the step-function: 

 
1

( ; )
1 exp( ( ( )) )step

g

f T
T T B





  

 (15) 

where B is a parameter to smooth the changeover between the two reaction functions. The 

value was set at 0.1 to get a change in temperature range of ±5°C around the glass transition 

temperature. The glass transition temperature depends on the extent of cure (see figure 5), 

and the following relation was estimated based on the measurements of TOEPPER: 

 235 10865 3070

0.054 27 27gT      (16) 

For the kinetic model, two Arrhenius terms need to be calculated, one for the chemically 

controlled part and one for the diffusion controlled part. The Eq.(9) allows the calculation of 

the activation energy for different extents of reaction. In contrast to the peak method, the 

extent of reaction need to be calculated by Eq.(3). The consideration of the vitrification-heat 

rate relation for the estimation of the activation energy of the two regimes is necessary to see 

any difference. For example, the highest heat rate of 40 K/min leads to a vitrification above 

90% in contrast to the slowest heat rate of 2 K/min, which vitrificates around 80%. Therefore 

the heat rate of 2 K/min is used to calculate the activation energy for the chemically 

controlled state up to 80%, above this value it is used for the calculation of the activation 

energy of the diffusion controlled state. The calculated activation energies for different 

extents of reaction are shown in figure 12.  

The change in the reaction kinetic is marked by the change in the activation energy. The 

activation energy for the chemically controlled region has an approximate value of 157.1 ± 3.6 

kJ/mol. The activation energy is slightly higher than the value which was estimated by the 

peak method /ASTM E698 norm (pointed line). For the diffusion controlled kinetic, a higher 

activation energy of around 166.1 ± 8.1 kJ/mol was measured. The increase in the activation 

energy in a diffusion controlled regime shows a higher temperature dependency for the 

reaction, which could be explained by the more temperature-dependent molecule mobility. 
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Figure 12. Activation energy estimated by the ASTM E698 norm and dependent of the degree of cure 

The results for the reaction rate at the reference temperature are 1.41 hr-1 for the chemically 

controlled regime, and 0.27 h-1 for the diffusion controlled regime. In figure 13, the 

calculated degree of polymerization for the conventional (Eq.(10)) and modified kinetic 

model (Eq.14) is compared to a measured curve for a cure at 190°C. The modified model 

shows a much better fit in comparision with the real behavior above a degree of cure of 

approximately 80 %. 

 

Figure 13. Degree of cure of a photo BCB sample at 190°C 
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6. Benefits of the kinetic model for the BCB polymerization and the 

relation for the polymer properties 

The investigation of the cure behavior of BCB shows that an ongoing polymerization reaction in 

solid state is also possible with the requirement of a minimal process temperature above 150°C 

caused by the thermal activation. The enhanced model which is described in Eq.(14) allows a 

much better prediction for the polymerization of BCB in glassy state. The polymerization in 

vitrificated state is relative slow and should only use if the device is temperature critical. But the 

cure in glassy state could be interesting with the focus on the properties of the polymer. The 

stress development of BCB during the cure at 250°C is plotted in figure 14. The thermal stress of 

a polymer film on a substrate could be calculated as followed:  

 ( )
1

f

th f s
f

E
T  


  


 (17) 

Where Ef and υf  are the Young’s modulus and Poisson ratio of polymer. For silicon as 

substrate CTE αs are approximately 2.6 µm/mK, and BCB has a CTE of 42 µm/mK. Delta T is 

the temperature difference between ambient temperature and the vitrificated temperature. 

The polymer is in gel phase during the heat up phase and the stress is nearly zero. When the 

polymer vitrificates, the stress state at that point is set to zero. During the cool down, the 

thermal tensile stress in the layer increases based on the coefficient of thermal expansion 

mismatch to the substrate [8] [30] [31]. A nearly fully cured BCB has a Tg near the 

decomposition temperature, which means the zero stress point could not reset by processing 

at a higher temperature. A reheating of the BCB after the cure at 250°C above the 

temperature where the polymer vitrificate leads to a compressive stress, which could be 

seen in figure 15. The stress measurements were done by Toho Technology with a Flexus-

2320-S system. In comparing the stress values at room temperature between the 

measurement of figure 14 and figure 15 a slightly difference occurs. This could be explained 

by a visco elastic behavior of the BCB which is discussed elsewhere [32]. 

There are trends in microelectronics towards enlarging the wafer size in combination with 

thinner wafers to decrease costs. In contrast to this, the signal frequency gets higher and 

higher, which means packaging thick dielectric polymer layers to assure good signal 

integrity. It results in two major challenges. The first is in handling, because the stress leads 

to a bow of the wafer, which is a problem for automatic handling tools and also for the 

processes because of the topography. The second point is that the stress in the layer stack is 

a continual problem for reliability. It force cracks through the layers and delamination. The 

decrease of the stress in the layer stack becomes more and more a focus in the future. This 

could also be seen by the polymer supplier who presented a couple of new polymers with 

low temperature cure properties in the last few years.  

The stress in the polymer layer can be minimized by the optimization of the cure process 

with the help of a kinetic model. There are already some works which try to decrease the 

stress by cure process optimization [33] [34], but they unaccounted the meaning of the 

vitrification for the stress formation. A set of BCB experiments was done to examine the  
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Figure 14. The stress in the material during a cure at 250°C 

 

 

 
 

Figure 15. Stress curve of a cured BCB layer on a silicon substrate measured with Flexus-2320-S 

-5

0

5

10

15

20

25

30

35

0 100 200

S
tr

e
ss

 (
M

P
a
)

Temperature (°C)

heat up cool down

-10

-5

0

5

10

15

20

25

30

35

-50 50 150 250

S
tr

e
ss

 (
M

P
a
)

Temperature (°C)

heat up cool down



 
Polymerization of Thin Film Polymers 133 

potential of stress decreasing by process optimization. In relation to the lowest temperature 

where vitrification occurs, and a nearly fully cured layer is obtainable, a theoretical minimal 

stress of around 18 MPa should be achievable. There has been shown a possible decreasing 

of the stress in a BCB layer from 28 MPa based on a normal cure at 250°C down to a stress 

value of 19 MPa [32]. Nevertheless, the process time will increase exponentially with a 

decrease of the temperature, and for higher volumes a decrease of the temperature down to 

150°C is not economically feasible. The kinetic model allows for the creation of curing 

processes with more than one soak temperature, with the benefit that the processing 

temperature before and after the vitrification is higher to decrease the processing time, and 

the temperature is set lower in the phase change to a solid state. The cure of the polymer is 

generally performed in convection ovens. The slow temperature change in a convection 

oven limits the difference between the high and low temperature levels. A programmable 

control of the oven makes a dynamic heat process possible, which reaches the shortest 

possible time in combination with low stress in the polymer layer. Such a theoretical 

temperature profile is plotted in figure 16.  

 

 

 
 

Figure 16. Calculated process profile with a focus on a vitrification at low temperature 

The oven will heat up to a high peak temperature to achieve fast polymerization. After that 

the temperature is decreased to reach a vitrification at low temperature. The temperature 

will be ramped up after the vitrification, but the process temperature is controlled to be 

below the glass transition temperature, to decrease the process time and avoid 

devitrification. The described program aims for a vitrification at low temperature in relation 

to the stress in the polymer layer. DIBBS described a seven days process, which also aims to 

get a vitrification at a low temperature and slowly increase the temperature after that [2]. 

The process involves a long time processing at 150°C, and after that a slow ramp up to 

250°C. The expected cure profile of DIBBS process is plotted in figure 17. The long heat up 
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phase of 6 days results due the lack of a detailed kinetic model for the diffusion controlled 

part.  

 

 

 

Figure 17. Calculated process profile of the low stress cure of DIBBS 

He realized only a small decrease of the stress down to 24 MPa. The results of DIBBS and 

own experiments lead to the assumption that the ongoing of the polymerization in glassy 

state also influences the stress. A BCB layer on substrate was soft cured at 210°C up to 70%, 

which has a Tg of around 190°C. After soft cure, the layer was stored at 150°C for 100 hours 

and reached 93% polymerization. The stress in the layer decreased during the storage from 

24 MPa down to 19 MPa [32]. A layer which was fully cured at 250°C shows no strong 

relaxation after the storage. This could be explained by two things. First, the partly cured 

film has a higher viscoplastic behavior and the material relaxed easier. Another possible 

reason is stress relaxation caused by the ongoing polymerization at low temperature. 

Further ongoing experiments are necessary to clarify in more detail the stress behavior in 

solid state BCB layers.  

The polymer dielectric layer is an essential component in packaging technology. The 

temperature-activated polymerization processing of polymers has increasingly become a 

key parameter for the process workflow. The investigation of polymerization processes 

allows the optimization of the cure process down to lower temperatures. Based on the 

example of BCB, a simple model was developed, which also described the 

polymerization reaction of BCB in a solid state. The model allows for significantly 

decreasing the stress in the layer and also decreasing down to very low cure 

temperatures. The mechanical properties like Young’s modulus or tensile strength of 

BCB will not be affected by the processing parameter changes [32]. In combination with 

the low-temperature curing possibilities of BCB, a decrease in the stress of about 

approximately 30% is possible. 
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