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1. Introduction 

Reproductive technologies (RT) play important roles in the conservation of biodiversity, the 

production of domestic animals such as pigs and cows, and in human infertility treatments 

[1-3]. Artificial insemination (AI) is a very useful tool to introduce superior genes with a 

minimal risk of disease as compared with natural mating [4]. Improvements in 

cryopreservation of semen as well as storage in its liquid form have made AI more 

accessible [5, 6]. In vitro manipulation of gametes for the production of embryos was first 

successfully applied in mice in 1958 and in rabbits in 1959 [7]. In initial experiments, 

matured oocytes retrieved from a female were fertilized with sperm in the laboratory and 

then transferred to a recipient mother. In 1981, the first live calf was produced by in vitro 

fertilization (IVF). Currently, the development and refinement of AI and IVF are 

concentrating on gamete and embryo collection, sorting and preservation of sperm, 

gametes, and embryos, and in vitro production of embryos, culture, and embryo transfer. 

These developments are facilitated by modern equipment for ultrasonography, microscopy, 

cryopreservation, endoscopy, and flow cytometry, as well as micromanipulation and 

centrifugation [1]. Microfluidic technologies have also contributed to recent developments 

in RT, especially over the past decade.  

Microfluidic devices are powerful tools for handling reproductive cells, because the sizes of 

these cells are in the micrometer range. The length of a mammalian sperm is 50 µm, and the 

diameter of the mammalian oocyte and early embryo is approximately 100 µm; these are 

similar in all mammalian species. For cellular-level observations, transparent materials must 

be used. More than 10 years ago, microdevices for manipulation of reproductive cells were 

hand-made and sometimes reproducing these devices was laborious work. For example, to 

settle embryos in microwells, heated polished steel rods were pressed by hand to the bottom 
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of the well of a polystyrene dish to prepare the microwells [8]. The current most popular 

technology for the fabrication of microfluidic devices for cell biological application is based 

on the soft-lithography of poly-dimethylsiloxane (PDMS). PDMS is a silicone elastomer, it is 

transparent, not detrimental to cells, possesses high permeability to gas, and is easy to 

fabricate; therefore, fabricated devices can be used for observing cells. Through simple 

molding procedures, the material can be made into microfluidic devices in short periods of 

time (typically, 1 day), and multiple copies of a device can be generated in several hours 

[9]. Its widespread use as a material of choice is because of its mechanical properties, which 

are amenable to integration of fluidic valves, essential elements for major microfluidic 

applications [10]. For biological use, reported applications of PDMS microfluidic devices are 

analyzing cells [11, 12], applying forces [13, 14], substrate patterning [15, 16], and creating 

chemical microenvironments [17-19]. Because of laminar flow in microfluids, experiments 

using these microfluidic devices for chemical gradient production and cellular 

manipulations are easily reproduced. These elastomer technologies and applications can be 

transferred to the development of RT. 

This chapter introduces the usability of silicone elastomer-based microfluidic devices in RT. 

Since most readers are not likely to be familiar with RT, we will cover the following points: (1) 

the background to the use of elastomers in RT, (2) details of current research on sorting and 

analyzing motile sperm, (3) silicone elastomer-based microfluidic devices for creating static 

and dynamic mammalian embryo culture systems that can mimic the motion of the oviduct, 

and (4) the conclusion. This chapter introduces the current research areas for developing 

improvements in RT and suggests the possibility of using elastomers in human ART. 

1.1. Background to the use of elastomers in reproductive technologies  

RT refers to procedures that include in vitro handling of cattle or human oocytes, sperm, or 

embryos to induce pregnancy [20, 21]. To improve fertilization rate in pigs and cattle, AI 

using washed sperm is the most widely used technique. Because the outcome of AI largely 

depends on the quality of semen and the insemination procedure, sperm washing and 

sperm motility analyses are part of conventional AI procedures [4]. Sperm washing by 

differential gradient centrifugation and swim-up of motile sperm can reduce the amount of 

virus present in the sample [22]. However, harmful effects of washing and centrifugation 

have been attributed to the generation of reactive oxygen species, which can irreversibly 

damage the sperm and impair their fertilizing ability [23-25]. This damage may be severe for 

cryopreserved sperm that have already been injured during freezing [25]. Some sperm 

motility analyses provide reliable estimation of the fertilizing ability of mammalian sperm 

such as computer-assisted sperm analysis (CASA) [26, 27]. A significant positive correlation 

with fertility was found for the linear-motility parameter [28]. Furthermore, the generally 

reduced fertility of cryopreserved semen is considered to be due to the short life-span of 

frozen–thawed sperms [29, 30]. Before AI, the likelihood of successful fertilization can be 

predicted by motility analyses. 

The most common procedure performed to assist reproduction is in vitro fertilization-

embryo transfer (IVF-ET). Conventional IVF treatment requires that the ovaries be 
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stimulated with gonadotropins, which contain follicle-stimulating hormone (FSH) and 

luteinizing hormone (LH) in order to increase the number of mature oocytes retrieved, and 

thus the number of embryos available for transfer [31]. After washing the sperm to be used, 

the sperm-containing medium is dispensed in microdrops under paraffin oil or more simply 

in wells without oil [32]. At the same time, matured oocytes are introduced into the 

fertilization medium and co-incubated with sperm for 18–24 h at 37–39°C in 5% CO2. The 

fertilization rate can be assessed indirectly by examination of the cleavage rate 40–42 h post 

insemination. The basic procedures of IVF in cattle and humans are similar [33]. Another in 

vitro procedure is intracytoplasmic sperm injection (ICSI), where a selected single sperm is 

directly injected into the oocyte. For the ICSI procedure, the oocyte is immobilized using a 

holding pipette; an injection pipette with an internal diameter of 6 m is used to aspirate a 

single spermatozoon. Before aspiration, the sperm is immobilized in polyvinylpyrrolidone. 

A morphologically normal sperm is aspirated into the injection needle, tail first. 

Immobilization of the sperm can also be achieved by crushing the tail with the injection 

pipette. The injection pipette is passed through the zona pellucida and the membrane of the 

oocyte into the cytoplasm in a position sufficiently distant from the first polar body. After 

ICSI using ejaculated sperm, more than two-thirds of the injected oocytes became normally 

fertilized [34]. This procedure is prominent in assisted human reproduction. ICSI is feasible 

in cattle, even with freeze-dried sperm; however, it is not yet widely applied [20, 35]. 

The fertilized embryos are cultured in microdrops under paraffin oil. First cleavage occurs 

23–29 h after fertilization, and the cleaved embryo is called a 2-cell embryo [36]. The number 

of blastomeres in an embryo increases to 4 and 8 at the second and third cleavage, which 

occur at days 2 and 3, respectively. Compaction of the cleaving embryo begins on day 3 due 

to formation of tight inter-cellular junctions. The embryos secrete factors that sustain their 

development, and for this reason they grow better in groups than alone [37]. During 

blastocyst formation, two clearly distinguishable cell lines are formed, the inner cell mass 

(ICM) and the trophectoderm (TE) [36]. A full human blastocyst at day 5 of development 

should consist of more than 60 cells and should at least double its cell number on day 6 [36]. 

Embryos of excellent and good quality at the compact morula to blastocyst developmental 

stages yield the highest pregnancy rates [38]. Recently, non-surgical embryo transfer 

techniques involving the use of specialized embryo transfer pipettes have been developed 

[38]. Because the most important factor influencing the rate of multiple births is the number 

of embryos transferred, in human assisted RT (ART), single embryo transfer is considered to 

be appropriate [39, 40]. IVF-ET is the most important process in animal and human RT. The 

scheme of human ART is summarized in Figure 1.  

Sperm washing and selection are important processes for improving the fertilization rates in 

IVF and ICSI, and these procedures are the same as those used in AI. The quality of the 

embryo formed in in vitro embryo culture is related to the fertilization rate. Therefore, these 

processes need to be studied further in order to improve the success rate of RT. In vitro 

culture systems can and must be improved to obtain embryos of normal quality, equal to 

those obtained by development in the oviduct. A better understanding of the many factors 

regulating embryonic development and interaction with the female reproductive tract might 
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provide some insights [41]. In conventional IVF-ET procedures, sperm are separated by non-

physiological centrifugation and embryos are cultured under static conditions. The far from 

physiological conditions of these methods could be one of the reasons for the reduced 

pregnancy rate following the use of RT. Researchers in this field have to reconsider these 

current methods in order to further improve the success rate of RTs. 

 

Figure 1. Schematic representation of human ART  

The mammalian oviduct and uterus under physiological conditions have been studied to 

aid the design of microfluidic systems for RT. The oviduct consists of three segments, each 

with different functions: the uterotubal junction, the isthmus, and the ampulla [42]. The 

uterotubal junction provides a barrier to infectious microbes that might enter the oviduct 

from the uterus. The isthmus serves as a sperm storage organ and the ampulla provides an 

environment conducive to fertilization and early embryonic development. Figures 2A and B 

show the dynamic structural changes in the diameter of the oviduct induced by the 

peristaltic movement of the rat oviduct stained with fluorescent dyes. The stained 

microstructure in the isthmus has moved. The embryos’ motion is caused by this peristaltic 

movement, and non-motile sperm are washed out from the oviduct.  
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Figure 2. (A) and (B) The rat oviductal structure. Fluorescence image (B) was recorded 10 s after recording 

(A). The yellow arrow in (A) and the yellow dotted arrow in (B) are of the same length. The distance of the 

inner wall of the oviduct decreased in (B) due to peristaltic movements. (C) TEM and (D) SEM images of 

mammalian sperm. (E) Human embryos: (left) Cleaving embryo, (center) Morula, (right) Blastocyst. 

Figures 2C and D show electron microscopic images of human sperms, indicating that the 

length is approximately 50 m. The sperm head contains the DNA, the midpiece contains 

mitochondria, and the tail assists with swimming towards the oocyte [43]. Ejaculated sperm in 

the oviduct undergo capacitation, including motility hyperactivation, as the time of ovulation 

approaches. Capacitating sperm shed proteins that bind them to the mucosal epithelium, 

while hyperactivation assists the sperm in pulling away from the epithelium and escaping out 

of mucosal pockets. The process of sperm release is gradual, reducing the chances of 

polyspermic fertilization that reduces embryo quality. Released sperm may be guided towards 

the oocyte by secretions of the oviduct, cumulus cells, or oocyte. Hyperactivation likely assists 

sperm in penetrating the cumulus matrix and is absolutely required for penetrating the zona 

pellucida and achieving fertilization. Mammalian oocytes take up only a small area of the 

lumen [42]. After fertilization in the ampulla, the cleaving embryo (shown in Figure 2E) 

develops for 5–7 days in vivo. In rats, mice, and humans, once the blastocyst reaches the uterine 
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cavity, it orientates its embryonic pole towards the uterine epithelium and bursts out of the 

zona pellucida, a process known as hatching [44]. The epithelium is invaded from the lateral 

side of the blastocyst and the fragmented epithelial cells are phagocytosed by TE [44-46]. The 

blastocyst develops from a spherical to a tubular form and then elongates to a filamentous 

conceptus. In domestic ruminants (sheep, cattle, and goats), the elongation of the blastocyst 

marks the beginning of implantation, which involves apposition, followed by transient 

attachment and finally firm adhesion [47]. On the basis of these physiological events in the 

female reproductive tract, we aim to improve RT by mimicking the dynamic environment in 

vitro through development of elastomer-based microfluidic devices. 

1.2. Microfluidic channels to handle sperm and embryos 

Microfluidic devices which come into contact with reproductive cells can be fabricated using 

mechanical drilling or molding. Mechanical drilling is feasible for rapid prototyping because 

of the small volume to be removed; however, tool marks in the fabricated microfluidic 

channel caused by the drilling are undesirable for use in cell observation. For prototyping of 

the devices, molding methods using elastomers to create plastic devices are based on 

replication and are faster than those used on glass and harder plastics [48]. A combination of 

molding and use of elastomers is applicable to RT to mimic the physiological environment. 

The hydrophobic silicone elastomer PDMS, having a contact angle of 110°, is a key material 

capable of extending device applications for RT because it is nontoxic, transparent, 

inexpensive, and easy to handle [9]. The Young’s modulus of PDMS is 100 kPa [49]. The 

softness of the material enables easy fabrication, soft mechanism, and appropriate 

combinations with actuation systems. We classified the characteristics of the material and 

found it to be hydrophobic, transparent, elastic, and easy to pattern. PDMS microfluidic 

devices prepared by molding the microstructure and bonding the cured structure with a 

cover glass or glass slide can be used for manipulation and culture of cells to investigate 

their physiological functions. Within the last decade, studies using PDMS microfluidic 

channels or funnels have suggested novel solutions for oocyte manipulation, sperm sorting, 

and embryo culture [50-74]. Microfluidic systems that mimic oviductal structures and 

functions for use in RT are divided into those used for sperm motility control or monitoring 

[50-60], regulation of chemical gradients for in vitro fertilization and embryo culture [61-69], 

and applying mechanical stimuli to the developing embryo [70-74]. Although the unique 

characteristics of elastomers have been exploited for microstructure fabrication and/or 

micro-pumping, mechanical deformation of the elastomer membrane has not been used to 

produce new devices for RT. Applications developed by our group based on this 

elastomeric characteristic are introduced in this chapter.  

2. Sorting and analyzing motile sperm 

2.1. Elastomer chip device for sperm sorting  

Ejaculated motile sperm is selected for successful fertilization in the oviduct. In ART, selection 

and sorting of motile sperm are routine processes. Some procedures may take up to 2 h for 

semen processing by conventional protocols, such as density gradient centrifugation and 
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subsequent swim-up [75]. To reduce treatment times and physical damage induced by 

centrifugation, microfluidic sperm sorting (MFSS) chip devices have been developed for 

selecting motile sperm for use in ART [50-55]. As shown in Figure 3A, two gravity-driven 

laminar flows within the microfluidic channel are important for sperm selection. The fluids 

flowing through the semen inlet (A) and the medium inlet (B) should move parallel to each 

other and then exit through their respective outlets (A→D and B→C). Sperm are sorted on the 

basis of their ability to swim across the streamline into the medium stream, and hence only 

motile sperm are recovered in outlet C. Using an MFSS device, embryologists can perform a 1-

step sorting protocol without centrifugation and complete processing within 30 min [76]. 

Reducing the treatment time and eliminating the centrifugation step minimizes the exposure 

of sperm to concentrated reactive oxygen species (ROS) and prevents DNA fragmentation [77]. 

Schulte et al. previously reported that DNA fragmentation was significantly decreased in 

MFSS-treated sperm [53]. Technologies that facilitate the identification and selection of sperm 

with high motility should increase the ART success rate, and the linear velocities (LV) of sperm 

separated using an MFSS device have been shown to increase compared with those of 

untreated sperm [54, 55]. On the basis of these results, an MFSS device can be used in clinical 

semen processing protocols for efficient ICSI and IVF. In the first report, the device was 

fabricated using PDMS bonded to a glass slide as shown in Figure 3B. Currently, disposable 

plastic devices for human ART are commercially available, as shown in Figure 3C. This device 

is a successful example of facilitated prototyping using elastomers.  

 

Figure 3. (A) Principle of sperm sorting using an MFSS device. Arrows show the direction of the 

laminar flow. (B) A glass-bottomed PDMS-MFSS. (C) A cycloolefin polymer-based MFSS device for 

human ART (Menicon Co., Ltd.).  



 
Advanced Elastomers – Technology, Properties and Applications 250 

2.2. Elastomer chip device for analyzing motility of motile sperm 

Sperm tracking and motility analyses are usually performed before and after sorting in ART. 

Optical microscopes have been used to image sperm for CASA and for manual identification 

of sperm motility for ART. A minimal image platform is desired to enable compactness, 

ease-of-use, minimized footprint, and portability to monitor sperm motility by a preclinical 

assay at home. Some researchers have developed a microfluidic chip that can be used by an 

individual himself at home on convenient moments to check his semen quality [56-59]. For 

example, if a person finds that his semen quality is low or that there are no motile sperm in 

his semen, he can opt for ICSI for his fertility treatment. McCormack et al. developed a 

fluorescent labeling method for simultaneously analyzing motile sperm concentration and 

motility by monitoring fluorescent intensity of a region where motile sperm were collected 

[56]. After a certain time period, the intensity of fluorescence was measured to quantify 

motile sperm concentration. Both motile sperm concentration and motility were taken into 

account by this design. However, fluorescent labeling might not be suitable for routine use 

in hospitals or at home. The microdevice produces a flow field for sperm to swim against, 

and sperm that overcome the flow within a specified time are propelled along in a separate 

channel and counted by the resistive pulse technique [57]. The microdevice could be used 

for simple self-assessment of sperm quality at home. Recently, an on-chip device for 

concentration of sperms using electrical impedance measurements was developed by 

Segerink et al. [58]. Using this device, the concentration of sperm and other cells, such as HL-

60 cells, in suspension can be determined. A lensless charge-coupled device (CCD) was 

integrated with a microfluidic chip to create a wide field of view combined with automatic 

recording as the sperm move inside a microfluidic channel [59]. These devices can evaluate 

sperm concentration and motility and the microfluidic channels can be fabricated using 

glass or poly(methyl methacrylate) (PMMA). However, for effective working of these 

devices, the physical characteristics of silicone elastomer such as hydrophobicity and 

elasticity are not required.  

2.3. Elastomeric chambers for recording trajectories of motile sperm 

Sperm motility analysis is not only used in human ART, but is also one of the key 

procedures used to analyze cattle and porcine sperm, especially frozen or transferred sperm 

used for AI. As discussed above, diluted semen is usually sandwiched between hydrophilic 

glass slides or glass- or plastic-bottomed microfluidic channels for observation of motile 

sperm. The trajectories of human and bovine sperm can be recorded using glass equipment; 

however, it is difficult to record the trajectory of motile porcine sperm using such a device 

because they adsorb to the surface of glass and hydrophilic plastics such as PMMA. Using a 

hydrophobic PDMS preparation (as shown in Figure 5), it would be possible to record the 

trajectories of motile sperm without problems associated with adsorption, making it 

possible to compare sperm motility parameters [60]. Because of the elasticity of PDMS, we 

propose using a preparation device such as that shown in Figure 5 for conventional CASA 
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to reduce the overlap of motile sperm images (Figure 5D), which are artifacts of CASA. This 

device could thus be used to check for the quality of adhesive motile sperm and to 

investigate porcine sperm motility and AI success rate. The quality of porcine semen affects 

the nutrition or transfer of semen. Before AI, a technician needs to check the sperm quality. 

A device such as this could also be used to record adhesive human motile sperm adsorbed 

to glass in human ART.  

 

Figure 4. Sperm-analyzing microfluidic devices (A) A microfluidic device for monitoring fluorescent 

intensity of motile sperm through a microfluid line in the 50 nL micro-cuvette [56]. (B) A home-use 

device that allows rapid and quantitative sperm quality analysis using voltage measurements [57]. After 

a set time period, sperm arrive at the junction and the sperms swimming against the flow from A to B 

are flushed out through the aperture to reservoir C by the fluid flow from A to C. (C) On-chip device for 

sperm concentration using electrical impedance measurements [58]. (D) A lensless charge-coupled 

device (CCD) integrated with a microfluidic chip [59]. 
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Figure 5. Use of a PDMS membrane for sperm motility analysis. (A) A PDMS membrane before use, 

with an area of 0.5 × 1 mm2. (B) Method of sandwiching semen between the two membranes with a 

thickness of 0.1 mm. (C) Cross-sectional image of the preparation. A water droplet is sandwiched 

between two PDMS membranes. (D) Sperm in this preparation is displayed by CASA. No overlap of 

motile sperm is observed in this frame. 

3. Static and dynamic mammalian embryo culture systems 

3.1. Embryo culture systems using PDMS chambers or channels 

Fertilized oocytes can be cultured in several microliters of optimized medium for culture for 

longer than 5 days. In various animal models, increased embryo density has been shown to 

improve development, possibly through secretion of autocrine/paracrine factors. These 

growth factors may influence embryo development [78-80]. Based largely on data from 

animal models, several novel culture approaches utilizing reduced volumes to culture 

embryos appear to offer potential benefits for subsequent embryo development [79, 80]. 

However, using a low volume of medium may render the embryos susceptible to 

detrimental changes in conditions such as osmolality or pH [81]. To control beneficial and 

detrimental chemical environments during in vitro embryo culture, various systems 

including PDMS-based microfluidic devices have been developed. These are known as 

microwells or microfluidic channels. 

The well-of-the-well system (WOW) has been used successfully with embryos from a variety 

of species including mouse, pig, cow, and human and entails using small impressions, or 

microwells, of varying sizes and arrangements created in the bottom of a vessel/dish [8, 61] 

(Figure 6A). An alternate approach that permits a commercial means of utilizing microwells in 

conjunction with existing dishware in the lab involves using microwell-inserts consisting of 

several rows of tiny culture wells composed of PDMS [38]. Within PDMS and glass-bottomed 

microchannels under static media conditions, 2-cell mouse embryos can be cultured to the 

blastocyst stage [65, 66]. However, researchers found that culture in microchannels resulted in 

significantly greater blastocyst formation and hatched blastocyst development at 72 h and 96 

h, respectively. These static culture systems could therefore be useful in investigating the 

impact of autocrine/paracrine compounds versus embryo spacing. 
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A weak point of the use of PDMS for embryo development was evaporation of the medium 

through the PDMS due to the porous structure of the cured devices. This evaporation 

through the PDMS is significant and could result in marked shifts in medium osmolality 

and a resulting reduction in embryo quality. This drawback of PDMS was circumvented by 

design and use of a sandwich membrane that remained flexible, yet protected against 

evaporation [70]. A nonporous PDMS microwell culture system supported the 

developmental competence of bovine and human embryos cultured individually [64]. An 

important process in the fabrication of nonporous PDMS microwells is curing under low 

pressure (−0.08 mPa). As a result, reports suggest that evaporation and osmolality changes 

can be reduced by appropriate fabrication techniques [64, 70]. 

3.2. Elastomer channels and devices for dynamic embryo culture systems 

In vivo the preimplantation embryo is continually moving due to muscle contractions and 

movement of epithelial cell cilia [80]. This movement also disrupts cell-surface gradients 

that can form around embryos in static culture. It has been experimentally demonstrated 

that gradients exist in culture medium under static culture conditions because of embryo 

secretions or depletion of medium components. Gradients of potassium, calcium, and 

oxygen have been measured around mouse embryos [82, 83] and dynamic culture systems 

(DCSs) may disrupt these gradients, providing a more homogenous environment that more 

closely recapitulates the in vivo growth environment. These cilia and oviduct movements 

(shown in Figures 2A and B) also result in mechanical effects such as shear stress (SS), 

compression, and friction in the fallopian tube, which may influence developing embryos 

before nidation. DCSs may apply MS to the cultured embryo and thus replicate the 

environment it experiences under physiological conditions. 

When using DCSs, there is a suggested threshold of SS that causes detrimental effects, such 

as apoptosis, on the cultured embryo. Xie et al. reported that SS in excess of 1.2 dyn/cm2 can 

cause damage to blastomeres, up-regulation of stress signaling pathway constituents, and 

embryo degeneration [84]. Therefore, the SS in the vicinity of a cultured embryo induced by 

motions of DCSs should be kept below the threshold. In a study using a microfunnel as a 

DCS (Figure 6B), embryos were placed into the funnel reservoir, while medium was added 

and removed via a microfluidic channel connected to the bottom of the funnel via actions of 

a Braille actuator [71]. Mouse embryos were cultured in microdrop-static control, 

microfunnel-static control, or microfunnel-dynamic conditions with microfluidics. 

Progression to the blastocyst developmental stage was significantly enhanced under 

dynamic microfunnel culture conditions, as evidenced by an increased percentage of 

hatching or hatched blastocysts and a significantly higher average number of cells per 

blastocyst. Kim et al. developed a DCS using a combination of a PDMS microfluidic channel 

and a tilting machine, as shown in Figure 6C [72]. Bovine embryos were loaded and 

incubated by simply placing them on a tilting machine to provide embryo movement via 

gravity. The proportion of embryos that progressed to the eight-cell stage was superior in 

the constricted channel to that in the straight channel. Positive effects using tilting culture 

systems were also found in a microdroplet environment. We developed a tilting embryo 
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culture system (TECS) to move mouse, porcine, and human embryos by fluid motion of the 

microdroplet, and we have shown that blastocyst development rates of these embryos using 

TECS improved over those of static controls [85-87]. Gentle vibration of porcine and human 

embryos also appeared to yield improved blastocyst formation rates [88-90]. These DCSs can 

be combined with microwells and microfluidic channels for mammalian embryo cultures. 

 

Figure 6. PDMS-based microfluidic devices for embryo culture. (A) The WOW system, (B) A 

microfunnel (C) A microfluidic IVC channel. In (B) and (C), the left and right figures show reservoir or 

microfluidic channels of the system and embryo and fluid motions, respectively. 

3.3. Peristaltic movement of an elastomer membrane to create a dynamic embryo 

culture system 

MS may be generated by fluid dynamics and compression of embryos due to interactions 

with the wall of the oviduct. We developed an air actuating system with microfluidic 

channels to apply MS by deforming a 0.1-mm-thick PDMS membrane and evaluated the MS 

applied to mouse embryos inside the microfluidic channel. Using an air actuating system as 

shown in Figures 7A and B, we applied compression to mouse embryos inside the medium 

channel and estimated SS based on the velocity of the embryos’ motion [74, 75]. It has been 

demonstrated that this culture system can be employed to investigate the relationship between 

MS and molecular mechanisms. Because this culture system could be directly positioned on 

the stage of a fluorescence microscope, fluorescence images of embryos in the microfluidic 

channel could be recorded, indicating the distribution of intracellular calcium concentration 

([Ca2+]i). Both MS and [Ca2+]i were quantified based on time-resolved confocal microscopy 

images. When blastocysts were compressed, FI increased in response to the applied MS, as 

shown in Figure 7C. Molecular mechanosensing systems such as mechanosensitive ion 

channels could play an important role in responses to these MS. Using this device to 

investigate the applied MS and resultant molecular response, we can investigate the functions 
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of the embryonic sensor proteins. The ultimate goal is to use this mechanism as an artificial 

oviduct for clinical use based on the soft mechanism of elastomers.  

 

Figure 7. A pneumatic microfluidic actuation system for dynamic embryo culture. (A) Mechanical drive 

system and glass-bottomed PDMS microfluidic channel. (B) Schematic view of PDMS membrane 

deformation. The thick line represents the PDMS membrane. (C) [Ca2+]i changes in a compressed mouse 

blastocyst in the microfluidic channel induced by membrane deformation. The center image shows 

embryo compression. 
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4. Conclusion 

We developed microfluidic devices and systems for use in motile sperm sorting, sperm 

motility checking, and static and dynamic embryo culture systems based on the physical 

and chemical properties of silicone elastomers. Utilizing these properties, methods for RT 

can be improved, and novel strategies can be developed to implement more physiological 

treatments for human ART. However, most commercial elastomers are not recommended 

for medical use. To apply microfluidic channels in dynamic human embryo culture for ART, 

it is necessary to select a soft material approved for clinical use to prepare the microfluidic 

channels. Silicone hydrogel, which is used in the manufacture of contact lenses, is a 

candidate material for this application; therefore, we developed silicone hydrogel 

microfluidic channels for embryo culture. Once commercial elastomers have been approved 

for clinical use, elastomer-based medical microdevices are likely to become widespread and 

routinely used. The material development and approval of the developed materials for 

medical use are bottlenecks for the medical application of elastomeric devices and systems. 

This problem also applies to implantation and regenerative medicine. Over the last decade, 

great progress has been made in RT and human ART, and these improvements can 

contribute to other fields of medicine utilizing microfluidic systems. 
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