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1. Introduction 

Today, a web search is clearly one of the foremost methods for finding information. The 

growth of the Internet and the increasing availability of online resources have made the task 

of searching a crucial one. However, searching the web is not always as successful as users 

expect it to be and Internet users have to make a great effort to formulate a search query that 

returns the required results. Information retrieval concentrates on developing algorithms to 

locate and select documents from a corpus that are relevant to a given query. The 

development of online information retrieval tools, such as search engines or search robots 

many of which utilize hyperlink analysis [1], has been greatly beneficial to Internet users [2]. 

In the health domain, users are now experiencing huge difficulties in finding precisely what 

they are looking for among the numerous documents available online, and this in spite of 

existing tools. In medicine and health-related information accessible on the Internet, general 

search engines, such as Google, or general catalogues, such as Yahoo, cannot solve this 

problem efficiently [3]. This is because they usually offer a selection of documents that turn 

out to be either too large or ill-suited to the query. Free text word-based search engines 

typically return innumerable completely irrelevant hits, which require much manual 

weeding by the user, and also miss important information resources.  

In this context, several health gateways [4] have been developed to support systematic 

resource discovery and help users find the health information they are looking for. These 

information seekers may be patients but also health professionals, such as physicians 

searching for clinical trials. Health gateways rely on thesauri and controlled vocabularies. 

Some of them are evaluated in [5]. Medical thesauri are a proven key technology for 

effective access to health information since they provide a controlled vocabulary for 

indexing documents and coding electronic health records. They therefore help to overcome 

some of the problems of free-text search by linking and grouping terms and concepts. 
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Nonetheless, medical vocabularies are difficult to handle by non-professionals. Problems 

also arise because there are practically as many different terminologies, controlled 

vocabularies, thesauri and classification systems as there are fields of application in health. 

We give in this chapter a panel of techniques that may be applied to help health information 

seekers. All the tests are performed on the CISMeF catalogue (Catalogue and Index of 

Medical Sites in French) [6] but are reproducible in other languages and other medical 

applications. 

The remainder of the chapter is organized as follows: in section 2 we start by describing the 

CISMeF catalogue. The section 3 is devoted to simple search techniques such as approximate 

string matching and heuristics for queries composed by several words. Another method 

consists in meta-modeling health terminologies to improve information retrieval, the 

description of which is in the section 4. In the section 5 we describe the data-mining process 

to extract new knowledge and relations between terms to allow users to extend their 

searches. 

2. The CISMeF catalogue 

The CISMeF project was initiated in February 1995. As opposed to Yahoo, CISMeF is 

cataloguing the most important and quality-controlled sources of institutional health 

information in French. The CISMeF catalogue describes and indexes a large number of 

health-information resources of high quality (n=13,452 in October 2003; n=90,056 in May 

2012). A resource can be a web site, web pages, documents, reports and teaching material: 

any support that may contain health information. 

CISMeF takes into account the diversity of the end-users and allow them to find good 

quality resources. These resources are selected according to strict criteria by a team of 

librarians and are indexed according to a methodology which involves a four-fold process: 

resource collection, filtering, description and indexing. CISMeF is a quality-controlled 

gateway such as defined by Koch [4]. The following elements that characterize a typical 

quality-controlled health gateway are fulfilled in CISMeF: selection and collection 

development, collection management, intellectual creation of metadata, resource description 

(a metadata set), resource indexing (with controlled vocabulary system). To include only 

reliable resources, and to assess the quality of health information on the Internet, the main 

criteria (e.g. source, description, disclosure, last update) of CISMeF are from HONCode1. In 

the following sections we describe the set of metadata elements and the reference dictionary 

used in the catalogue. 

2.1. CISMeF metadata 

The notion of metadata was around before the Internet but its importance has grown with 

the increasing number of electronic publications and digital libraries. The World Wide Web 

Consortium (W3C) have proposed that metadata should be used to describe the data 

                                                                 
1 http://www.hon.ch/ 



 
Supporting E-Health Information Seekers: From Simple Strategies to Knowledge-Based Methods 37 

contained on the web and to add semantic markup to web resources, thus describing their 

content and functionalities, from the vocabulary defined in terminologies and ontologies. 

Metadata are data about data, and in the web context, these are data describing web 

resources. When properly implemented, metadata enhance information retrieval. The 

CISMeF uses several sets of metadata. Among them there is the Dublin Core (DC) [7] 

metadata set, which is a 15-element set intended to aid discovery of electronic resources. The 

resources indexed in CISMeF are described by eleven of the Dublin Core elements: author, 

date, description, format, identifier, language, editor, type of resource, rights, subject and title. DC is 

not a complete solution; it cannot be used to describe the quality or location of a resource. To 

fill these gaps, CISMeF uses its own elements to extend the DC standard. Eight elements are 

specific to CISMeF: institution, city, province, country, target public, access type, sponsorships, 

and cost. The user type is also taken into account. The CISMeF have defined two additional 

fields for resources intended for health professionals: indication of the evidence-based 

medicine, and the method used to determine it. For teaching resources, eleven elements of the 

IEEE 1484 LOM (Learning Object Metadata) “Educational” category are added. 

2.2. CISMeF controlled vocabulary 

Thesauri are a proven key technology for effective access to information as they provide a 

controlled vocabulary for indexing information. They therefore help to overcome some of 

the problems of free-text search by relating and grouping relevant terms in a specific 

domain. The main thesaurus used for medical information is the Medical Subject Headings 

(MeSH) [8] thesaurus used by the U.S. National Library of Medicine to index MEDLINE 

articles. The core of MeSH is a hierarchical structure that consists of sets of descriptors. At 

the top level we find general headings (e.g. diseases), and at deeper levels we find more 

specific headings (e.g. asthma). The 2012 version of the MeSH contains over 26,581 main 

headings (e.g. hepatitis, abdomen) and 83 subheadings (e.g. diagnosis, complications). 

Together with a main heading, a subheading allows to specify which particular aspect of the 

main heading is being addressed. For example, the pair [hepatitis/diagnosis] specifies the 

diagnosis aspect of hepatitis. For each main heading, MeSH defines a subset of allowable 

qualifiers so that only certain pairs can be used as indexing terms (e.g. aphasia/metabolism and 

hand/surgery are allowable, but hand/metabolism is not). The reference dictionary of CISMeF 

(the structure of which is detailed in Table 1) was created between 1995 and 2005 exclusively 

on the French version of the MeSH thesaurus maintained by the US National Library of 

Medicine, completed by numerous synonyms in French collected by the CISMeF team. 

Several add-ons were performed around the MeSH thesaurus to index Web resources 

instead of scientific articles [9]: super-concepts (or Meta-terms) to optimize information 

retrieval and categorization, and resource types (organized hierarchically since 1997 vs. 

MeSH publication types’ hierarchy since 2006). Indeed, MeSH main headings and 

subheadings are organized hierarchically but these hierarchies do not allow a complete view 

concerning a specialty. The main headings and subheadings in the CISMeF controlled 

vocabulary are brought together under metaterms (e.g. cardiology). Metaterms (n=73) concern 
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medical specialties and it is possible by browsing to know sets of MeSH main headings and 

subheadings qualifiers which are semantically related to the same specialty but dispersed in 

several trees. The MeSH thesaurus was originally used to index biomedical scientific articles 

for the MEDLINE database. In addition to the set of metaterms, the CISMeF team has modeled 

a hierarchy of resource types (n=127), to customize MeSH to the field of e-health resources. 

These resource types describe the nature of the resource (e.g. teaching material, clinical 

guidelines, patient forums), and are a generalization or extension of the MEDLINE publication 

types. Each resource in CISMeF is described with a set of MeSH main headings, subheadings 

and CISMeF resource types. Each main heading, [main heading/subheading] pair, and 

resource type is allotted a ‘minor’ or ‘major’ weight, according to the importance of the 

concept it refers to in the resource. Major terms are marked by a star (*). 

 

 MeSH Terms MeSH Synonyms CISMeF synonyms Total 

1 word 9,679 9,391 3,359 22,429 

2 words 9,833 28,051 8,258 46,142 

3 words 4,204 19,551 6,569 30,324 

4 words and + 2,503 16,992 4,924 24,419 

Table 1. Composition of the reference dictionary based on the MeSH in French. 

2.3. Searching through the catalogue 

Many ways of navigation and information retrieval are possible in the catalogue [6]. The 

most used is the simple search (free text interface). It is based on subsumption relationships. 

If the query can be matched with an existing term of the terminology, thus the result is the 

union of the resources that are indexed by the term, and the resources that are indexed by 

the terms it subsumes, directly or indirectly, in all the hierarchies it belongs to. If the query 

cannot be matched, the search is done over the other fields of the metadata and in a worse 

case a full-text search is carried out. Contrary to MEDLINE, the resource types and the 

meta-terms were voluntary made ambiguous to maximize the recall (e.g. in the query 

guidelines in virology, virology will be recognized as a meta-term (instead of a term) and 

guidelines will be recognized as both the term and the resource type because we assume 

most of end users confuse content and container). In the following section we propose some 

simple enhancements for health information seekers' queries matching. 

3. Spell-checking queries 

A simple spelling corrector, such as Google's "Did you mean:" or Yahoo's "Also try:" feature 

may be a valuable tool for non-professional users who may approach the medical domain in 

a more general way [10]. Such features can improve the performance of these tools and 

provide the user with the necessary help. In fact, the problem of spelling errors represents a 

major challenge for an information retrieval system. If the queries (composed by one or 

multiple words) generated by information seekers remain undetected, this can result in a 

lack of outcome in terms of search and retrieval. A spelling corrector may be classified in 
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two categories. The first relies on a dictionary of well-spelled terms and selects the top 

candidate based on a string edit distance calculus. An approximate string matching 

algorithm, or a function, is required to detect errors in users' queries. It then recommends a 

list of terms, from the reference dictionary, that are similar to each query word. The second 

category of spelling correctors uses lexical disambiguation tools in order to refine the 

ranking of the candidate terms that might be a correction of the misspelled query.  

3.1. Related work 

Several studies have been published on this subject. We cite the work of Grannis [11] which 

describes a method for calculating similarity in order to improve medical record linkage. 

This method uses different algorithms such as Jaro-Winkler, Levenshtein [12] and the 

longest common subsequence (LCS). In [13] the authors suggest improving the algorithm for 

computing Levenshtein similarity by using the frequency and length of strings. In [14] a 

phonetic transcription corrects users' queries when they are misspelled but have similar 

pronunciation (e.g. Alzaymer vs. Alzheimer). In [15] the authors propose a simple and 

flexible spell-checker using efficient associative matching in a neural system and also 

compare their method with other commonly used spell-checkers. In fact, the problem of 

automatic spell checking is not new. Indeed, research in this area started in the 1960's [16] 

and many different techniques for spell-checking have been proposed since then. Some of 

those techniques exploit general spelling error tendencies and others exploit phonetic 

transcription of the misspelled term to find the correct term. The process of spell-checking 

can generally be divided into three steps: 

i. error detection: the validity of a term in a language is verified and invalid terms are 

identified as spelling errors; 

ii. error correction: valid candidate terms from the dictionary are selected as corrections 

for the misspelled term; 

iii. ranking: the selected corrections are sorted in decreasing order of their likelihood of 

being the intended term. 

Many studies have been performed to analyze the types and the tendencies of spelling errors 

for the English language. According to [17] spelling errors are generally divided into two types, 

(i) typographic errors and (ii) cognitive errors. Typographic errors occur when the correct 

spelling is known but the word is mistyped by mistake. These errors are mostly related to 

keyboard errors and therefore do not follow any linguistic criteria (58% of these errors involve 

adjacent keys [18] and occur because the wrong key is pressed, or two keys are pressed, or keys 

are pressed in the wrong order …etc.). Cognitive errors, or orthographic errors, occur when the 

correct spelling of a term is not known. The pronunciation of the misspelled term is similar to 

the pronunciation of the intended correct term. In English, the role of the sound similarity of 

characters is a factor that often affects error tendencies [18]. However, phonetic errors are harder 

to correct because they deform the word more than a single insertion, deletion or substitution. 

Damereau [16] indicated that 80% of all spelling errors fall into one of the following four single 

edit operation categories : (i) transposition of two adjacent letters (ashtma vs. asthma) (ii) 
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insertion of one letter (asthmma vs. asthma) (iii) deletion of one letter (astma vs. asthma) and (iv) 

replacement of one letter by another (asthla vs. asthma). Each of these wrong operations costs 1 

i.e. the distance between the misspelled and the correct word [[17]. 

The third step in spell-checking is the ranking of the selected corrections. Main spell-

checking techniques do not provide any explicit mechanism. However, statistical techniques 

[19] provide ranking of the corrections based on probability scores [20] with good results 

[21]. HONselect [22] is a multilingual and intelligent search tool integrating heterogeneous 

web resources in health. In the medical domain, spell-checking is performed on the basis of 

a medical thesaurus by offering information seekers several medical terms, ranging from 

one to four differences related to the original query. Exploiting the frequency of a given 

term in the medical domain can also significantly improve spelling correction [23]: edit 

distance technique is used for correction along with term frequencies for ranking. In [24] the 

authors use normalization techniques, aggressive reformatting and abbreviation expansion 

for unrecognized words as well as spelling correction to find the closest drug names within 

RxNorm for drug name variants that can be found in local drug formularies. It returns only 

drug name suggestions. To match queries with the MeSH thesaurus, Wilbur et al. [25] 

proposed a technique on the noisy channel model and statistics from the PubMed logs. 

3.2. Proposed method 

Research has focused on several different areas, from pattern matching algorithms and 

dictionary searching techniques to optical character recognition of spelling corrections in 

different domains. However, the literature is quite sparse in the medical domain, which is a 

distinct problem, because of the complexity of medical vocabularies. In this section, a simple 

method is proposed: it combines two approximate string comparators, the well-known 

Levenshtein [6] edit distance and the Stoilos function similarity defined in [26] for 

ontologies. We apply and evaluate these two distances, alone and combined, on a set of 

sample queries in French submitted to the health gateway CISMeF. A set of 127,750 queries 

were extracted from the query log server (3 months logs). Only the most frequent queries 

were selected. In fact some queries are more frequent than others. For example, the query 

"swine flu" is more present in the query log than "chlorophyll". We eliminated the doubles 

(68,712 queries remained). From these 68,712 queries, we selected 25,000 queries to extract 

those with no answers (7,562). A set of 6,297 frequent queries was constituted from the 

original set of 7,562 by eliminating those that were submitted only once. In this set, the 

queries were composed from 1 to 4 and more words as detailed in the Table 2. 

 

Composition Number 

1 word 1,061 

2 words 1,636 

3 words 1,443 

4 (and more) words 2,157 

Total 6,297 

Table 2. Structure of the queries (with no answer) obtained from the logs. 
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3.2.1. Similarity functions 

Similarity functions between two text strings S1 and S2 give a similarity or dissimilarity score 

between S1 and S2 for approximate matching or comparison. For example, the strings 

"Asthma" and "Asthmatic" can be considered similar to a certain degree. Modern spell-

checking tools are based on the simple Levenshtein edit distance [12] which is the most 

widely known. This function operates between two input strings and returns a score 

equivalent to the number of substitutions and deletions needed in order to transform one 

input string into another. It is defined as the minimum number of elementary operations 

that is required to pass from a string S1 to a string S2. There are three possible transactions: 

replacing a character with another, deleting a character and adding a character. This 

measure takes its values in the interval [0, ∞ [. The Normalized Levenshtein [27] (LevNorm) 

in the range [0,1] is obtained by dividing the distance of Levenshtein Lev(S1, S2) by the size of 

the longest string and it is defined by the following equation (): 

 1 2
1 2

1 2

Lev (S )
LevNorm(S )=

Max( S , S )

,S
,S  (1) 

For example, LevNorm(eutanasia, euthanasia)=0.1, as Lev(eutanasia, euthanasia)=1 (adds 1 

character h); |eutanasia|=9 and |euthanasia|=10. 

We complete the calculation of the Levenshtein distance by the similarity function Stoilos 

proposed in [26]. It has been specifically developed for strings that are labels of concepts in 

ontologies. It is based on the idea that the similarity between two entities is related to their 

commonalities as well as their differences. Thus, the similarity should be a function of both 

these features. It is defined by the equation (2) where Comm(S1,S2) stands for the 

commonality between the strings S1 and S2, Diff(S1,S2) for the difference between S1 and S2, 

and Winkler(S1,S2) for the improvement of the result using the method introduced by 

Winkler in [28]: 

         1, 2 1, 2 1, 2 1, 2Sim S S = Comm S S Diff S S + winkler S S   (2) 

The function of commonality is determined by the substring function. The biggest common 

substring between two strings (MaxComSubString) is computed. This process is further 

extended by removing the common substring and by searching again for the next biggest 

substring until none can be identified. The function of commonality is given by the equation 

(3): 

  1 2
1 2

2 MaxComSubString

Comm
S

i
iS ,S =

+ S


 (3) 

For example, for S1=Trigonocepahlie and S2=Trigonocephalie we have: 

|MaxComSubString1| = |Trigonocep|=10, |MaxComSubString2| =|lie|=3 and 

Comm(Trigonocepahlie,Trigonocephalie) = 0.866.  
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The difference function Diff(S1,S2) is based on the length of the unmatched strings resulting 

from the initial matching step. The function of difference is defined in equation (4) where p

 [0, ∞ [, 1Su  and 2Su  represent the length of the unmatched substring from the strings S1 

and S2 scaled respectively by their length : 

  
   

1 2
1 2

1 2 1 2

Diff( )
1

S S

S S S S

u u
S ,S =

p + p u + u u u



   
   (4) 

For example for S1=Trigonocepahlie and S2=Trigonocephalie and p=0.6 we have: 1Su = 2/15; 

2Su =2/15; Diff(S1,S2) =0.0254. 

The Winkler parameter Winkler(S1,S2) is a factor that improves the results. It is defined by 

the equation (5) where L is the length of common prefix between the strings S1 and S2 at the 

start of the string up to a maximum of 4 characters and P is a constant scaling factor for how 

much the score is adjusted upwards for having common prefixes. The standard value for 

this constant in Winkler's work is P=0.1 : 

   1 2 1 2Winkler (1 ( ))S ,S = L P Comm S ,S    (5) 

For example, for between S1=hyperaldoterisme and S2=hyperaldosteronisme, we have 

|S1|=16, |S2|=19; the common substrings between S1 and S2 are hyperaldo, ter, and isme. 

Comm(S1,S2)=0.914; Diff(S1,S2)=0; Winkler(S1,S2)=0.034 and Sim(hyperaldoterisme,hyper 

aldosteronisme)=0.948. 

3.2.2. Processing users' queries 

As detailed in [18], spelling errors can be classified as typographic and phonetic. Cognitive 

errors are caused by a writer's lack of knowledge and phonetic ones are due to similar 

pronunciation of a misspelled and corrected word. We pre-process the queries by a phonetic 

transcription with the algorithm described in [14]. To process multi-word queries, we used 

the following basic natural language processing steps and the well-known Bag-of-Words 

(BoW) algorithm before applying similarity functions:  

1. Query segmentation: the query was segmented in words thanks to a list of segmentation 

characters and string tokenizers. This list is composed of all the non-alphanumerical 

characters (e.g.: * $,!§;|@). 

2. Character normalizations: we applied two types of character normalization at this stage. 

MeSH terms are in the form of non-accented uppercase characters. Nevertheless, the 

terms used in the CISMeF terminology are in mixed-case and accented. (1) Lowercase 

conversion: all the uppercased characters were replaced by their lowercase version; “A” 

was replaced by “a”. This step was necessary because the controlled vocabulary is in 

lowercase. (2) Deaccenting: all accented characters (“éèêë”) were replaced by non-

accented (“e”) ones. Words in the French MeSH were not accented, and words in 

queries were either accented or not, or wrongly accented (hèpatite” instead “hépatite”). 
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3. Stop words: we eliminated all stop words (such as the, and, when) in the query. Our stop 

word list was composed 1,422 elements in French (vs. 135 in PubMed).  

4. Exact match expression: we use regular expressions to match the exact expression of each 

word of the query with the terminology. This step allowed us to take into account the 

complex terms (composed of more than one word) of the reference dictionary and also 

to avoid some inherent noise generated by the truncations. The query ‘accident’ is 

matched with the term ‘circulation accident’ but not with the terms ‘accidents’ and ‘chute 

accidentelle’. The query 'sida' is matched with the terms 'lymphome lié sida' and 'sida 

atteinte neurologique' but not with the terms 'glucosidases', 'agrasidae' and 'bêta 

galactosidase' which are not relevant. 

5. Phonemisation: It converts a word into its French phonemic transcription: e.g. the query 

alzaymer is replaced by the reserved term alzheimer. 

6. Bag of words: The algorithm searched the greatest set of words in the query corresponding 

to a reserved term. The query was segmented. The stop words were eliminated. The other 

words were transformed with the Phonemisation function and sorted alphabetically. The 

different reserved term bags were formed iteratively until there were no possible 

combinations. The query 'therapy of the breast cancer' gave two reserved words: 

'therapeutics' and ‘breast cancer' (therapy being a synonym of the reserved term therapeutics). 

3.2.3. Evaluations 

To evaluate our method of correcting misspellings, we used the standard measures of 

evaluation of information retrieval systems, by calculating precision, recall and the F-

Measure. We performed a manual evaluation to determine these measures. Precision (6) 

measured the proportion of queries that were properly corrected among those corrected. 

 
 

 
  

 

Queries correctly corrected
Precision

Queries corrected
  (6) 

Recall (7) measured the proportion of queries that were properly corrected among those 

requiring correction. 

 
 
 

  

   

Queries correctly corrected
Recall

Queries to be corrected
  (7) 

The F-Measure combined the precision and recall by the following equation (8) : 

  
)RecallPrecision(

RecallPrecision2
MeasureF




  (8) 

We also calculated confidence intervals at =5% to avoid evaluating the whole set of queries, 

but some sets that are manually manageable. For a proportion x and a set of size nx the 

confidence interval is: 
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(1 ) (1 )

1.96 ; 1.96x
x x

x x x x
CI x x

n n

    
     
  

 (9) 

3.2.4. Results 

The Levenshtein and Stoilos functions require a choice of thresholds to obtain a manageable 

number of correction suggestions for the user. We tested, in a previous work, different 

thresholds [29] for the normalized Levenshtein distance, the similarity function of Stoilos 

and for the combination of both on a set of 163 queries. The best results were obtained with 

Levenshtein>0.2 and Stoilos>0.7. To determine the impact of the size of the query we 

measured the number of suggestions of corrected queries (on the set of 6,297 frequent 

queries) in the Table 3. For a user, the maximum number of manageable suggestions for one 

query was 6. 

 

 Nb characters Nb suggestions by query 

1 word query Min = 3; Avg = 10.49 ; Max = 25 Avg = 0.39 ; Max = 5 

2 words query Min = 5; Avg = 18.36; Max = 41 Avg = 0.22 ; Max = 6 

3 words query Min = 10; Avg = 24.39; Max = 54 Avg = 0.13; Max = 1 

4 words and +query Min = 11; Avg = 37.30; Max = 113 Avg = 0.06; Max = 1 

Table 3. Number of suggestions according to the size of the queries. 

Manual evaluations were performed on sets of ~1/3 of each type of queries. Evaluations of 

the quality of queries suggestions (Precision, Recall and F-Measure) were performed 

manually on several sets, according to the size of the query, but also according to the 

following methods : Bag-of-Words, Levenshtein distance alongside the Stoilos similarity 

function, but also the Bag-of-Words processed before and after the combination of the 

Levenshtein distance along with the Stoilos similarity function. Levenshtein and Stoilos 

remained constant at <0.2 and >0.7 respectively. The resulting curves are in Figures 1, 2 and 

3. By combining the Bag-of-Words algorithm along with the Levenshtein distance and the 

similarity function of Stoilos, a total of 1,418 (22.52 %) queries matched medical terms or 

combinations of medical terms. The remaining queries with no suggestions (when terms and 

also the possible combination of terms) not belong to the dictionary. For 1-word queries, it 

remained 711 (67%), for 2-words queries it remained 1197 queries (73.16%); for 3-words 

queries it remained 1126 (78.08%) and for 4 words queries it remained 1,846 queries 

(85.58%). For example, the query "nutrithérapie" (nutritherapy) contains no error but cannot 

be matched with any medical term in the reference dictionary. Evaluations shown that best 

results were obtained by performing the Bag-of-Words algorithm before the combination of 

Levenshtein alongside Stoilos. 
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Figure 1. Precision curves according to the size of the query. 

 

 

Figure 2. Recall curves according to the size of the query. 
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The different experiments we performed show that with 38% recall and 42% precision, 

Phonemisation cannot correct all errors : it can only be applied when the query and entry 

term of the vocabulary have similar pronunciation. However, when there is reversal of 

characters in the query, it is an error of another type: the sound is not the same and 

similarity distances such as Levenshtein and Stoilos can be exploited here. Similarly, when 

using certain characters instead of others ("ammidale" instead of "amygdale"), string 

similarity functions are not efficient. The best results (F-measure 64.18%) are obtained 

with multi-word queries by performing the Bag-of-Words algorithm first and then the 

spelling-correction based on similarity measures. Due to the relatively small number of 

correction suggestions (min 1 and max 6), which are manually manageable by a health 

information seeker, we have chosen to return an alphabetically sorted list rather than 

ranking them. 

 

Figure 3. F-Measure curves according to the size of the query. 

3.3. Simple heuristics 

The complex terms matching is more requiring than simple terms matching. The CISMeF 

team editorial policy concerning the queries' rewriting consists in maximizing as much as 

possible the Doc'CISMeF recall. This approach is mainly due to the size of the CISMeF's 

corpus (n=90,056 vs. several million in the MEDLINE database). When all the terms of the 

query couldn't be recognized as reserved terms or couldn't be corrected by our spell-

checker, we have implemented 5 main heuristics:  
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Step 1. The reserved terms: The process consists in recognizing the user query expression. If 

it matches a reserved term of the terminology, the process stops, and the answer of the 

query is the union of the resources that are indexed by the term, and the resources that 

are indexed by the terms it subsumes, directly or indirectly, in all the hierarchies it 

belongs to. If it doesn't match a reserved term, the query is segmented into seek if it 

contains one or more reserved terms. The query 'enfant asthme' is replaced by the 

Boolean query (enfant.mr AND asthme.mr), where enfant and asthme are reserved terms 

(mr). The reserved terms are matched thanks to the bag of words algorithm 

independently of the words query order. 

Step 2. The documents' title: The search is performed over the other fields of the metadata. 

The title of the documents is considered in priority. The stop words are eliminated and 

the search is realized over the union of the words of the query with a truncation (*) at 

the right in the field title (ti), as the following: word1*.ti AND word2*.ti for a 2-words 

query.  

Step 3. Mixing the reserved terms and the titles: The system seeks if some words are reserved 

terms or not. A new Boolean query is generated with the fields reserved term (mr), if the 

word is a reserved term, and title (ti) if not. The query 'allergie infantile' is replaced by 

the Boolean query (allergie.mr AND infantile.ti).  

Step 4. Mixing the reserved terms, all fields and adjacency in the titles : The search is processed 

over all the fields (tc) of the documents' metadata for the words that couldn't be 

recognized as reserved terms UNION the initial query processed over all the fields with 

adjacency (at) at n words with n=5*(nb words of the query-1). The query 'les problems 

respiratoires des enfants' is replaced by the Boolean query [(enfant.mr AND problemes.tc 

AND respiratoires.tc ) OR (problemes respiratoires enfant.at)]. In this query, the word enfant 

is recognized as a reserved term because it has the same sonority as the reserved term 

enfants. The words problèmes and respiratoires are searched over all the fields and the 

initial query problèmes respiratoires enfants is searched over all the fields with adjacency 

of 10 which means that these 3 words shouldn't be distant at more than 10 words.  

Step 5. Mixing the reserved terms, all fields and adjacency in the plain texts : A plain text search 

over the documents with adjacency (ap) of n words with n=10*(nb words of the query-

1) is realized. The query 'bronchite asthmatiforme' is replaced by the Boolean query 

(bronchite asthmatiforme.ap) where the words bronchite and asthmatiforme shouldn't 

be distant at more than 10 words in the plain texts of the documents.  

An intuitive scale of interpretation (from Step 1 to Step 5) is available to inform the users 

about their queries operations and rewritings. By using these simple heuristics, 65% of the 

queries returned documents (27% by the step 1; 7% by the step 2; 4% by the step 3; 10% by 

the step 4 and 17% by the step 5). 

We describe in the next section how to maximize information retrieval by meta-modeling. 

The relevance on using multiple medical terminologies to improve information retrieval 

versus only the MeSH thesaurus is also evaluated. 
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4. Meta-modeling 

To maximize information retrieval through the catalogue, one another enhancement is to 

gather all the MeSH terms that are related to a given specialty, since they can be dispersed 

among the 16 MeSH branches. On the other hand, the use of multiple terminologies is 

recommended [29] to increase the number of the lexical and graphical forms of a biomedical 

term recognized by a search engine. Since 2007, the CISMeF resources are indexed using the 

vocabulary of 23 other terminologies and classifications, most of them being bilingual 

(English and French). To supply health information seekers with the terminologies available 

in French, these terminologies are accessible through the Health Multiple Terminologies and 

Ontologies Portal (HeTOP) [31]. 

4.1. MeSH meta-terms for information retrieval 

The MeSH thesaurus is partitioned at its upper level into 16 branches (e.g. Anatomy, 

Diseases). The core of MeSH thesaurus is a hierarchical structure that consists of sets of 

descriptors. However, these hierarchies do not allow a complete view concerning a 

specialty. The main headings and subheadings in the CISMeF controlled vocabulary are 

gathered under meta-terms (e.g. cardiology) (Figure 4). Meta-terms (n=73) concern medical 

specialties and it is possible by browsing to know sets of MeSH main headings and 

subheadings which are semantically related to the same specialty but dispersed in several 

trees. Meta-terms have been created to optimize information retrieval in CISMeF and to 

overcome the relatively restrictive nature of MeSH headings. For example a search on 

“guidelines” or “virology”, where cardiology and virology are descriptors, yield few 

answers. Introducing cardiology and virology as meta-terms is an efficient strategy to obtain 

more results because instead of exploding one single MeSH tree, the use of meta-terms 

results in an automatic expansion of the queries by exploding other related MeSH trees 

besides the current tree, using the well-known automatic query expansion process. In other 

words, a query using a meta-term corresponds to the union of all the queries for all the 

terms semantically linked to it. A comparison of the results of MeSH term-based queries and 

SC-based queries showed an increased recall with no decrease in precision [33]. 

4.2. Multiple-terminologies meta-terms 

The use of multiple terminologies is recommended [29] to increase the number of the lexical 

and graphical forms of a biomedical term recognized by a search engine. For this reason, 

CISMeF evolved recently from a single terminology approach using the MeSH main 

headings and subheadings to a multiple terminologies paradigm using, in addition to the 

MeSH thesaurus, vocabularies and classifications that deal with various aspects of health. 

Among them, the Systematized NOmenclature of MEDicine (SNOMED 3.5), the French 

CCAM for procedures [34], Orphanet for rare diseases2 and some classifications from the 

World Health Organization : the 10th revision of the International Classification of Diseases3 

                                                                 
2 www.orpha.net 
3 http://www.who.int/classifications/icd/en/ 
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(ICD10), Anatomical Therapeutic Chemical (ATC) Classification for drugs , ICF for 

handicap, ICPS for patient safety, MedDRA4 for adverse effects. These terminologies were 

fully integrated into the CISMeF back-office. They can be used for indexing resources 

(allowing a more precise indexing) and thus for querying the catalogue. However, the 

addition of multiple terminologies to CISMeF did not induce modifications in the tasks 

performed for using, maintaining and updating the catalogue. The richest source of 

biomedical terminologies, thesauri, classifications is constituted by the Unified Medical 

Language System (UMLS) Metathesaurus initiated in by the U.S. NLM with the purpose to 

integrate information from a variety of sources. Nonetheless, the Metathesaurus does not 

allow interoperability between terminologies since it integrates the various terminologies as 

they stand without making any connection between the terms in the terminologies other 

than by linking equivalent terms to a single identifier in the Metathesaurus. The approach in 

CISMeF has the advantage of combining respect for the original structure of each of the 

terminologies with a re-grouping of the meta-data inherent in each terminology. 

New terminologies have been linked to meta-terms manually by experts in CISMeF: one 

physician for ICD10, which is partitioned into 22 chapters, and the CCAM; one pharmacist-

librarian for ATC, and one medical resident for the terms of the Foundational Model of 

Anatomy. For instance, the meta-term "cardiology" was initially linked to MeSH main 

headings such as "cardiology", "stents", and their descendants. With the integration of new 

terminologies, additional links completed the definition of the meta-term “cardiology”: links 

to "cardiovascular system", "Antithrombotic agents" and others from ATC, links to "Cardio-

myopathy", "Heart" and their descendants from ICD10 and so on.  

4.2.1. Test queries 

Our aim is to compare the precision and recall of multiple terminologies meta-terms (mt-mt) 

to MeSH meta-terms (M-mt) in CISMeF. Since mt-mt are based on M-mt plus semantic links to 

some terms in other terminologies, the query results for M-mt are all included in the query 

results for mt-mt, which became the gold standard for recall. We have then to evaluate the 

precision of the query retrieving resources indexed by a term linked to M-mt (MeSH meta-

term query), on the one hand, and by a term linked to mt-mt and not to M-mt ( query) on the 

other hand. For this purpose, we build Boolean queries using the meta-terms themselves. For 

example, for the "surgery" meta-term, the MeSH meta-term (M-mt) query is "surgery[M-mt]". 

The  query is: "surgery[mt-mt] NOT surgery[M-mt]". Retrieved resources returned were 

assessed for relevance. We detail in the next section the criteria we have used for evaluation. 

4.2.2. Evaluations 

The resources returned by the CISMeF's search tool using automatic query expansion were 

assessed for relevance according to a three modality scale used in other standard 

Information Retrieval test sets: irrelevant (0), partly relevant (1) or fully relevant (2). A 

physician manually assigned relevance scores (0;1;2) to the top 20 resources returned for 

                                                                 
4 http://www.meddramsso.com 
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each meta-term query. The results of the evaluation are given in the Table 4. We chose to 

assign relevance scores to the top twenty resources returned because 95% of the end-users 

do not go beyond this limit when using a general search engine [35]. For the purpose of 

assessing meta-terms for Information Retrieval, we have developed a test collection 

comprising relevance judgments for the top 20 resources returned for a selection of 20 eta-

terms queries. Table 4 shows that the queries yielded 118,772 resources, of which 708 were 

assessed for relevance (0.6%). Weighted precisions for MeSH meta-terms queries and for  

queries were computed given the level of relevance considered and compared using χ² test. 

Indexing methods and meta-terms were compared too. Relative recall for MeSH meta-terms 

queries were computed given the level of relevance considered.  

 

Figure 4. Gathering MeSH main headings and subheadings under meta-terms. Resource types are modelled 

to describe the nature of a resource because of the heterogeneity of resources. 

The mean weighted precision of  queries was 0.33 and 0.76 for, respectively, full and 

partial relevance. The mean precision of MeSH meta-terms queries was 0.66 and 0.80 for, 

respectively, full and partial relevance. The difference between MeSH meta-terms and 

multiple terminologies meta-terms was significant for full relevance (0.66 vs 0.61; p<10-4, χ²) 

but not for partial relevance (both 0.80; p=0.3, χ²). The mean recall of MeSH meta-terms 

queries was 0.92 and 0.86 for, respectively, full and partial relevance. Table 5 shows that, 

whatever the relevance considered was, results varied significantly according to the 
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indexing method: manual (precision of 0.50 and 0.81 for, respectively, full and partial 

relevance) perform better than automatic (precision of 0.38 and 0.48 for, respectively, full 

and partial relevance), and to the studied meta-term. 

 

Meta-Term Query Type Nb of documents 
Relevance on 20 doc 

Not Partially Totally 

Diagnosis 
MeSH 13,132 0 2 15 

Delta 350 14 1 5 

Toxicology 
MeSH 11,980 0 0 20 

Delta 482 16 1 3 

Neurology 
MeSH 9,325 8 4 8 

Delta 2,168 11 5 4 

Infectious Diseases 
MeSH 6,557 0 0 20 

Delta 2,573 3 16 1 

Paediatrics 
MeSH 7,560 4 4 12 

Delta 251 2 4 13 

Cardiology 
MeSH 5,288 1 0 18 

Delta 2,388 4 10 6 

Oncology 
MeSH 5,626 0 1 18 

Delta 1,063 2 14 4 

Surgery 
MeSH 5,504 17 0 3 

Delta 320 5 0 15 

Rheumatology 
MeSH 4,408 3 8 9 

Delta 856 11 5 4 

Gastroenterology 
MeSH 4,069 0 0 20 

Delta 1,106 8 11 1 

Allergies and Immunology 
MeSH 4,598 1 17 2 

Delta 573 2 17 1 

Metabolism 
MeSH 3,797 14 2 4 

Delta 849 0 2 18 

Dermatology 
MeSH 3,196 7 0 13 

Delta 1,427 0 4 16 

Nutrition 
MeSH 3,455 0 1 19 

Delta 1,027 0 9 11 

Pneumology 
MeSH 3,466 0 7 12 

Delta 584 0 14 6 

Gynaecology 
MeSH 3,186 6 1 12 

Delta 850 0 1 19 

Obstetrics 
MeSH 3,063 5 1 12 

Delta 316 20 0 0 

Virology 
MeSH 3,122 1 11 6 

Delta 257 0 20 0 

Total 
MeSH 101,332 67 59 223 

Delta 17,440 98 134 127 

Figure 5. Relevance of resources retrieved by 18 meta-terms queries on top 20 documents.  
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Variable Full Relevance Partial Relevance 

Specific Query (M-mt vs mt-mt) p < 10-4 p = 0.3 

Indexing Method p = 0.004 p < 10-4 

Meta-Term p < 10-4 p < 10-4 

Figure 6. Determinants of relevance; χ² test. 

To complete the information retrieval process and to allow interactive query expansion with 

the health information seeker, we propose in the next section to use "new" knowledge 

represented as association rules extracted by data-mining process. 

5. Knowledge extraction 

The knowledge-approach is based upon a data-mining process, called association rules, 

which can infer "new" relations between medical concepts. A data-mining system may 

generate several thousands and even several millions frequent association rules, and only 

some of these will be interesting. In this section we will show how only the most relevant 

association rules are mined using Formal Concept Analysis and Galois closure. We consider 

a relevant association rule as being non-redundant with a minimal antecedent and a 

maximal consequent, which is particularly useful for query expansion. 

5.1. Association rules 

The discovery of association rules is a widely used technique in data-mining. The general 

problem was described in [36], in which relations were discovered among pieces of data 

(called items). An association rule is interesting if it is easily understood by the users, valid 

for new data, useful, or confirms a hypothesis. The task of association rule mining can be 

applied to various types of data: any data set containing multiple items. 

5.1.1. Definitions 

Let I be a set of items, called itemset, and D a database of transactions where each 

transaction T (T D) is an itemset. An association rule is an implication rule expressed in the 

form of: I1→I2 where I1 and I2 are two itemsets I1, I2  I so that I1 ∩ I2 =. The rule expresses 

that whenever a transaction T contains I1 then T probably also contains I2. In other words, 

the implication rule means that the apparition of the itemset I1 in a transaction T, implies the 

apparition of the itemset I2 in the same transaction. However, the reciprocal implication 

does not have to happen necessarily. I1 is called antecedent and I2 is called consequent. 

5.1.2. Support 

The support of an association rule represents its utility. This measure corresponds to the 

proportion of objects which contains at the same time the rule antecedent and consequent. It 
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is possible to calculate the support of an association rule from the support of an itemset. 

Supp(Ik) the support of the itemset Ik is defined as the probability of finding Ik in a 

transaction of T:  
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  (10) 

The support of the rule I1→I2 written as Supp(I1→I2) is calculated as follows: 

 )II(Supp)II(Supp 2112   (11) 

5.1.3. Confidence 

The confidence of an association rule represents its precision. This measure corresponds to 

the proportion of objects that contains the consequent rule among those containing the 

antecedent. The confidence of the rule I1→I2, written as Conf(I1→I2) is calculated as 

follows:  
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Two types of rules are distinguished: exact association rules that have a confidence equal to 

100%, i.e. verified in all the objects of the database and approximate association rules that 

confidence<100%. 

5.2. Data-mining algorithms 

Several methods are used to extract all of the association rules from a database. The simplest 

method consists of enumerating all the itemsets from which all the possible association rules 

could be generated. The total number of itemsets for a database that contains n Boolean 

attributes is 2n. This naïve method is inapplicable to real-life databases. A more efficient 

method involves computing itemsets that have a support higher than a given threshold. 

They are called frequent itemsets. The association rules extraction time depends on the 

frequent itemsets extraction time. Several accesses to the database are necessary to 

compute the number of database objects in which each frequent itemset candidate is 

contained. The association rules algorithms by level consider in each iteration a set of 

itemsets of a particular size, i.e. a set of itemsets in a level of the itemsets lattice. The 

following properties are used by these algorithms to limit the number of the itemsets 

candidates: all of the super-sets of an infrequent itemset are infrequent, and all the subsets 

of a frequent itemset are frequents [37]. This method is founded on the two-stepped 

model that finds all of the rules that satisfy user-specified minimum support and 

confidence: (i) Generate all large itemsets that satisfy minimum support and (ii) From 

large itemests generate all association rules that satisfy minimum confidence. Apriori 

algorithm [37] realizes a number of database accesses equal to the size of the larger 
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frequent itemsets. Many researchers have tried to improve various aspects of Apriori, 

such as the number of passes and accesses to the data-bases or the time efficiency of those 

passes. We have chosen to adapt the A-Close algorithm [38] in which new bases for 

association rules are deduced from the closed frequent itemsets and their generators. 

These bases consist of non-redundant association rules of minimal antecedents and 

maximal consequents, i.e. the most relevant association rules and are defined by using the 

closure operator of the Galois connection of a finite binary relation. All frequent itemsets 

and their support, and therefore all association rules, are deduced efficiently from the 

frequent closed itemsets without accessing the database. 

5.3. Extracting knowledge from e-Health documents 

Our experiments are carried out on the CISMeF database. An extraction context is a triplet 

C= (O, I, R) where O is the set of objects, I is the set of all the items and R is a binary relation 

between O and I. Applying this model to our database, the objects are the indexed e-health 

documents. Each document has a unique identifier and a set of associated descriptors. These 

descriptors may be MeSH main headings and associations between MeSH main headings 

and MeSH subheadings. The relation R represents the indexing relation between an object 

and an item, i.e. a descriptor that belongs to I. We studied different extraction contexts by 

applying and adapting the A-Close algorithm such as the context of categorized 

documents, according to the user type and to meta-terms. There is an average of 6.5 

descriptors by document in CISMeF with a minimum of 1 and a maximum of 300. This 

constraint on the number of descriptors i.e. the size of the set of items has been considered 

in the implementation phase of the A-Close algorithm. Indeed, A-Close works on 

databases with a maximum of 12 items. We have added another requirement to the 

implementation to avoid long time generation: maximal size of the closed itemsets is fixed 

to 300 items as it corresponds to the maximum number of descriptors for the documents. 

As an output, the association rules may be visualized in a file or automatically added to 

the database to be used in the information retrieval process, mainly by interactive query 

expansion. 

5.3.1. Extracting knowledge from all the database 

- Case 1: In the first case, let I be the set of main headings (MH), which, via R, are used to 

index a subset O of 11,373 documents. The 11,373 documents were selected at random. 

We have fixed the support threshold as minsup=20 and the confidence threshold as 

minconf=70%. A total of 11,819 rules were mined (2,438 exact with confidence=100%; 

9,381 approximate with confidence≥70%). The number of rules is too high to be 

manually analyzed by our experts (physicians or medical librarians).  

- Case 2: In the second case, let I be the set of main headings (MH) and subheadings (SH) 

associated with the set of documents O. I={MH}{SH}. We obtained 16,976 rules (5,241 

exact; 11,738 approximate). The same conclusions are drowned from the case 1 : too 

numerous rules to be evaluated manually. 
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- Case 3: In the third case, I is the set of the associations of main headings and 

subheadings (MH/SH) related to the documents. I={[MH/SH]}. Association rules 

between couples of (MH/SH) are more precise than association rules between main 

headings, and between main headings and subheadings since a subheading specifies a 

particular aspect of a main heading. With the same thresholds as in cases 1 and 2, the 

number of rules is 2,565 (648 exact rules; 1,917 approximate rules). 

The extracted association rules in the precedent cases are related to the medical domain. To 

obtain more precise rules we performed experiments on categorized documents according 

to groups of users: students in medicine, health professionals, and general public to evaluate 

the influence of categorization on the generation of association rules. 

5.4. Categorizing documents according to health information seekers 

In CISMeF, mainly three types of health information seekers are categorized: professionals, 

students in medicine, patients and lay people. We consider three major resource types: 

guidelines*, education* and patients*. We also consider two kinds of itemsets: the set of 

major main headings I={MH*} and the set of major (main heading/subheading) pairs 

I={[MH/SH]*)}. The collection is detailed in Table 6.  

 

Resource type Documents Items Min Max Mean 

Guidelines* 2,727 
MH* 1 64 5.21 

MH/SH* 1 70 6.12 

Patients* 3,272 
MH* 0 25 1.63 

MH/SH* 0 30 1.82 

Education* 3,610 
MH* 0 25 2.22 

MH/SH* 0 34 2.73 

Table 4. Description of the collections of documents. 

For all contexts, the minimum support threshold was fixed to minsup=20 and the minimum 

confidence threshold was fixed to minconf=70% (Table 7). We obtained association rules 

between major main headings MH* in the first context where I={MH*} and between 

[MH/SH]* pairs for I={[MH/SH]*}. For the major resource types patients* and education* 

all association rules (100%) are between two MHs* and between [MH/SH]* i.e. one 

descriptor in the antecedent and one descriptor in the consequent. For the major resource 

type guidelines*, 24% of the rules are between more than two descriptors. The 

characteristics of documents may explain these results: average descriptors were from 

1.63 to 2.22 for patients* and education* whereas they were from 5.21 to 6.12 for 

guidelines*. 
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Resource types 
Item=MH* Item=[MH/SH]* 

Nb rules ER AR Nb pairs Nb rules ER AR Nb pairs 

Guidelines* 50 
12 38 38 

39 
8 31 35 

24% 76% 76% 20.51% 79.49% 76% 

Patients* 20 
9 11 20 

19 
8 11 19 

45% 55% 100% 42.1% 57.9% 100% 

Education* 23 
6 17 23 

25 
13 12 25 

26.09% 73.91% 100% 52% 48% 100% 

Table 5. Number of rules, exact rules (ER), approximate rules (AR), and number of pairs. 

5.4.1. Evaluation of the extracted knowledge 

Not all of the association rules extracted were evaluated: according to the context 

extraction and the itemset I there are more or less association rules. The more the 

collection is specialized, and the itemset size is reduced, the less we have association rules 

to evaluate. As defined, an interesting association rule confirms or states a new 

hypothesis [38]. 

Here, we proposed to combine background domain knowledge with simple statistical 

measures used traditionally in association rules mining for evaluation. We considered 

several cases of interesting association rules according to relations between MeSH headings. 

As these relations are defined between two main headings and between two subheadings, 

we considered only the association rules between two elements. Hence, an interesting 

existing association rule could associate: a (in)direct son and its father (relation FS); two 

descriptors that belong to the same hierarchy (same (in)direct father) (relation BR); two 

descriptors with See Also relation (relation SA). These rules are automatically classified 

thanks to the MeSH structure. The other rules that satisfy the minsup and minconf are then 

considered as «new» interesting association rules. 

Exact association rules, except for collection patients*, are mostly new interesting rules: 

from 62.5% to 87.4%. Therefore, existing rules are mainly from the patients* collection: 

77.8% for MH* and 75% for MH/SH*. However, approximate rules, are mostly existing 

rules (Table 8). Subjective interest measures are based on expert knowledge about the 

data, i.e. that of physicians and medical librarians in this context. New interesting rules for 

the contexts MH* and [MH/SH]* pairs are evaluated manually. 93.8% (resp. 84.8%) of the 

interesting new rules with conf=1 (resp. conf≥0.7) between major descriptors are 

validated. 
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Resource 

types 
Items 

Exact rules Approximate rules 

Existing knowledge
New 

Existing knowledge 
New 

FS BR SA FS BR SA 

Guidelines* 

MH* - - 
4

33.3%

8

66.7%

2

5.3%

7

18.4%

10 

26.3% 

12 

31.6% 

MH/SH* 
1

12.5%

1

12.5%

1

12.5%

5

62.5%

3

9.7%

3

9.7%

9 

29% 

13 

42% 

Patients* 

MH* - 
5

55.6%

2

22.2%

2

22.2%

2

18.2%

2

18.2%

4 

36.3% 

3 

27.3% 

MH/SH* - 
5

62.5%

1

12.5%

2

25%

2

18.2%

2

18.2%

3 

27.3% 

7 

36.3% 

Education* 

MH* 
1

16.7%

1

16.7%
- 

4

66.6%

2

11.8%

6

35.3%

3 

17.6% 

6 

35.3% 

MH/SH* 
1

7.7%
- 

1

7.7%

11

87.4%

2

16.8%

3

25%

2 

16.8% 

5 

41.4% 

Table 6. Association rules evaluation according to the MeSH structure 

5.5. Knowledge-based query expansion 

Our objective is to re-use the numerous association rules that we extracted from the CISMeF 

database into the information-retrieval process by query expansion. We use Interactive 

Query Expansion. For example, the association rule breast cancer → mammography is 

extracted from the corpus because the keywords breast cancer and mammography are 

frequently used together to index the documents. This association rule is as a “new” one 

because it doesn’t exist in the domain knowledge which is, in our case, the MeSH thesaurus. 

When applying the association rule breast cancer → mammography on a query containing the 

term breast cancer, an interactive query expansion proposes to the user e-health documents 

related to mammography to complete the search. In medicine and health-related information, 

[40] have already investigated an efficient algorithm for association rule mining using the 

MeSH thesaurus. They adopted a MeSH-indexed representation of MEDLINE records, but 

the evaluation of the interest of the mined associations with respect to the task of PubMed 

retrieval improvement was not considered by the authors. In [41] many other works on 

information retrieval and query expansion in the biomedical domain are also presented. 

Methods to perform query expansion with promising results involve mining user logs [41] 

and constructing user profiles. And another study on logs in PubMed for searching 

biomedical and life-science literature online has been performed by [43]. 

In the literature, a number of methods for performing query expansion have been 

developed. The solutions given are based mainly on two approaches. The first is the 



 
eHealth and Remote Monitoring 58 

augmentation of query terms to improve the retrieval process without user intervention. 

The second is the suggestion of new terms to the user which can to be added to the original 

query to guide the search towards a more specific document space. The first case is called 

automatic query expansion whereas the second case is called semi-automatic query-

expansion. In [44], the authors tried to evaluate and compare the efficiency of the two 

methods. Despite the fact that their experiments were based on simulations and not on real 

human users in most of the cases, the results of the experiments showed that the interactive 

query expansion method gave more control to the searcher who knows her utility better 

than any automated system. Researchers also turned to methods such as lexical co-

occurrence [45]. Lexical co-occurrence is the process of developing relationships between 

words based upon their co-occurrence in documents. The similarity of the method we 

have proposed here with lexical co-occurrence is that the source, which provides the 

candidate terms for expansion, is the set of the retrieved documents as opposed to some 

knowledge structure as in thesaurus-based approaches. As a consequence, if the user 

chooses terms that do not yield results from the expected domain, the terms suggested by 

the query-expansion algorithm are unlikely to be helpful to the user. A solution may be a 

simple spell-checker. 

5.6. Evaluating query expansion based on association rules 

Many ways of navigation and information retrieval are possible in the catalogue. The most 

used is the simple search (free text interface). As stated in the section 2, it is based on the 

subsumption relationships. A query (a word or an expression) can be matched with an 

existing concept. In this case, the result of the query is the union of the resources that are 

indexed by the concept, and the resources that are indexed by the concepts it subsumes, 

directly or indirectly, in all of the hierarchies it belongs to. The co-occurrence tools developed 

for information retrieval bring the terms which frequently appear in the same documents 

closer together. These terms thus have a semantic proximity. This technique was used very 

early to allow query expansion. By analogy, association rules may be exploited in a search 

engine by carrying out an interactive query expansion. This helps the user to formulate 

his query by using the result of a query to reformulate, filter and re-orientate the query by 

exploiting the terms related to his query terms. In fact, the user can select suggested terms 

sets to add them to his initial query. It is useful in the case of non-precise information 

needs. IQE requires user implication. We developed a web-based evaluation tool of the 

IQE used by a set of 500 users which are subscribers of the weekly letter “What’s new” of 

CISMeF. 20 queries, and for each one a set of medical terms derived from the extracted 

association rules were proposed. The evaluation was performed thanks to a Likert scale. 

The results (76% of the users were satisfied by the propositions) demonstrate the 

usefulness of this approach. An expanded query by association rules contains more 

related terms. By using the vectorial model, for example, more documents will be located 

and this treatment increases recall. In addition, association rules are indication on the 

possible definition of a term or its context. 
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6. Conclusions 

We have presented in this chapter useful methods to help health information seekers to find 

resources on the Internet which is the most popular way used nowadays. The experiences 

were carried out on the CISMeF catalogue in French, but are reproducible for other e-health 

applications in other languages. These methods include simple ones such as heuristics and 

spell-checking, and more sophisticated ones such as knowledge extraction from e-health 

documents. 
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