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1. Introduction 

Milk is thought to be the main source of biologically active compounds for infants, 

providing antibacterial and antiviral activities, facilitating nutrient absorption, promoting 

bone growth, enhancing immunological protection and supporting the development of host 

immune competence. In milk, the main categories of compounds related to antiviral activity 

through immune stimulation and suppression of host immune inflammation are the casein 

proteins, whey proteins and their derived peptides [1-3].  

Casein proteins, as well as casein fragments, function as antiviral and immune regulatory 

factors by regulating the innate immune response both through up-regulation to enhance 

killing of viruses, and down-regulation to reduce detrimental conditions such as sepsis [1, 3-

7]. Additionaly, caseins link the innate immune system to the adaptive immune system by 

activating and/or enhancing B- and T-cell mediated functions. The whey protein lactoferrin, 

and pepsin derived peptide fragments of this protein (e.g. lactoferricin) have been studied 

extensively for its antiviral properties [8-10] i.e. its direct interaction with the virus particle, 

interaction with cellular receptors on the target cells, and lately more complex antiviral 

mechanisms involving stimulation and regulation of the immune system have been 

discovered [2, 11-16]. Similarly, peptides tailored on specific protein fragments of casein and 

α-lactalbumin have also been investigated for their antiviral and immunomodulatory 

properties. Many of these studies have identified biologically active peptides that can 

prevent a viral infection, as well as regulate the immune status of the host [1, 2, 17-21]. 

Currently, some of these peptides are being investigated in clinical trials, like human 

lactoferrin fragment 1-11 (AM Pharma, Bunnvik, The Netherlands) [22] and LTX-302 (Lytix 

Biopharma, Tromsø, Norway) [20]. Moreover, another promising class of synthetic peptides 

with therapeutic potential is a group of innate defence regulator peptides, which exhibit 

immune protection by enhancing or suppressing the host immune response [23-26]. It is 
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tremendously encouraging that many of these proteins and peptides have pharmaceutical 

potential within antiviral and anticancer therapy, as vaccine adjuvants, as 

immunosuppressants for the treatment of autoimmune diseases and in conjunction with 

organ transplantation, etc. [20, 23-25, 27-29]. 

Studies have demonstrated that active milk protein and peptide compounds can be 

extracted from a variety of species including humans, bovine, porcine, mice and camel. The 

main focus in this paper is the antiviral and immune regulating properties (Table 1) of milk 

proteins (Table 2) and their peptide derived fragments (Table 3). The vast majority of the 

discussed studies deal with proteins and peptides of bovine origin, and these will be 

referenced with their protein names, while proteins and peptides from other origins will be 

explicitly specified with the species name. 

 

Virus Protein or peptide Model of antiviral function Reference 

Enveloped Virus 

Herpes simplex 

virus 1 

human and bovine 

lactoferrin and lactoferricin, 

lactoperoxidase

Binding to both virus particle 

and cellular receptors (heparan 

sulphate) to prevent viral 

adsorption and entry;  

Interference with intracellular 

replication events or synthesis 

of progeny viral components 

[9, 35, 55, 77-

79, 81-83] 

chemically modified milk 

proteins e.g. serum albumin, 

α-lactalbumin,  

β-lactoglobulin 

[89, 93, 99, 

100]  

Herpes simplex 

virus 2 

human and bovine 

lactoferrin 

Binding to virus receptor of 

non-GAG nature 

[10]  

-lactoglobuline Binding to virus particle  [93] 

Hepatitis C virus lactoferrin Binding to viral envelope 

protein E1 and E2 

[52, 63, 71, 

220] 

Hepatitis B virus iron- or zinc-saturated 

lactoferrin 

Binding to cellular molecules 

interfering with viral 

attachment/entry 

[47, 59]  

Hepatitis G virus lactoferrin Unknown [63] 

Respiratory syncytial 

virus 

lactoferrin, lactoperoxidase Binding to F1 subunit of RSV F 

protein to inhibit viral 

absorption 

[35, 44-46] 

Human 

immunodeficiency 

virus 

human and bovine 

lactoferrin, lactoperoxidase 

Binding to cellular receptor to 

inhibit viral absorption and 

replication 

[8, 18, 19, 34, 

48, 49, 62, 68, 

70]  

chemically modified milk 

proteins like serum albumin, 

α-lactalbumin, 

β-lactoglobulin 

[9, 89-92] 

Influenza virus 

(H3N2, H1N1 and 

H5N1)  

lactoferrin, κ-casein, 

glycomacropeptide, 

lactoperoxidase

Binding to hemagglutinin of 

virus 

[36, 53, 135] 

modified human serum [94, 101-103] 
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Virus Protein or peptide Model of antiviral function Reference 

albumin and  

β-lactoglobulin,  

α-lactalbumin, lactoferrin

Human 

cytomegalovirus 

lactoferrin and lactoferricin Interfere with virus target cells; 

up-regulation of killer cells; 

synergistic antiviral effect with 

cidofovir

[12-16]  

chemically modified milk 

proteins like serum albumin, 

α-lactalbumin,  

β-lactoglobulin

Binding to virus particle [12, 93, 96, 

221] 

Feline herpes virus 1 human and bovine 

lactoferrin

Binding to cellular molecules [54]  

Canine herpes virus human and bovine 

lactoferrin (apo- and holo-)

Binding to virus particle and 

cellular receptor on target cell

[74]  

Hantavirus lactoferrin Binding to cellular molecules; 

synergistic effect with Ribavirin 

on inhibiting viral replication 

[72, 122] 

Vesicular stomatitis 

virus 

lactoferrin Induction interferon-α/β 

expression to inhibit viral 

replication

[11] 

Friend virus 

complex 

human lactoferrin Regulation on the myelopoiesis; 

synergistic effect with 

interferon-γ

[11, 56, 57, 

64] 

Human 

papillomavirus 

human and bovine 

lactoferrin, 

human and bovine 

lactoferricin

Binding to heparan sulphate 

cell receptor  
[65, 121] 

Alphavirus heparan 

sulphate- adapted 

sindbis virus and 

semliki forest virus

human lactoferrin, charge-

modified human serum 

albumin 

Binding to heparan sulphate 

cell receptor  
[73]  

Severe acute 

respiratory 

syndrome 

coronavirus 

lactoferrin Binding to heparan sulphate 

cell receptor 
[120]  

Non-enveloped virus

Rotavirus human lactoferrin (apo-

/holo-), α-lactalbumin,  

β-lactoglobulin 

Binding to viral particles to 

prevent both rotavirus 

haemagglutination and viral 

binding to receptors on 

susceptible cells

[30, 40] 

human lactadherin Binding to structural protein of 

rotavirus and inhibits virus 

replication

[37, 38] 
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Virus Protein or peptide Model of antiviral function Reference 

high molecular glycoprotein 

(e.g. mucin) 

Inhibitor for viral-cell binding 

to prevent productive virus 

infection

[107, 108] 

immune globulin In vivo effect on inhibition of 

viral replication

[107] 

Poliovirus lactoferrin, modified bovine 

β-lactoglobulin

Binding to viral receptor on 

target cell

[50, 58, 104]  

Coxsackie virus modified bovine  

β-lactoglobulin 

Binding to viral receptor on 

target cell 

[104]  

Adenovirus lactoferrin Binding to viral protein III and 

IIIa; competition with virus for 

common membrane receptors

[60, 61, 69] 

Enterovirus (71, 

echovirus 6) 

lactoferrin Binding to both cellular 

receptors and the viral surface 

protein VP1

[51, 66, 67] 

Felin calicivirus lactoferrin Binding to cell receptor [50]  

Echovirus lactoferrin, lactoperoxidase Binding to cell receptor and 

viral structural proteins

[35, 75, 95] 

Table 1. Models of antiviral proteins & peptides from milk proteins 

2. Protein composition of milk and their antiviral activity  

There are in general two groups of proteins found in milk, casein and whey. The casein 

family accounts for approximately 80% of the protein mass and includes several types of 

casein, e.g. αs1, αs2, β and κ, which form micelle complexes in the water phase of milk. The 

whey proteins account for the remaining 20%, and include β-lactoglobulin (not present in 

human milk), α-lactalbumin, serum albumin, immunoglobulins, lactoferrin, transferring, 

and many minor proteins. Most of the whey proteins have been demonstrated to effectively 

prevent viral infection. For example, milk derived proteins including α-lactalbumin, β-

lactoglobulin, apo-lactoferrin (iron free), and homo-lactoferrin (Fe3+ carrying), were able to 

inhibit rotavirus attachment to cellular receptors by binding to the viral particle [30]. Among 

these proteins, apo-lactoferrin was proven to be the most active. Studies also showed that 

immunoglobulins of raw milk from non-immunized cows and camels, as well as from a 

commercially available bovine macromolecular whey protein fraction, have specific 

antibodies against human rotavirus, which are capable of inhibiting replication of 

rotaviruses in tissue culture and protect mice from infection in a murine model of rotavirus 

infection [31-33]. Lactoperoxidase, a haem-containing glycoprotein of the mammalian 

peroxidase family, is an important enzyme in the whey fraction of milk. In combination with 

its physiological substrates hydrogen peroxide and thiocyanate, lactoperoxidase manifests a 

wide spectrum of virucidal activities against human immunodeficiency virus, herpes 

simplex virus 1, respiratory syncytial virus and echovirus [34, 35]. Oral administration of 

lactoperoxidase also attenuate pneumonia in influenza virus infected mice through 

suppression of infiltration of the inflammatory cells in the lungs [36]. Furthermore, the 46kD 
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glycoprotein termed lactadherin, also known as milk fat globule-EGF factor 8 protein, 

inhibited rotavirus binding to cellular receptors (acetylneuraminic acid and/or integrin) on 

target and/or specifically interacting with viral structural glycoprotein VP4 of rotavirus, 

blocking host-pathogen interaction [37-40].  

Lactoferrin, first isolated in 1960 from both human [41, 42] and bovine milk [43], has been 

demonstrated to exhibit antiviral activity against many viruses [8, 10-16, 18, 19, 40, 44-74] 

(Table 2). Most studies indicate that lactoferrin and its derived peptides are likely to 

interfere in the virus host cell interaction (Figure 1). For example it has been demonstrated 

that lactoferrin is able to bind both viral receptor and the viral surface protein VP1 on 

enterovirus (enterovirus 71 and echovirus 6), thus interfering with viral entry [51, 66, 67, 75, 

76]. Similarly, both apo- and holo-lactoferrin has been demonstrated to interact both with 

canine herpes virus and surface receptors on the Madin-Darby canine kidney cells, thus 

inhibiting canine herpes virus infection [74]. With regard to the anti-herpes simplex virus 1 

ability of lactoferrin, both bovine and human lactoferrin and lactoferricin have 

demonstrated the ability to block viral entry and also inhibit viral cell-to-cell spread in a 

dose dependent manner [55, 77-79], through interaction with negatively charged 

glycosaminoglycans like heparan sulphate on the cell surface [55, 80-83] and elements of the 

viral particle [55]. Differently from herpes simplex virus 1, Marchetti et. al. found that 

lactoferrin inhibited herpes simplex virus 2 plaque forming activity also in cells without 

glycosaminoglycans suggesting that lactoferrin might block one of the specific herpes 

simplex virus 2 entry receptors [10]. 

Many of the traditional entry blocking effects observed by lactoferrin involve electrostatic 

interaction with anionic heparan sulphate molecules on the host cell surface [82]. The ability 

to interact with anionic heparan sulphate is maybe not that surprising, when evaluating the 

three dimensional structural composition of lactoferrin, demonstrating a rather striking 

cationic patch on the N-terminal lobe of the molecule [84] (Figure 1). Similarly, other highly 

cationic peptides have also been demonstrated to effectively interfere with herpes simplex 

virus attachment and entry [80, 85].  

Conversely, several other milk proteins i.e. β-lactoglobulin [86], α-lactalbumin [87] are 

described with anionic patches on their surfaces, while the casein homologues like αs2-

casein [88] have both specific anionic and cationic patches on the surface (Figure 1). Thus, 

charge modification of milk proteins may increase their ability to interfere with virus host 

cell interactions. 3-hydroxyphthalic anhydride modification of human and bovine serum 

albumin, and bovine β-lactoglobulin, increased the proteins negative charges in addition to 

their ability to prevent interaction between human immunodeficiency virus 1 envelope  

glycoprotein gp120 and the CD4 host cell receptor, by direct interaction and blocking of the 

CD4 receptor [89, 90]. Similar effects have also been observed for 3-hydroxyphthalic 

anhydride modified α-lactalbumin and αs2-casein, as well as for maleylated- and 

succinylated-human serum albumin, indicating that human immunodeficiency virus 

inhibition was a general property of negatively charged polypeptides [9, 91, 92]. Among the 

inhibitory proteins, 3-hydroxyphthalic anhydride β-lactoglobulin also demonstrated a broad 
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spectrum activity affecting herpes simplex virus 1 and 2 in addition to human 

cytomegalovirus by binding to the virus particles, inhibiting particularly the binding of 

monoclonal antibodies towards glycoprotein E and glycoprotein C [93]. Comparative results 

have been shown for anionic-modified human serum albumin and β-lactoglobulin which 

prevents influenza virus membrane fusion with the host cell membrane, a process mediated 

by the viral glycoprotein hemagglutinin [94]. Interestingly, this anti-influenza effect has not 

been observed for other milk proteins carrying negative charges, like succinylated bovine 

serum albumin, lactalbumin, lactoferrin, lysozyme and transferrin [94]. It is said that 

inhibition of viral fusion demonstrates a certain degree of specificity for negative charged 

proteins. However, addition of net negative charges to lactoferrin by acylation with either 

succinic- or acetic anhydride abolished its anti-poliovirus and anti-feline calicivirus activity, 

which may be attributed to the obliterate binding of acylated lactoferrin to the surfaces of 

susceptible cells [95]. Also, when negatively charged groups were added to lactoferrin by 

succinylation, the antiviral effect on human immunodeficiency virus 1 was increased, but 

the antiviral potency against human cytomegalovirus was mostly decreased [96], illustrating 

the proteins different modes of action. Similar results were also obtained by Florisa et. al. 

which demonstrated a stronger antiviral effect against human immunodeficiency virus by 

developing poly-anionic milk proteins, while stronger effects could be obtained against 

human cytomegalovirus by creating poly-cationic milk proteins [12].  

  

Figure 1. The traditional direct antiviral mechanismes of selected milk proteins. Several proteins are 

characterized to interact directly with cell surface heparan sulphate, like lactoferrin (1) and 

lactoperoxidase. Casein species like -casein (3) and s2-casein (4) are despite high cationic character on 

their surface not described to interact with heparan sulphate, and the latter in stead been demonstated to 

interact with the virus pareticle. Anionic milk proteins like -lactalbumine (5) and -lactoglobuline (6) are 

also illustrated to interact directly with the virus particle, thus preventing host receptor interaction.  
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Source Protein % of whey 

protein 

% of 

casein 

Molecular 

size (kDa) 

Nature PDB code 

Whey  β-lactoglobulin 50-55 NA ～18.4 Apolipoprotein 1DV9 

α-lactalbumin 20-25 NA ～14.1 Albumin 1A4V 

Immunoglobulins 10-15 NA ～150 Glycoprotein ﹉ 

Lactoferrin 1-2 NA ～80 Glycoprotein 1BLF 

Lactoperoxidase 0.5 NA ～70 Glycoprotein 3GC1 

Serum albumin 5-10 NA ～66 Albumin  

Glycomacropeptide 10-15 NA --- Phosphoprotein  

Casein  αs1-casein NA 40-50 ～23 Phosphoprotein  

αs2-casein NA 10-15 ～23 Phosphoprotein 1NA7 

β-casein NA 30-35 ～24 Phosphoprotein  

κ-casein NA 10-15 ～19 Phosphoprotein  

γ-casein NA 5-10 ～75-100 Phosphoprotein 2CHL 

Note. The PDB extention codes are for crystal structure files for the respective milk proteins. The structures have been 

used when generating the graphic illustration on figure 1.  

Table 2. Bioactive proteins from bovine milk. 

The strong antiviral activity of poly-cationic compounds is generally explained by the 

compounds ability to interact with anionic heparan sulphate on the host cell surface, which 

works as a broad spectrum attachment receptor for several viruses [97, 98]. Thus, it is not 

surprising that methylated or ethylated α-lactalbumin and β-lactoglobulin demonstrate 

antiviral activity against the bacteriophage M13 through the inhibition of the phage DNA 

replication, as well as against herpes simplex virus 1 replication, with increasing activity 

proportional to the extent of esterification or increased basicity of the modified proteins [99, 

100]. The net positive charge-modified human serum albumin had a similar antiviral effect 

as lactoferrin, against heparan sulphate adapted sindbis virus and semliki forest virus, by 

blocking the virus receptor on the cell surface, indicating that the antiviral activity of 

lactoferrin mainly is related to its net positive charge [73]. Methylated α-lactalbumin, β-

lactoglobulin and lactoferrin also demonstrate enhanced antiviral activity against human 

influenza virus A subtype H3N2 and subtype H1N1 [101, 102], and lethal avian influenza A 

(H5N1) [103]. This effect is most likely linked to the disruption of the electrostatic 

interactions within hemagglutinin, by the esterified whey proteins, thus affecting the 

proteins stability and capacity to trigger envelope fusion with the host cell. Furthermore, 

methylation of β-lactoglobulin does also enhance the proteins antiviral activity against 

coxsackie virus and poliovirus type 1 in a dose dependent manner [104]. This illustrates that 

chemically modified whey proteins with added negative or positive charges can exert 

increased antiviral effect against a diverse group of viruses, through different antiviral 

mechanisms. The virucidal activity of the modified milk proteins, with additional negative 

charges, may attribute to a stronger interaction of these proteins with the viral envelope 

proteins. Esterification of whey proteins with methanol or ethanol would increase their 

cationic charge, thus increasing their affinity for negatively charged macromolecules such as 

host cell receptors and viral DNA or RNA, thus inhibiting viral attachment to cellular 
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membranes or inhibiting viral replication and transcription, respectively. The structural 

differences between enveloped and non-enveloped viruses in addition to the unique protein 

composition in milk from different species preclude a generalized conclusion of the milk 

proteins potential. Thus, further studies should be carried out to identify the underlying 

molecular interactions involved, and the true therapeutic potential of these milk derived 

molecules. 

3. Traditional antiviral mechanisms of milk-derived proteins  

The life cycle of a virus comprises several phases such as binding to the host cell surface, 

entry or fusion, replication of the viral genome, viral protein synthesis, virus progeny 

assembly and release. All these steps may be targeted by antiviral agents or milk derived 

proteins. 

Binding to structural virus proteins prevent virus host cell interaction. For the non-enveloped 

viruses, structural proteins on the surface of the virion protruding as spikes, such as 

glycoprotein VP4 of rotavirus [105] or fibers associated with each penton base of the capsid 

on for example adenovirus [106]. These proteins recognize host cell surface receptors, and 

are involved in facilitating the initial virus to host cell attachment. Enveloped viruses, 

meaning the viral capsid is coated with a lipid membrane known as the viral envelop, infect 

host cells via the interaction between envelop proteins and cellular receptors. The envelop 

proteins include E1 and E2 of hepatitis C virus, F protein of respiratory syncytial virus, 

hemagglutinin of influenza viruses, etc.  

Many of the antiviral milk proteins can bind to structural proteins of the virion in order to 

prevent binding of the virus to the target cell and subsequently inhibit entry of the viral 

genome into the host cell. Human lactoferrin (apo- or Fe3+), α-lactalbumin, β-lactoglobulin, 

human lactadherin, mucin, and immunoglobulin from milk could prevent rotavirus 

infection through the binding to structural viral protein VP4 [30, 37, 38, 40, 107, 108]. Also, 

the antiviral activity of lactoferrin against adenovirus has been attributed to the interaction 

of the milk protein with viral capsid proteins [60, 61, 69]. 

Furthermore, Ikeda et. al. has also demonstrated that lactoferrin effectively protect against 

hepatitis C virus infection in hepatocytes and lymphocytes by neutralizing the virus, while a 

basic N-terminal loop of lactoferrin named lactoferricin exhibited no antiviral properties in 

the same experiments [63]. Lactoferrin has also been demonstrated to inhibit the absorption 

and growth of respiratory syncytial virus in cell culture through direct interaction with the 

F(1) subunit of the viral F protein, which is the most important surface glycoprotein 

participating in viral penetration [44, 45]. Blocking of viral entry like this, leads to down-

regulation of respiratory syncytial virus induced interleulin-8 secretion from the HEp-2 

cells, which consequently leads to a dampening of the immune response as the low levels of 

interleukine-8 is inadequate to recruit neutrophils to phagocytose the viral antigen [46]. 

Hemagglutinin is an antigenic glycoprotein found on the surface of influenza viruses. The 

glycoprotein has two main functions; recognition of target cells through the binding of sialic 
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acid-containing receptors and facilitating entry of the viral genome into the target cells by 

initiating fusion of host endosomal membrane with the viral membrane. Thus, targeting the 

hemagglutination activity of hemaglutinin could be a robust mechanism in fighting 

influenza virus infections. Influenza hemaglutinin has also successfully been targeted by 

both human and bovine lactoferrin (apo- and holo-), as well as κ-casein glycomacropeptide, 

reduce viral hemagglutination [30, 53]. Moreover, the addition of methylated β-lactoglobulin 

in the medium of Madin-Darby canine kidney cell lines infected with influenza virus H1N1 

reduced hemagglutination in a concentration-dependent manner [101]. 

Interference with viral entry, through virus and/or cell surface interaction. Viruses recognize and 

conjugate to specific host cell receptors. These receptor molecules are mainly of protein 

nature, including glycoprotein, lipoprotein and glycolipid-protein. Hence, host cell 

specificity or preference is guided by the level of expression of these individual receptor 

molecules on the different cells. For example, the main goal of human immunodeficiency 

virus is to infect CD4+ T-lymphocytes and initiate replication of a large number of progeny 

virions. However, the initial infection with this virus is usually of epithelial dendritic cells, 

which then are used for transport to the lymph nodes. Human immunodeficiency virus 

attachment to for example emigrating dendritic cells, is mediated by the successive 

interactions of the viral envelop glycoprotein gp120 with CD4 (a glycoprotein known as 

cluster of differentiation 4) and a co-receptor, CXCR4 (C-X-C chemokine receptor type 4, 

also known as fusin or CD184) or CCR5 (C-C chemokine receptor type 5, also known as 

CD195) [109-111]. However, in cells like macrophages and skin dendritic cells that are 

lacking or weakly expressing CD4, many other cell surface molecules such as heparan 

sulphate proteoglycans [112, 113], mannose receptor [48, 114], or dendritic cells-specific 

intracellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) [62, 109] can play a key 

role in the initial multistep interaction between the virus and host cell surface. Consequently, 

one might hypothesis that human immunodeficiency virus entry into the host cell might be 

efficiently inhibited via the interaction between antiviral milk proteins from bovine or human 

sources and some of the receptors described above. This has also been demonstrated to be 

true, for lactoferrin which effectively can bind heparan sulphate as well as mannose receptor 

like nucleolin, both which will inhibit virus attachment [18, 48]. Other studies have also 

indicated that a peptide fragment (hLF1-33) of human lactoferrin (residue 1-33) constituting 

the glycosaminoglycan recognizing site of the human lactoferrin, exhibit inhibitory effect on 

human immunodeficiency virus 1 attachment to epithelial cells, though its activity was lower 

as compared to the native protein [19]. Interestingly however, hLF1-33 had no inhibitory effect 

on transferring human immunodeficiency virus 1 from immature dendritic cells to CD4 T-

lymphocytes, but enhancing virus transmission in contrast to human lactoferrin. This may 

suggest that the hLF1-33 exposed domain is not involved in human lactoferrin associated 

inhibition of human immunodeficiency virus 1 transfer to CD4 T-cells [19]. Moreover, bovine 

lactoferrin could bind strongly to DC-SIGN to prevent human immunodeficiency virus 1 

capture and subsequent transmission on dendritic cells, and bovine lactoferrin was a much 

more efficient inhibitor than human lactoferrin on blocking not only dendritic cell mediated 

human immunodeficiency virus 1 transmission to - but also replication in CD4 T-cells [49].  
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Although it has been identified that a metallopeptidase, angiotensin-converting enzyme 2, is 

a functional receptor for severe acute respiratory syndrome coronavirus infection [115], 

other reports have demonstrated that DC-SIGN, L-SIGN (also called CD209L, specific for 

liver/lymph node) [116-119], and heparan sulphate [120] also are involved in the virus 

pathogenesis. Thus, there are reasons to believe that lactoferrin could prevent severe acute 

respiratory syndrome coronavirus spread in the host through the same mechanism as 

described for human immunodeficiency virus, by interacting with DC-SIGN or heparan 

sulphate receptors. Recently, Lang et. al. also described that lactoferrin curtailed the entry of 

severe acute respiratory syndrome coronavirus into HEK293E/ angiotensin-converting 

enzyme 2-Myc cells by binding to heparan sulphate [120]. 

Human papillomavirus can also use heparan sulphate on the target cell surface as a 

receptor. Thus, by incubating HaCaT cells and papillomavirus 16 virus like particles with 

human and bovine lactoferrin Drobni et. al. have confirmed that human papillomavirus 

entry can be inhibited by lactoferrin in a dose-dependent fashion [65]. Subsequently, they 

also demonstrated that bovine lactoferrin peptide (bLF17-33) region 17-33 was a more 

potent inhibitor of both human papillomavirus 5 and 16 pseudovirus infection than the 

native protein, while human lactoferricin (hLF1-49) region 1-49 from human lactoferrin, 

showed modest antiviral activity against the same viruses and bLF17-42 prevented only 

papillomavirus 5 pseudovirus infection. With regard to the viral attachment, only hLF1-49 

and bLF17-42 exhibited antiviral effect [121].  

In a classical pre-incubation study on Vero E6 cells, it was demonstrated that lactoferrin had 

enhanced antiviral activity against hantavirus infection when added prior to infection. 

However, this boost in activity could be removed if the cells were subsequently washed with 

phosphate buffered saline prior to infection [72, 122]. These results might be explained by the 

weak interaction between lactoferrin and other cellular molecules rather than heparan 

sulphate, as the interaction between lactoferrin and heparan sulphate should withstand 

phosphate buffered saline washing [80]. Further research should be developed to identify 

whether β3 integrin and/or β1 integrin molecules are binding to lactoferrin [123-125]. 

Similarly, using indirect immunofluorescence, McCann et. al. found that bovine lactoferrin 

could bind to Crandell-Reese feline kidney cells used for propagation of feline calicivirus, as 

well as Monkey Embryo kidney cells used with poliovirus, indicating that the interference 

of viral infection might be attributed to lactoferrin binding to the cellular receptor on the 

respective cells, though the related cell receptors for feline calicivirus and poliovirus have 

not yet been identified [50]. Contradicting this, it was demonstrated that lactoferricin 

decreased feline calicivirus but not poliovirus infection. Moreover, feline herpes virus-1 

replication could be prevented by exposing cultured Crandell-Reese feline kidney cells to 

lactoferrin prior to or during viral adsorption, but not following viral adsorption, suggesting 

that the inhibitory effect on feline herpes virus 1 adsorption to the cell surface and/or viral 

penetration into the cell might be related to the interaction between lactoferrin and cellular 

receptor on the Crandell-Reese feline kidney cells [54]. 

Interference with certain viral enzymes required for virus replication. The process of viral 

replication will involve a myriad of enzymes, such as DNA- or RNA-polymerases, reverse 
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transcriptase, integrase, etc. The necessity of viral enzymes for viral replication means that 

interference with any of them potentially could result in a selective antiviral mode of action. 

Ng et. al. has assayed the inhibitory effect of proteins from bovine milk on the crucial 

enzymes for the human immunodeficiency virus type 1 life cycle [126]. They demonstrated 

that lactoferrin strongly inhibited reverse transcriptase but only slightly inhibited the viral 

protease and integrase. In parallel, α-lactalbumin, β-lactoglobulin and casein were 

demonstrated to affect human immunodeficiency virus protease and integrase, while not 

affecting the reverse transcriptase [126]. 

4. Modulation of innate immune responses - A novel antiviral strategy 

The immune system consists of the innate and the adaptive branch, which exerts its 

functions through recognition of foreign pathogen resulting in a series of responses to 

eliminate the infectious material. Both innate leukocytes (including macrophages, dendritic 

cells, and natural killer cells) and adaptive immune cells (B-cells and T-cells) are involved in 

host immune protection and bridging these two pathways is a variety of traditional signal 

molecules (cytokines and chemokines). Recently it has also been documented that natural 

occurring host defence peptides (and proteins) are involved in the orchestration of a well 

balanced and effective immune response [127-129]. Lactoferrin is one such host defence 

protein, and it has been demonstrated that lactoferrin can increase the cytotoxic functions of 

natural killer cells and lymphokine-actived killer cells especially in infants, which normally 

have low activity in these cell populations [130]. Lactoferrin can also enhance the mobility of 

polymorphonuclear leucocytes and increase the production of superoxide [131], activate 

macrophages and stimulate the release of both pro- and anti-inflammatory cytokines, i.e. 

interleukin-1,-6,-8,-18, interferon-γ and tumor necrosis factor-α [132]. The antiviral effect of 

lactoferrin on cytomegalovirus in a murine infection model has been demonstrated to be a 

result of augmentation of natural killer cell activity rather than of the cytolytic T-lymphocytes 

[14]. Similarly, human lactoferrin has also been proven to have an effect on natural killer cell 

cytotoxicity against haematopoietic and epithelial tumor cells [133].  

Furthermore, the antiviral activity of lactoferrin against vesicular stomatitis virus has been 

related to its capacity of up-regulating the accumulation of interferon-β in peritoneal 

macrophages from mice [11]. Another experiment with interperitoneal administration of 

lactoferrin to CBA mice demonstrated enhanced production of tumor necrosis factor-α and 

interleukin-12. Similar results were also reported after in vitro stimulation of J774A.1 murine 

macrophages by lactoferrin [134]. Increased expression of interleukin-12, in addition to 

interferon-β and NOD2, were also observed in mice that were administered lactoferrin 

orally after being infected with influenza virus, thus suggesting that lactoferrin potentially 

can promote systemic host immunity [135]. As an important inductor of interferon-γ 

production in T-cells and natural killer cells, interleukin-12 exhibited a marked synergism 

with interferon-γ in activating monocytes and macrophages, promoting the differentiation 

of B-cells and T-cells, and increasing the induction of major histocompatibility complex I 

and II molecules by up-regulating expression of the interleukin-18 receptor on cells 

producing interferon-γ [136-138]. 
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With regard to modulation of the adaptive immune system, lactoferrin could exert higher 

growth stimulatory activity on lymphocytes than transferrin [139], induce phenotypic 

changes of immature B- and T-cells from newborn or chromosome X-linked 

immunodeficient mice, as well as enable B-cells to present antigen to an antigen-specific T-

helper type 2 cell line [140, 141]. Immature B-cells cultured with lactoferrin will also increase 

their ability to promote antigen-specific T-cell proliferation, indirectly indicating enhanced 

B-cell antigen presentation [140]. 

In summary, the effects of lactoferrin on the activation, maturation, migration and antigen 

presentation of the innate and adaptive immune cells, suggest that lactoferrin have the 

potential to associate the cellular functions and responses of the innate and adaptive 

immune cells, respectively. The modulating effects of lactoferrin on cytokine levels, 

especially of interleukin-12 and interleukin-18 illuminates the milk proteins role in 

connecting the innate and adaptive immune response.  

5. Milk derived peptides as immune modulators 

There is a great quantity of milk proteins and peptides other than lactoferrin that can lead to 

immune regulation, involving in both up- and down-regulation of the immune system. 

Peptides from casein [4, 6, 142], β-lactoglobulin [143, 144], and α-lactalbumin [7] also 

enhance and/or suppress immune cell function (Table 3). 

 

Precursor 

protein 

Fragment Peptide sequence Name Function Reference 

αs1-casein 23-27 FFVAP α-casokinin-5 ACE-inhibition [222, 223] 

28-34 FPEVFGK α-casokinin-7 ACE-inhibition [222] 

23-34 FFVAP FPEVFGK ACE-inhibition [224] 

104-109 YKVPQL ACE-inhibition [225] 

158-162 YVPFP αs1-

casomorphin 

Opioid agonist, 

immunomodulation 

[159, 226] 

169-193 LGTQYTDAPSFSDIPNPIGSENSEK ACE-inhibition [227] 

194-199 TTMPLW α-casokinin-6 ACE-inhibition, 

immunostimulatory 

activity 

[5, 228] 

201-212 IGSENSEKTTMP ACE-inhibition [229] 

αs2-casein 94-103 QKALNEINQF ACE-inhibition [166] 

163-176 TKKTKLTEEEKNRL ACE-inhibition [166] 

β-casein 1-25 RELEELNVPGEIVES

(P)LS(P)S(P)S(P)EESITR 

casein 

phosphopeptide

Immunostimulatory 

activity 

[3]  

54-59 VEPIPY Immunostimulatory 

activity 

[6, 149] 

60-66 YPFPGPI β-

casomorphin-7 

ACE-inhibition, 

immunomodulation 

activity 

[1, 230, 

231] 

63-68 PGPIPN Immunomodulation [6, 232] 

60-70 YPFPGPIPN β-

casomorphin-11 

Immunostimulatory 

activity, opioid and 

ACE-inhibitory 

activities 

[233] 
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Precursor 

protein 

Fragment Peptide sequence Name Function Reference 

73-89 NIPPLTQTPVVVPPFIQ ACE-inhibition [229]  

114-118 YPVEP β-

casochemotide-1

Promote innate host 

immune response 

[142] 

124-133 MPFPKYPVEP ACE-inhibition [229] 

169-175 KVLPVPQ ACE-inhibition [225, 229] 

177-183 AVPYPQR β-casokinin-7 ACE-inhibition [223] 

191-193 LLY Immunomodulation 

activity 

[6, 234] 

193-202 YQQPVLGPVR β-casokinin-10 ACE-inhibition, 

immunostimulatory 

activity 

[1] 

210-221 EPVLGPVRGPFP ACE-inhibition [229] 

κ-casein 108-110 IPP ACE-inhibition [235] 

106-116 MAIPPKKNQDK casoplatelin Antithrombotic activity [236] 

 YIPIQYVLSR Casoxin C Opioid agonist [237] 

 YPSY Casoxin 4 Opioid agonist [238] 

α-

lactalbumin 

18-20 YGG Immunomodulation [1] 

50-53 YGLF α-lactorphin ACE-inhibition [143, 144] 

99-108 LDDDLTDDI ACE-inhibition [239] 

104-108 LTDDI ACE-inhibition [239] 

β-

lactoglobulin 

22-25 TMKG ACE-inhibition [239] 

32-40 AGTWYSLAM ACE-inhibition [239] 

94-100 IPAVFKI ACE-inhibition [239] 

106-111 NKVLVL ACE-inhibition [239] 

102-105 YLLF β-lactorphin ACE-inhibition [143, 144] 

142-148 ALPMHIR ACE-inhibition [240] 

Bovine serum 

albumin 

399-404 YGFQNA serorphin Opioid [241]  

208-216 ALKAWSVAR albutensin A ACE-inhibition [242] 

Bovine 

lactoferrin 

17-41 FKCRRWQWRMKKLGAPSITCVRRAF lactoferricin Anti-herpes simplex 

virus activity, ACE-

inhibition, 

immunomodulation 

activity 

[2, 80] 

17-26 FKCRRWQWRW immunomodulation 

activity 

[21] 

Human 

lactoferrin 

1-49 GRRRRSVQWCAVSQPEATKCFQWQR

NMRKVRGPPVSCIKRDSPIQCI 

lactoferricin Anti-herpes simplex 

virus activity 

[80] 

1-32 GRRRRSVQWCAVSQPEATKCFQWQR

NMRKVRGP 

LF-33 (human) Anti-human 

immunodeficiency virus 

activity 

[18, 19] 

222-230; 

264-268 

ADRDQYELL;

EDLIWK 

Inhibit herpes simplex 

virus 1 infection 

[243] 

268-284 KWNLLRQAQEKFGKDKS Lactoferrampin Immunomodulation 

activity 

[148] 

318-323 YLGSGY Lactoferroxin A Opioid agonist [244] 

536-540 RYYGY Lactoferroxin B Opioid agonist [244] 

673-679 KYLGPQY Lactoferroxin C Opioid agonist [244] 

 

Note: ACE-inhibition, Angiotensin-converting enzyme-inhibition.  

Table 3. Milk proteins-derived peptides with antiviral and immunemodulatory activity 
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Up-regulation of immune system. Bovine and human lactoferricin, from N-terminal end of 

bovine and human lactoferrin, respectively, are known for their ability to improve and 

modulate the function of host immune system [145-147]. Additional, deletion fragments of 

lactoferrin like the peptide sequence FKCRRWQWRW, corresponding to N-terminal 

fragment 17-26 of bovine lactoferrin, has demonstrated potent activation of 

polymorphonuclear leukocytes [21]. Another lactoferrin derived peptide termed 

lactoferrampin, containing residues 268-284 from the N-terminal domain of lactoferrin, is 

located in close proximity to the cationic lactoferricin sequence, in the three dimensional 

structure. Lactoferrampin has been shown to exhibit antimicrobial activity and can 

improving immune function and gut health in the present of lactoferricin. Dietary 

supplementation of piglets with an expressed fusion peptide composed of bovine 

lactoferricin linked to lactoferrampin demonstrated the ability to increased serum levels of 

IgA, IgG, and IgM, while decreasing the incidence of diarrhea in the piglets [148]. 

Immunomodulating casein peptides have been found to stimulate the proliferation of 

human lymphocytes and the phagocytic activities of macrophages [4]. Casein 

phosphopeptides from fermented milk products, such as plain yogurts and cheeses, has 

shown beneficial effects on the immune system including the mitogenic effect and IgA 

enhancing effect in mouse spleen cell cultures [3]. According to the results of other studies, 

human β-casein fraction 54-59 has demonstrated to enhance the phagocytic activity of 

macrophages both in mice and humans and increase resistance against certain bacteria in 

mice [6, 149]. 

Chemotactic factors in the tissue do also play an essential role in host defence against 

microbial infection by inducing leukocyte infiltration. A pentapeptide (β-casochemotide-1) 

with amino acid sequence (YPVEP) matching an actinase E digest peptide from bovine β-

casein (corresponding to fraction 114-118), has been tested and demonstrated to both 

chemoattract and activate, human and mouse monocytes and macrophages by using a 

unique G-protein coupled receptors [142]. 

In addition, Colostrinin, also known as PRP, is a naturally occurring mixture of proline-rich 

polypeptides derived from colostrums and it can stimulate the immune response in animal 

and in vitro studies by causing differentiation of murine thymocytes into functionally active 

T-cells [150], as well as inhibit autoimmune disorders. Subsequent studies have shown that 

Colostrinin largely consists of the peptides derived from proteolytic processing of the milk 

proteins β-casein and β-casein homolog’s [151]. Among the Colostrinin digestion peptides 

are an active nona-peptide fragment VESYVPLFP demonstrating a full spectrum of 

biological activities [150]. Furthermore, fermentation of milk by Lactobacillus helveticus has 

also proven to generate novel peptide fragments, i.e. three derived from β-casein and one 

peptide from α-lactalbumin, and the peptides have demonstrated the ability to stimulate the 

production of tumor necrosis factor-α and modulate macrophage activity [7]. 

Down-regulation of immune responses. It has been demonstrated that a modified whey protein 

concentrate, developed as a by-product from commercial manufacturing of cheese, not only 

suppress B- and T-lymphocyte proliferating responses to mitogens in a dose-dependent 

fashion, but also suppress alloantigen-induced lymphocyte proliferation during a mixed 
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leukocyte reaction. Moreover, the modified whey protein concentrate could also have been 

demonstrated to suppress other indices of lymphocyte activation, e.g. cytokine secretion and 

the formation of activated (CD25+) T-cell blasts, showing that the mechanism of suppression 

may be related to an inhibition of the lymphocyte activation process. However, the 

interleukin-2 cytokine-mediated response was not affected by the presence of the modified 

whey protein concentrate in culture [152]. Similarly, intact -casein and -

caseinoglycopeptide (fragment 106-169), which have been prepared from -casein digested 

with rennin, in addition to a commercial whey protein concentrate, all significantly inhibit 

the mitogen-induced proliferative response of mouse spleen lymphocytes and Peyer’s patch 

cells [153-155]. As a result of this it has been proposed that -caseinoglycopeptide fragment 

106-169 can inhibit the phytohaemagglutinin induced proliferation of mouse splenocytes via 

at least two different models; production of an inhibitory component that reacts with the 

anti-interleukin-1 antibody or through suppression of interleukin-2 receptor expression on 

CD4+ T-cells [156].  

The opioid system plays a major role in immune modulation, both through classical opioid 

receptor, but also through other mechanisems. For example, opioid peptides have been 

demonstrated to inhibit phagocytosis [157], decrease natural killer cell number and activity 

and decrease cell-mediated hypersensitivity [158]. Also, αs1-casomorphin, an opioid 

agonist, can modulate antibody and cytokine secretion by multiple myeloma cells in a cell 

line-dependent and opioid receptor-independent manner, but it was shown to decrease the 

antibody secretion by normal B-lymphocytes and the proliferation rate of multiple myeloma 

cells through opioid receptor activation [159]. In other words, there might be two different 

opioid mechanisms, mediated by parallel signalling pathways, i.e. one early non-opioid 

receptor related effect modulating the constitutive secretion of immunoglobulin and 

cytokine, as well as a second long lasting receptor-mediated action of cell growth. Thus, 

opioids might be employed in controlling the humoral immunity. 

Furthermore, the rennin-angiotensin-aldosterone system is not only a major regulator of 

blood pressure; it also plays a key role in autoimmunity. The angiotensin peptide (AII), is 

one component of the rennin-angiotensin-aldosterone system, and has direct activity on T-

cell function, including activation, expression level of tissue-homing markers and 

production of tumor necrosis factor-α [160]. Inhibitors of angiotensin-converting enzyme 

will dampen the proteolytic process of the larger angiotensin peptides (AI) to the active AII. 

Thus, inhibition of T-cell angiotensin-converting enzyme blocks production of tumor 

necrosis factor-α, which modulates the proliferation of human immunodeficiency virus 

[161] and regulates the helper activity in B-cell activation [162]. This will also suppress the 

auto-reactive T-helper 1 and T-helper 17 cells and promotes antigen-specific CD4+FoxP3+ 

regulatory T-cells through inhibition of the canonical NF-κB1 transcription factor complex 

and activation of the alternative NF-κB2 pathway [163]. Moreover, angiotensin-converting 

enzyme inhibitors play a pivotal role in immune defence by decreasing the degradation of 

bradykinin and enkephalin [4, 164].  

A variety of angiotensin-converting enzyme inhibitory peptides have been found in the 

hydrolysates of milk using different enzymes; the bovine αs1-casein (fragment) f24-47, f104-
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109, f169-193, f194-199 and f201-212, αs2- casein f94-103 and f163-176, β-casein f60-66, f60-70, 

f169-175, f177-183 and f193-202, α-lactalbumin f18-20 and f50-53; β-lactoglobulin f102-105 

and f142-148, bovine serum albumin f208-216, lactoferrin f17-41 (Table 3). Among all these 

angiotensin-converting enzyme inhibitors, it should be emphasised that peptides αs1-casein 

f194-199, β-casein f60-66 and f193-202 have shown to have both angiotensin-converting 

enzyme inhibitory activities and immune stimulatory effect. 

Moreover, recombinant human αs1-casein expressed in Escherichia coli has been purified and 

digested with trypsin in an attempt to find peptides with angiotensin-I-converting enzyme 

inhibitory activity. Three novel angiotensin-converting enzyme inhibitory peptides, A-II, B-

II and C, have been isolated and their amino acid sequences identified as YPER (residues 8-

11), YYPQIMQY (residues 136-143) and NNVMLQW (residues 164-170), respectively [165]. 

Two other sequences QKALNEINQF and TKKTKLTEEEKNRL from bovine milk αs2-casein 

have even stronger inhibitory effects on the angiotensin-converting enzyme [166]. 

Regardless, no structure-function relationship study for milk-derived peptides in respect to 

their angiotensin-converting enzyme inhibitory effect has yet been described. However, it 

has been suggested that peptides with angiotensin-converting enzyme inhibitory function 

show some common features. First, the interaction between different inhibitory peptides 

and the angiotensin-converting enzyme is strongly influenced by the C-terminal tripeptide 

residues of the substrate, which interacts with the active sites of the enzyme [167]. The 

inhibitory potency of the peptides is further attributed by the hydrophobic (e.g. proline) as 

well as the positive charged (e.g. arginine and lysine) amino acids in the C-terminal end 

[168]. Additionally, the model of angiotensin-converting enzyme inhibition involves 

interaction, not only to the active site but also to the anionic inhibitor binding sites, which 

are different from the catalytic sites of the enzyme.  

6. Synergy between milk proteins and conventional antiviral drugs 

A combination of human lactoferrin with recombinant murine interferon-γ resulted in 

synergistic suppressive effects on disease progression in friend virus complex infected mice 

[56]. The experiment concluded that natural killer cell activity decreased by friend virus 

complex, and that the cellular activity returned to normal levels and survival rates increased 

upon treatment with lactoferrin and interferon-γ. Another study also supporting immune 

cell regulation by lactoferrin was performed by Spadaro et. al. In this study the anticancer 

activity of a recombinant form of human lactoferrin, talactoferrin-alfa (Agennix, Houston, 

TX) was evaluated. Talactoferrin-alfa was administered orally to BALB/c mice and the 

results showed an increase in the intestinal mucosal interferon-γ production, CD8+ T-cell 

cytotoxicity and the Peyer’s patch cellularity which included expansion of CD8+ T 

lymphocytes and nature killer T-cells, whereas no such phenomena were showed in 

interferon-γ knockout mice [169]. Thus, the inhibition of friend virus complex infection and 

tumor growth by lactoferrin/talactoferrin-alfa seems to be mediated by an interferon-γ-

dependent enhancement of CD8+ T-cells and natural killer T-cell activity, leading to 

diversified functions like antiviral defence, immune activation and cell growth regulation 

[170-173]. 
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Also, combined pre-infection administration of lactoferrin with post-infection 

administration of Ribavirin on Vero E6 cells could completely inhibit focus formation 

during hantavirus infection (similar to the traditional plaque formation). This combination 

therapy also demonstrated significantly increased survival rates in an in vivo mice model, 

not particularly surprising as lactoferrin inhibits viral adsorption to cells and Ribavirin 

interferes with viral RNA synthesis [122]. Moreover, the antiviral synergy of 

lactoferrin/lactoferricin with Cidofovir, Ribavirin, Zidovudine, and Acyclovir as all been 

well documented against human cytomegalovirus, hepatitis C virus, human 

immunodeficiency virus 1 and herpes simplex virus, respectively [13, 174-176]. 

Although it is known that lactoferrin has been used to inhibit initial viral infection by 

interfering with viral attachment and/or entry, the mode of antiviral activity against lots of 

viruses needs to be clarified in the future, e.g. the infection with hepatitis G virus in human 

MT-2C T-cells was prevented by bovine lactoferrin with no clear mechanism [63]. With 

regard to friend virus complex infection, most researchers have confirmed that human 

lactoferrin has anti-friend virus complex activity in a mouse leukemia model [57, 64], but 

have no direct effect on friend virus complex infection in vitro, indicating a mechanism 

involving immune regulationg rather than direct viral affects. They discovered that human 

lactoferrin prolonged survival rates and decreased viral titres in the spleen of infected mice 

by administering human lactoferrin intraperitoneally in the early phase of friend virus 

complex infection. Probably, the anti-friend virus complex mechanism of human lactoferrin 

related to the regulation on the myelopoiesis [64], which should be verified thoroughly.  

7. Commercial potential of milk derived proteins and peptides 

Immune regulation. There is emerging evidence that the utility of many immune mediators 

originating from milk represents novel therapeutic approaches depending on their activity 

of immune stimulation, immune suppression and induction of immunological tolerance. 

Hence, milk-derived proteins and peptides with immune modulating activity are claimed to 

be a health enhancing nutritional dietary supplement in functional food and pharmaceutical 

preparations. For instance, Colostrinin from bovine colostrum have demonstrated possible 

efficacy against various illnesses including viral infections, and ailments characterized by an 

overactive immune system, such as allergies, autoimmune diseases, neurodegenerative 

diseases like Alzheimer’s disease, etc. Capsules or chewable tablets containing Colostrinin 

are sold as an over the counter dietary supplement and are available in many countries in 

the world under names like Colostrinin, MemoryAid, Cognisure, Cognase, Cognate and 

Dyna (ReGen Therapetutics Limited, London, England) [151]. Moreover, whey proteins are 

used as common ingredients in various products including infant formulas, specialized 

enteral and clinical protein supplements, sports nutrition products, and specific weight 

management- and mood control products.  

Additionally, synthetic peptides derivatives tailored on natural milk proteins or fragments 

there of, may be another powerful way for design of immune regulating pharmaceutical 

candidates. For example, synthetic peptides tailored from milk proteins have been shown to 
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enhance proliferation of human peripheral blood lymphocytes. In particular, two fragments 

(YG and YGG), of bovine α-lactalbumin (fraction 18-19 and 18-20) can significantly stimulate 

the lymphocyte proliferation, while β-casomorphin-7 and β-casokinin-10, corresponding to 

fragments 60-66 and 193-202 of bovine β-casein, respectively, suppresses lymphocyte 

proliferation at low concentrations while enhanced proliferation at high concentrations [1] 

(Table 3).  

Recent studies have shown that synthetic innate defence regulator peptides offer protection 

by enhancing innate immune defenses of the host while suppressing potentially harmful 

excessive inflammatory response triggered by the invading pathogen. For example, innate 

defence regulator peptide 1 was chemotactic for T-helper cells type 1 [23], monocytes [27] 

and neutrophil response [28], acting in a mitogen-activated protein kinase-dependent 

manner, while reducing pro-inflammatory cytokine responses. Another peptide, innate 

defence regulator 1002, induces chemokines in human peripheral blood mononuclear cells 

[24] which prevents the production of interleukin-1β-induced matrix metalloproteinase 3 

and monocyte chemotactic protein-1 and selectively suppresses the inflammatory response 

[25]. 

With the aid of computational molecular modeling technologies, theoretical prediction of 

immune regulatory peptides has become available and practical. For example, RDP58, a 

novel d-amino acid decapeptide (r-(nle)3-r-(nle)3-gy-CONH2), which was developed by 

computer-aided rational based design on human leukocyte antigen-derived peptides [177], 

has been discovered to suppress the T-helper 1 cytokine profile, decrease production of 

inflammatory cytokines including tumor necrosis factor-α, interferon-γ, interleukin-2 and 

interleukin-12 in both cell lines and animal models [26, 178, 179]. Several clinical trials on 

human including phase I safety in normal volunteers, phase II mild-moderate active 

ulcerative colitis, phase II moderate active ulcerative colitis and phase IICrohn’s disease had 

been completed (Genzyme Corporation; Sanofi, Bridgewater, NJ). Moreover, quantitative 

structure-activity relationship analysis has been done for peptide design and optimization in 

developing novel antimicrobial drugs [180-183], and the numerical improvements of 

quantitative structure-activity relationship studies has been exemplified recently [184], 

though there are limitations to the predictive ability of the models [185, 186] this technology 

clearly accelerates lead peptide discovery.  

Suppression of immunological functions by milk derived proteins is thought to be 

important in the ontogeny of the neonatal gastrointestinal immune system, specifically by 

ensuring a state of tolerance with respect to food proteins. Kulkarni and Karlsson has 

demonstrated the essential role of milk-derived immunosuppressive factors (i.e. growth 

factor-β) during early development, and that neonatal mice deficient in transforming 

growth factor-β remain viable only as long as they receive maternal milk containing this 

same growth factor [187].  

Also, it is envisaged that most of the potential immunosuppressive activity of milk-derived 

peptides would be effective on chronic inflammatory diseases and organ transplant patients 

by decreasing allergy, autoimmunity, and organ rejection. For example, lactoferrin could 
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enhance the production of anti-inflammatory factors, like interleukin-11, not only in a 

hepatitis mouse model, but also in human intestinal myofibroblasts [188]. Additionally, 

hydrolysis of caseins with L. casei GG-derived enzymes has generated molecules with 

suppressive effects on lymphocyte proliferation and benefited the intestinal bacteria in the 

down-regulation of hypersensitivity reactions to ingested proteins in patients with food 

allergy [189]. Furthermore, two synthesized analogs of the hexapeptide of human β-casein 

(fraction 54-59) with modification at the N-terminal region not only showed inhibition in 

alloantigen inducing lymphocyte proliferation and production of interferon-γ in a SRBC 

mice model, but also demonstrated increased production of interleukin-4 and improved the 

skin graft survival. Thus, these peptides might serve as good templates for development of 

safe and effective immunosuppressant drugs [17]. Similarly, two other synthetic β-casein 

peptides HLPLP and WSVPQPK, have demonstrated potent antioxidant activity and 

inhibitory activity of angiotensin-converting enzyme [190]. Accordingly, proteins and 

peptides from milk could potentially be used in production of immune stimulating- and 

immunosuppressant agents for both prophylaxis and treatment of infectious diseases and 

immune related illnesses. 

Antiviral therapy. Lactoferrin might be a useful addition to conventional antiretroviral 

therapy, as traditional therapy supplemented with lactoferrin has demonstrated a more 

effective increase in CD4+ cell count than either treatments alone [191]. A potential oral 

vaccine resulting in expression of enterovirus 71 VP1 capsid protein in a transgenic animal 

system, under the control of an α-lactalbumin promoter and an α-casein leader sequence has 

demonstrated protection against enterovirus 71 [192]. Also, the combined treatment with 

human lactoferrin and recombinant murine interferon-γ on feline calicivirus infection might 

be of significance as a potential therapy for patients with leukemia and those infected with 

retroviruses [56].  

Most of the proteins and peptides with antiviral potential has also demonstrated synergy 

with conventional antiviral drugs, reducing the dose of the antiviral drugs, and limiting the 

development of drug-resistant viruses on account of the selective targeting of the host rather 

than infectious pathogens. At the present time, many peptides with immune regulating 

effects have been approved for clinical use against virus infection, such as Zadaxin, IM862, 

SCV-07 and so on [193]. Similarly, two peptide inhibitors of interleukin-10 may be applied to 

increase anti-hepatitis C virus immune response by restoring the immune stimulatory 

capabilities of dendritic cells, which have been suppressed by high levels of interleukin-10 

[194]. Moreover, candidacidal activities of a synthetic peptide from human lactoferrin fraction 

1-11 and 21-31 have been investigated for killing of multidrug-resistant pathogens [195-199]. 

Present research results, such as phase I safety and tolerability trials of human lactoferrin by 

AM Pharma [22], indicate that human lactoferrin 1-11 acts by selectively stimulating the innate 

immune system [200]. Thus, human lactoferrin 1-11 is more likely to be an interesting 

candidate for further exploration in various clinical tests, such as coating for dental or bone 

implants, in biosensing applications or in radiopharmaceutical therapy [199]. 

Vaccine adjuvant. Vaccine adjuvants, such as an immune potentiator or immunomodulator, 

have been used for decades to improve the immune response to vaccine antigens. This 
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involves presentation of the antigen to the immune system, regulation of both quantitative 

and qualitative aspects of the immune responses, targeting of specific cells, etc. Many 

adjuvants had been developed in the past, but were never accepted for routine vaccination 

because of safety concerns, such as acute toxicity and the possibility of delayed side effects. 

Thus, novel vaccine adjuvants without side effects should be proposed. Despite numerous 

publications on milk proteins and milk derived peptides with immune regulating activity, 

there are scarse reports of their adjuvant potential to vaccine. Lactoferrin could function as 

an effective adjuvant as it has been documented to enhance efficacy of the Bacillus Calmette-

Guerin, the current vaccine for tuberculosis disease by promoting host protection and 

decreasing disease manifestation [201, 202]. Additionally, recombinant porcine lactoferrin 

significantly increased serum IgA, IgG and infectious bursal disease virus-specific antibody, 

as well as enhanced interferon-γ and interleukin-12 expressed in chicken T-lymphocytes, 

suggesting that porcine lactoferrin could enhance cell-mediated immunity and strengthen 

the ability of vaccinating against infectious bursal disease infection [203, 204]. 

An innate defence regulator peptide, HH2, has shown synergy with oligonucleotides 

containing CpG motifs, when used as an immunoadjuvant to enhance the immune response 

through stimulation of T-helper 1 and T-helper 2 responses in newborn piglets which were 

vaccinated with a pseudorabies attenuated virus vaccine [29]. Recently, Brown et. al. found 

that the combination of oligonucleotides contain CpG motifs and HH2 displayed robust 

adjuvant effects on induction of T-helper 1 cellular immune response in mice by formulating 

with a booster recombinant Chlamydia antigen subunit vaccine [205]. Another synthetic 

peptide, WKYMVm, originally identified as a peptide that stimulated the activity of 

monocytes, neutrophils and dendritic cells [206-210], has demonstrated to selectively 

enhance the vaccine-induced CD8+ T-cell responses in a dose-dependent manner, in terms 

of interferon-γ secretion and cytolytic activity when it was co-delivered with human 

immunodeficiency virus, hepatitis B virus and influenza virus vaccines [211]. It is indicated 

that WKYMVm may function as a novel adjuvant for DNA vaccine. 

Cancer inhibition. More recently, a widely-read article focused on the amazing cases in which 

milk proteins and derived peptides were used in the treatment of different kinds of cancers. 

Whey protein is superior to other dietary proteins for suppression of tumour development 

in animal models usually for colon and mammary tumorigenesis [212]. Furthermore, 

lactoferrin and its peptides, for example, lactoferricin [212-214], both possess anticancer 

activity by inducing apoptosis; inhibit angiogenesis, modulating the carcinogen 

metabolizing enzymes, and so on. Casein and casein derived peptides have antimutagenic 

properties, and other whey protein components, such as β-lactoglobulin, α-lactalbumin and 

serum albumin, have also demonstrated anticancer potential [212, 215-217]. Moreover, a 

recombinant adenovirus containing the human lactoferrin cDNA has been constructed and 

its effects against tumor growth have been investigated in mice bearing EMT6 breast cancer. 

The results showed that recombinant delivery of human lactoferrin cDNA could induce 

apoptosis of the tumor cells by triggering the mitochondrial-dependent pathway and 

activation of caspase 3, suggesting that this recombinant cDNA delivery might be a 

promising drug strategy for breast cancer gene therapy [218].  
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In addition, the synthetic peptide, P60 (RDFQSFRKMWPFFAM) [219], has demonstrated 

potential of inhibiting the immunosuppressive activity of murine and human derived 

regulatory T-cells and enhances the effector T-cell stimulation in vitro by binding to 

regulatory T-cells specific forkhead or winged helix transcription factor 3. Thus, P60 can 

improve the immunogenicity of cancer and viral vaccines against CT26 tumor challenge and 

hepatitis C virus infection. Also, the in vivo antitumoral effects of LTX-302, a 9-mer peptide 

derived from bovine lactoferricin, have been examined by intratumoral injection. The results 

showed that LTX-302 induced tumor necrosis and infiltration of inflammatory cells followed 

by complete regression of the tumors, as it results in long term and specific cellular 

immunity against the A20 B-cell lymphoma that is CD4+ and CD8+ T-cells dependent [20]. 

8. Conclusion 

Most of the milk proteins and peptides that have been identified with antiviral properties 

are broad spectrum components targeting general features and mechanismes involved in a 

viral infection cycle. Hence, many of these milk proteins do also demonstrate synergy with 

conventional antiviral drugs. Recently, the diverse immunomodulatory activities of milk 

proteins/peptides have illustrated these molecules interesting potential as antiviral 

therapeutics, though the precise mechansiems of immune regulation needs to be thoroughly 

described. Although the synthetic peptides usually are shorter than natural proteins, the 

antiviral immune regulating properties of many of these synthetic derivatives appear to be 

similar as for the entire proteins. Thus we would argue that milk proteins and peptides, 

have great potential to serve as templates for design of more potent antiviral drugs. With 

proper scientific effort these molecules may have great therapeutic potential as supplements 

for current antiviral and anticancer therapy, as novel vaccine adjuvants for both human and 

far animals, and as immunosuppressants for autoimmune diseases and allergy treatment.  
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