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1. Introduction 

The use of discrete-event simulation as an aid in decision-making has grown over recent 

decades [1, 2, 3, 4]. It is already used as one of the most utilized research techniques for 

many sectors due to its versatility, flexibility and analysis potential [5, 6].  

However, one of simulation’s greatest disadvantages is that, on its own, it does not serve as 

an optimization technique [7]. This forces simulation practitioners to simulate multiple 

system configurations and choose the one which presents the best system performance. 

Computational development has helped alter this scenario due to the increasing availability 

of faster computers and ever improving search and heuristic optimization techniques. 

Simulation optimization can be defined as the process of testing different combinations of 

values for controllable values, aiming to find the combination of values which offers the 

most desirable output result for simulation models [8].  

In support of this claim, [1, 9, 10, 11] assert that using optimization along with simulation 

has been continuously increasing due to the emergence of simulation packages which 

possess integrated optimization routines.  

The overarching idea of including these routines is to search for improved definitions for the 

system parameters in relation to its performance. However, according to [10], at the end of 

optimization, the user has no way of knowing if an optimal point was truly reached. 

Despite the fact that simulation has been around for more than half a century, until quite 

recently, the scientific community was reluctant to use optimization tools in simulation. The 

first time the subject emerged in two renowned simulation books, [12] and [13], was at the 

close of the 20th century [9]. This resistance has begun to diminish with the convent of meta-

heuristic research, along with strides being made in statistic analysis [14].  
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According to [15], verification of system performance for a determined set of system 

parameters with reasonable precision using simulation, demands a considerable amount of 

computational potential. In order to find the optimal or near-optimal solution, one needs to 

verify a large number of parameter values, thus, optimization via simulation is normally 

exhaustive from a computational standpoint.  

Having highlighted the computational strains, [8] states that despite the evolution of 

optimization software, a common criticism made about such commercial packages is that, 

when more than one variable is manipulated at a time, the software becomes very slow.  

Considering that not all decision variables are of equal importance in respect to the response 

variable that one desires to optimize [16, 17], a sensitivity analysis may be carried out on the 

simulation model in order to select the variables which will compose the optimization 

search space in order to limit the number of variables and, in turn, make the search faster.  

Thus, in order to proceed to the variable selection, screening can be done in order to 

separate the most important variables from those which may be eliminated from 

consideration [16, 17].  The same author presents some examples of experimental design 

utilized in screening experiments: 

 2n factorial design; 

 2n-p fractional factorial design; 

 Supersaturated designs; 

 Groups screening designs. 

The current chapter presents an application of Design of Experiments (DOE), specifically 

fractional factorial design, in order to select the significant input variables in a simulation 

model, and thus accelerate the optimization process. For information about experimental 

design, the reader can consult [1, 4, 18, 19]. 

Fractional factorial design is a DOE technique in which only a fraction of the total number of 

experiments is executed, thus realizing fewer experiments than full factorial design. 

Throughout this chapter, it is shown that the use of such a design serves to reduce the 

search space in the optimization phase of simulation studies.  

In this chapter, real examples of how to conduct sensitivity analysis with factorial design are 

given. In order to reach this goal, two study objects are presented, comparing the 

optimization carried out without previous investigation of input variable significance, with 

the optimization carried out in reduced search space. Finally, a comparison is made of the 

results of the optimization, with and without the sensitivity analysis.  

2. Simulation optimization  

A simulation model generally includes n input variables (x1, x2,...,xn) and m output variables 

(y1, y2, ..., ym) (Figure 1). The optimization of this simulation method implies finding the 

optimal configuration of input variables; that is, the values of x1, x2, …, xn which optimize 

the response variable(s) [20].  
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Figure 1. Simulation Model [20] 

Optimization helps respond to the following questions: What are the optimal adjustments to 

the input variables (x) which maximize (or minimize) a given simulation model output? The 

objective is to find an optimal value which maximizes or minimizes a determined 

performance indicator [11].  

According to [21], simulation optimization is one of the most important technologies to 

come about in recent years. These authors recall that previous methodologies demanded 

carrying out complex changes to the simulation model, thus consuming time and 

computational potential and, in many cases, not even being economically viable for real 

cases due to the large number of decision variables. 

A traditional simulation optimization problem (minimization of a single objective) is given 

in Eq. 1 [22]: 

 min   (1) . 	 ∈  

Where 	 ,  is the system’s expected performance, estimated for , which is 

obtained using the simulation model samples , , observed according to the discrete or 

continuous input parameters, restricted by θ within a viability set ⊂ . 

According to [23], the optimization method which serves for the problem presented in Eq. 

(1) depends on whether the simulated variables are discrete or continuous. There are many 

methods for resolving this problem in the literature, like the one presented in Eq. (1), and 

unfortunately depending on the model being optimized, some methods cannot guarantee 

that an optimal solution is found [24].  

Table 1 shows the main optimization software packages which are both on the market and 

cited in academic literature, as well as the simulation packages with which they are sold. 

The optimization techniques utilized in each software package is also shown.  

As shown in Table 1, different optimization software packages utilize different search 

methods, such as: Evolutionary Algorithms [25], Genetic Algorithms [26], Scatter Search 

[27], Taboo Search [28], Neural Networks [29] and Simulated Annealing [30].  

According to [31] and [32], the simulation optimization’s greatest limitation is the number of 

variables being manipulated, as the software’s performance is considerably reduced in 

models with a great number of variables. Thus, [33] asserts that convergence time is the 

most significant restriction in reaching computational efficiency for optimization algorithms.  
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y2
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Optimization 

Software 
Simulation Package Optimization Technique 

AutoStat® 
AutoMod®, 

AutoSched® 
Evolutionary and Genetic Algorithms 

OptQuest® Arena® 
Scatter Search, Taboo and Neural 

Networks 

Optimiz® Simul8® Neural Networks 

Optimizer® Witness® Simulated Annealing e Taboo Search 

SimRunner® ProModel® Evolutionary and Genetic Algorithms 

Table 1. Optimization software packages [4, 7, 9] 

In order to ease this process, the use of fractional factorial design can be used to conduct 

sensitivity analysis on a simulation model in order to select the input variables which truly 

impact the response variable and enable the elimination of variables which are not 

statistically significant. In terms of the simulation, sensitivity analysis may be interpreted as 

a systematic investigation of the model’s outputs, in accordance with the model’s input 

variables [19].  

By using DOE techniques, it is possible to reduce the number of experiments executed, 

determine which independent variables affect the dependent variable, and identify the 

amplitude or intensity of this effect. For optimization purposes, identification of the most 

significant variables is important, as the greater the number of variables in the search space, 

the longer the optimization process will take.  

Thus, by using sensitivity analysis in simulation optimization problems, one can work with 

those input variables which actually have a significant effect over the determined response 

variable, thus reducing the number of experiments necessary and the computational 

potential involved in this process.  

3. Experimentation strategies 

An experiment can be defined as a test or series of tests in which purposeful changes are 

made to input variables, with the objective of observing and identifying the form in which 

the system responses are affected, in function of the changes carried out on the input 

variables [18].  

According to [34], there are two types of process variables (Figure 2): controllable variables 

(x1, x2, …, xp), and non-controllable variables (z1, z2, …, zq), which are many times called 

“sound”. The same author states that the experiment’s objectives can be: 

 Determine the variables which have the most influence over the response (y); 

 Determine the values of x (significant variables) in order that the response is close to the 

nominal demand; 

 Determine the values of x (significant variables) in order that the variability in y is 

small; 
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 Determine the values of x (significant variables) in order that the effect of the non-

controllable variable effects are minimized.  

 
Figure 2. General process model [34] 

The experimentation strategy is the method of designing and conducting experiments [18]. 

According to this author, there are many methods which can be used for the realization of 

experiments. Some examples are listed below: 

Best-guess: This strategy is based on the specialists’ technical or theoretical knowledge, 

which alters the value of one or two variables for the test in function of the previous result. 

This procedure presents at least two disadvantages: The first disadvantage occurs when the 

initial configuration does not produce the desired result and then the analyst must search 

for another input variable configuration. These attempts may continue indefinitely and 

certainly take a long time without guaranteeing success. The second disadvantage is that, 

supposing an acceptable initial configuration, the analyst will be tempted to stop testing, 

even though there is no guarantee that the best results has been obtained. 

One factor at a time: This strategy involves selecting the starting configuration for each 

input variable and then successively varying each variable within a given range, while 

simultaneously maintaining the other variables constant. The greatest disadvantage of this 

strategy is its inability to detect interaction between variables; nonetheless, many analysts 

disregard this fact and it is often used [18]. 

Factorial Design: According to [18], when an experiment involves the study of two or more 

factors, the most effective strategy is factorial design. In using this strategy, factors are 

altered at the same time, instead of one at a time. That is, in each complete attempt or 

experimental replica, all possible combinations are investigated [35]. This strategy is more 

efficient than the one previously mentioned, as it allows for the effects of a single factor to be 

estimated across various factor levels, thus leading to valid conclusions within the 

experimental conditions, [18] and is the only way to discover interaction between factors 

[18, 35], avoiding incorrect conclusions when there is interaction between factors. The main 

problem with factorial design is the exponentially increasing number of combinations with 

each increase in the number of factors [19].   
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Response Surface Methodology (MSR): This method consists in a set of mathematical and 

statistical techniques that are used for modeling and analysis, in which the response of 

interest is influenced by multiple variables, and the objective is to optimize this response 

[35]. According to these authors, the relation between the independent and dependent 

response variables is unknown in most problems. [35] states that the first step of MSR is 

finding an accurate approximation for the true relation between the response (y) and the 

independent variables. In general, polynomials with a low degree are used to model a given 

region of the independent variables. 

4. Simulated experiment design 

According to [36], although classic experimental design methods were developed for real 

world experiments, they are perfectly applicable to simulated experiments. In fact, 

according to the same author, simulated experiment design presents many opportunities for 

improvements which are difficult or impossible to carry out using actual experiments. 

[37] asserts that research related to experimental design are frequently found in specialized 

publications, but they are rarely read by simulation practitioners. According to these same 

authors, most simulation practitioners can get more from their analyses by using DOE 

theory developed specifically to experiment with computational models.  

The benefits of DOE enable the possibility of improving simulation process performance by 

avoiding trial-and-error searches for solutions [38]. More specifically, the use of factorial 

design can minimize or even eliminate the disadvantages brought about by experimenting 

with simulated systems instead of the real system.  

According to [36], in order to facilitate the understanding of simulation’s role in 

experimental execution, it is necessary to imagine a response value (Y) or a dependent value 

variable can be represented in the following equation: 

 Y = f (x1, x2, ..., xn) (2) 

Where:  

 x1, x2, xn  represent the input variables, factors or independent variables; 

 f represents the simulation model’s transformation function. 

[39] declares that simulation is a black box which transforms inputs variables into simulated 

outputs, which imitate the real system’s perspective output. For each scenario, the analyst 

carries out one or more runs and registers the average output values. 

In simulation models, the levels chosen for each factor must enable the effects to be 

programmed in the model. In order to exemplify this question, the following situation is 

proposed: a determined factor which is desired to be optimized corresponds to the 

possibility of using an experienced employee (upper level) or a new hire (lower level), thus 

verifying, what the impact would be on daily throughput. In simulation models, the 

modeler must be familiar with each variable to be affected by the change in levels. Thus, the 

modeler must decide which distribution to use for each variable time in the operation.  
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Experimentation using simulation presents some special advantages over using physical or 

industrial systems [4]: 

 By using simulation, it is possible to control factors that, in reality, are uncontrollable, 

such as client arrival rate; 

 By using simulation, it is possible to control the basic origin of variation, which is 

different from physical experiments, thus avoiding use of blocks. 

Another experimental design characteristic is that commercial simulators come with 

random number generators and therefore, from an experimental point of view, the trouble 

of randomizing the experimental replicas is eliminated. Randomization is a problem with 

physical experimentation [36]. 

5. Design and analysis of experiments 

According to [18], DOE can be defined as the process of designing experiments in order that 

the appropriate data are collected and analyzed by statistical methods, thus resulting in 

valid and objective conclusions. Any experimental problem must contain two elements: 

experimental design and statistical data analysis. 

DOE techniques are seen with a broad range of application in many knowledge areas, thus 

showing itself as a set of tools of great importance for process and product development. 

Those involved in the research should have a previous idea of the experiment’s objective, 

which factors will be studied, how the experiment will be conducted and a comprehension 

of how the data will be analyzed [34]. 

According to [18], DOE should consider the following stages: 

1. Problem recognition and definition: Completely develop all ideas about the problem 

and the objectives to be attained through the experiment, thus contributing to greater 

comprehension of the process and eventual problem solution;  

2. Choice of factors and working levels: Choose the factors to undergo alterations, the 

intervals of these factors and the specific levels for each run to be carried out; 

3. Selection of the response variables: Determine the response variables which really 

supply useful information about the performance of the process under study; 

4. Selection of the experimental design: Consider the sample size (number of 

replications), selection of the correct order of runs for the experimental attempts, or the 

formation of blocks and other randomization restrictions involved; 

5. Realization of experiments: Monitor the process to guarantee that everything is being 

completed according to the design – errors in this stage can destroy the experiment’s 

validity; 

6. Statistical data analysis: Analyze the data using statistical methods, given that results 

and conclusions are objective and not the outcome of opinions – residuals analysis and 

verification of model validity are important to this phase; 
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7. Conclusions and recommendations: Provide practical conclusions based on the results 

and recommend a plan of action. Accompanying sequences and confirmation tests must 

be conducted in order to validate the experiment’s conclusions. 

Stages 1 – 3 are commonly called the pre-experimental design and, for the experiment’s 

success, it is important that these steps are carried out in the most appropriate manner 

possible [34].  

5.1 DOE: Main concepts  

There are three basic principles to DOE [18]:  

 Randomization: Execution of experiments in a random order in order that the 

phenomenon’s unknown effects are distributed among the factors, thus increasing the 

investigation’s validity. According to the author, randomization is the base for the use 

of statistical methods in experimental design; 

 Replication: Repetition of the same test multiple times, thus creating a variation in the 

response variable which is utilized to evaluate experimental error. With the use of each 

replication, it is possible to obtain an estimate of experimental error, allowing for the 

determination of whether the differences observed in the data are statistically 

different, as well as obtaining a more accurate estimate of an experimental factor’s 

effect.  

 Blocking: Design technique used to increase precision with the comparisons between 

the factors of interest. It is frequently utilized to reduce or eliminate variability 

transmitted by factors of sound. It should be utilized when it is not possible to maintain 

homogeneity of experimental conditions. 

Now that the basic principles of DOE have been defined, the following list presents some of 

the fundamental terms which are used when dealing with DOE techniques: 

 Factor: According to [37], factors are input parameters and the structural considerations 

which compose an experiment. Factors are altered during experimental conduction. 

According to [40], a factor may assume at least two values during an experiment, being 

quantitative or qualitative; 

 Levels: The variations possible for each factor [41]; 

 Main effect: According to [36], the main effect for a factor may be defined as the 

average of the differences in the response variable, when the factor changes from an 

inferior to superior level;  

 Response variable: The response variable is the performance measure for the DOE. The 

response variables describe how the system responds under a certain configuration of 

input factors [8]; 

 Interaction: There is interaction between the factors when the response difference 

between the levels of a given factor is not the same as for the rest of the factors. 

Aside from these commonly utilized experimental design terms, two further important 

concepts should be presented: Analysis of variance (ANOVA) and residuals analysis.  
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According to [35], in order to test if the alteration in one of the levels or interaction is 

significant, a hypothesis test for the average can be used. In the case of DOE, this test can be 

conducted using ANOVA. The statistical test ANOVA is utilized to accept or reject 

hypotheses investigated with DOE. Its objective is to analyze the average variation of results 

and demonstrate which factors actually produce significant events over the system response 

variables [42].  

However, according to [18], it is not advisable to trust solely in ANOVA since the validity of 

its suppositions may be unreliable.  Problems with these results may be identified using 

residual analysis. 

Residual analysis is an important procedure to guarantee that the models developed by 

means of experimentation adequately represent the responses of interest. [18] defines 

residuals as the difference between the predicted value and the observed experimental 

value; the same author also asserts that residues should be normal, random and non-

correlated.  

5.2. Full factorial design 

Full factorial design with two levels or factorial 2k is a type of design in which two levels are 

defined for each factor, an upper and lower level, and combinations of factors are tested [8]. 

2k factorial design is one of the most important types of factorial design, according to [35], 

and can be particularly useful in the initial phases of experimental work, especially when 

many factors are being investigated. Full factorial design offers the fewest executions for the 

k factors to be studied. 

In full factorial design, the number of experiments is equal to the number of experimental 

levels, elevated to the number of factors. In the case of factorials with two levels, the number 

of experiments (N) in order to evaluate k factors is given by N = 2k. These designs possess a 

simplified analysis and form the base of many other experimental designs [34]. 

In using this strategy, the factors are altered simultaneously and not just one at a time, 

which indicates that, for each run or complete replica, all possible combinations are 

investigated [35]. For example, if there are a levels for factor A and b levels for factor B, then 

each replica will contain ab combinations [18]. 

One aspect to be considered is that, as there are only two levels per factor, it must be 

supposed that the response is approximately linear within the range of levels chosen [35]. 

Another important aspect is that, for experiments with a great number of factors, full 

factorial design results in an extremely large number of combinations. In this situation, 

fractional factorial planning is used in order to select a subset of combinations within the 

full factorial design, aiming to identify the significant factors in system performance [8].  

According to [39], many studies in operational research use full factorial design due to its 

simplicity and because the technique allows the analyst to identify interactions between 

factors as well as their main effects. 
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Factorial designs are more efficient than the one-at-a-time approach, as they allow for the 

factors’ effects to be estimated via the other factors’ levels, thus leading to valid conclusions 

about the experimental scope; they are also the only manner to discover interactions among 

the variables, thus avoiding erroneous conclusions when interactions between the factors 

are present [18].  

5.3. Fractional factorial designs 

When there is little interest in interaction behavior among the factors which compose the 

system, this can be disregarded [35]. Instead, fractional factorial design can be used. 

For example, consider a factorial design of 25. In this planning, five degrees of freedom 

correspond to the main effects, 10 degrees of freedom correspond to second order 

interactions and 16 degrees of freedom correspond to the highest order of interactions. In 

initial system or project studies, there is little interest in the highest level of interactions [35]. 

If interactions can be disregarded, fractional factorial design involving fewer executions for 

a complete set of 2k executions can be used in order to obtain information about the main 

effects and lower order interactions [35].  

Thus, fractional factorial design provides a means by which to obtain estimates of main 

effects and, perhaps, second order interactions, with a fraction of the computational force 

required for full factorial design [4].  

According to [18], the greatest application of fractional factorial designs is in screening 

experiments, where many factors are present in a system and the objective is to identify 

which factors indeed exercise a significant effect over the given response of interest. For the 

factors identified as significant through the use of fractional designs, the author 

recommends a more careful analysis with the use of other designs, such as full factorial 

design. 

In fractional factorial design, a subset of 2k-p is constructed from a set of all of the possible 

points for a 2k design, and a simulation is executed for only the chosen points [4]. 

For this type of factorial design, the analyst must be attentive to its resolution. According to 

[35], the concept of resolution design is the form in which the fractional factorial designs are 

related in accordance with the associative standards which they produce. A design’s 

resolution is represented by a Roman subscript number; for example, 2 represents a 

factorial design with resolution III, with half of the experiments used in full factorial design 

[18]. The designs with resolution of III, IV and V are particularly important; they are listed 

in detail below [35].  

 Design resolution III: These are the designs in which the main effect is associated with 

another main effect, but these main effects are associated with second order interactions 

and second order interactions may be associated. 

 Design resolution IV: These are the designs in which the main effect is associated with 

any other main effect or any other second order interaction, but second order 

interactions are associated with each other.  
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 Design resolution V: These are the  designs in which no main effect or second order 

interaction is associated with any other main  effect or second order interaction, but the 

second order interactions are associated with third order interactions.  

6. Sensitivity analysis development stages 

As a way of simplifying DOE application in sensitivity analysis of simulation models, the 

following sequence of steps is proposed. 

The flowchart proposed in Figure 3 presents the necessary steps for conducting sensitivity 

analysis in discrete-event simulation models. Four stages are defined for the proposed method: 

1. Simulation; 

2. Fractional Factorial Design; 

3. Full Factorial Design; 

4. Optimization.  

In the first step, the analyst should define the optimization objectives as well as verify if the 

simulation model is verified and validated. In doing so, the model will be apt to proceed to 

the following step, fractional factorial design. In this phase, the analyst should determine the 

model’s input factors, their levels and select the response variables for analysis. 

Once these initial steps have been completed, fractional factorial design can be applied. 

During execution of the experiments, the analyst should return to the simulation step and 

carry out the experiments in the simulation package. With the experiments done, the data 

should be analyzed using statistical means, determining the factors’ significance level as 

well as its lower order interactions. At the end of this phase, the non-significant factors can 

be removed from analysis. 

The third stage defined in the sensitivity analysis phase may be omitted by the analyst, 

depending on the degree of precision desired or for the cases in which the simulation 

models demand a lot of computational time in order to be processed. In this stage, a full 

factorial design is generated with experimental data, and only factors which show to be 

significant in the previous steps are tested. Depending on the necessity for executing more 

experiments in order to comply with full factorial design, the analyst will have to return to 

the simulation phase again to execute new experiments. In this stage, the residues should be 

analyzed in order to validate the results. Statistical analysis should be conducted once again 

in order to finalize this stage. 

In the following stage, optimization simulation is utilized again. The significant factors after 

full factorial design application are utilized to configure the optimization tool, which is then 

executed. Many different configurations are tested for the input parameters until the 

optimizer converges on a solution. It is up to the analyst to evaluate the results and generate 

his or her conclusions and recommendations. 

In order to demonstrate the utilization of this method in sensitivity analysis of discrete-event 

simulation models, two simulation models will be used as study objects in this chapter.  
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Figure 3. Sequence of steps in order to conduct sensitivity analysis 

It should be highlighted here that, in spite of the proposed modeling being applied to great 

variety of discrete-event simulation models, this approach could be unviable for models 

which demand a greater amount of computational time to be processed. In these cases, other 

types of experimental design which involve a smaller number of experiments could be used, 

such as Plackett-Burman Design; however, according to [18], such designs should be used 

with great care, as they possess limitations which should be evaluated carefully. An 

example of this shortcoming is the inability of certain designs to analyze main effects.  

7. Modeled systems 

The simulation models presented in this chapter were implemented in the software 

ProModel® and optimized in the package’s optimization software, SimRunner®. However, 

it should be highlighted that the results presented could have been obtained using other 

commercial simulation packages. Likewise, a commercial statistical software package was 

utilized to analyze the data. 

7.1. Study object 1 

The first simulation model represents a quality control station from a telecommunications 

components factory. The cell is responsible for testing a diverse range of products before 

shipping them to final clients. This cell receives approximately 75% of the products from the 

six production lines in the company.  
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The model in question was verified and validated, thus being ready for study. In order to 

verify the computational model and correct possible occurrences, some simulator resources 

such as counters, variables and signals were used, besides the conventional animation. Once 

the model was validated and verified, simulation was carried out. Statistical tests were 

utilized which compared the results obtained in the simulation model with data from the 

real system. The model was considered valid based on statistical tests which did not indicate 

a statistical difference between real and simulated data. 

These conditions are indispensable for conducting sensitivity analysis. The utilization of a 

non-validated model would lead to erroneous conclusions and undesirable decision-making. 

For more information about validation and verification, readers are recommended to consult 

[3]. Figure 4 presents an image of the model implemented in the simulation software. 

 

Figure 4. Representation of the real system implemented in the simulation software 

The quality control station possesses the following characteristics: 

 7 inspection posts; 

 3 operators; 

 19 types of products to be tested; 

 31 types of operations possible to be carried out depending on the type of product. 

For the case in question, discrete variables were defined, with little variation in the lower 

and higher levels. This fact is justified due to the fact that the majority of simulation 

optimization problems work with such conditions; however, the experimentation can be 

conducted using other variable types and a greater variation between the upper and lower 

limits. Other types of applications can be seen in [43].  

For this study object, two levels were defined for each factor. For [18], when the 

experiment’s objective is factor screening or process characterizations, it is common to 

utilize a small number of variables for each factor. According to the author, lower and 

higher levels are the most sufficient to obtain valid conclusions about the factors’ 

significance. For example, even if the factor “Type 1 operators” exhibited the possibility of 
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hiring 1 to 4 operators, for the purposes of the experimental matrix, only two levels would 

be considered: the lower level being 1 and the upper level being 4.    

 

Variable Factor Lower level (-) Upper level (+) 

A Type 1 operators 1 2

B Type 2 operators 1 2

C Type 3 operators 1 2

D Type 1 inspection posts 1 2

E Type 2 inspection posts 1 2

F Type 3 inspection posts 1 2

G Type 4 inspection posts 1 2

H Type 5 inspection posts 1 2

J Type 6 inspection posts 1 2

K Type 7 inspection posts 1 2

Table 2. Experimental factors for the first study object 

The optimum set of variables will be determined using three approaches. The first one 

performs several experiments to identify the main factors. After identifying the statistically 

significant simulation factors by using a two sample t hypothesis test (a usual procedure from 

any statistic package), the original fractional factorial design can -be converted to full factorial, 

eliminating the non-statistically significant terms. As these parameters are also important to 

the simulation arrangement, despite not being statistically significant, they can be kept 

constant in proper levels. Comparatively, a second approach can be established by using the 

main factors identified at the experiments DOE as input for the optimization via SimRunner. 

Finally, the third approach is performed using all ten factors in optimization via Simrunner.  

7.2. Study object 2 

The second study object represents an automotive components production cell. The 

objective in this study object is to find the best combination of input variables which 

maximizes cell throughput. As with the previous case, the model was verified and 

validated, being ready for sensitivity analysis and optimization. Figure 5 shows an image of 

the model implemented in the simulation software. 

 

Figure 5. Representation of the real system implemented in the simulation software 
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The cell presents the following characteristics: 

 41 machines; 

 3 operators; 

 8 different types of products; 

 46 types of possible processes throughout the system. 

 

Variable Factor Lower level (-) Upper level (+) 

A Type 1 operators 1 2 

B Type 2 operators 1 2 

C Type 3 operators 1 2 

D Type 1 machines 1 2 

E Type 2 machines 1 2 

F Type 3 machines 1 2 

G Type 4 machines 1 2 

H Type 5 machines 1 2 

J Type 1 inspection posts 1 2 

K Type 2 inspection posts 1 2 

L Type 3 inspection posts 1 2 

M Type 4 inspection posts 1 2 

Table 3. Experimental factors for the second study object 

The optimum set of parameters is determined by three approaches similar to the first 

application. 

8. Experimentation 

8.1. Identification of significant factors 

According to [4], in simulation experimental designs provide a way to decide which specific 

configurations to simulate before the runs are performed so that the desired information can be 

obtained with the fewest simulation runs. For instance, considering the second application where 

there are 12 factors, if a full factorial experiment were chosen, 212 = 4096 runs would be necessary. 

Therefore, a screening experiment must be considered. Screening or characterization experiments 

are experiments in which many factors are considered and the objective is to identify those 

factors (if any) that have large effects [18]. Typically, screening experiment involves using 

fractional factorial designs and is performed in the early stages of the project when many factors 

are likely considered to have little or no effect on the response [18]. According to this author, in 

this situation, it is usually best to keep the number of factors levels low. 

8.2. Study object 1 

For the first study object, ten experimental factors, each with two levels, were defined, as 

seen in Table 2. When considering full factorial design, a total number of 210 = 1024 
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experiments would be necessary. In order to reduce the acceptable number of experiments, 

fractional factorial design is used. 

Table 4 presents four factorial designs for 10 factors and their resolutions. As the objective of 

this analysis was to identify the model’s sensitivity to certain factors, resolution IV was 

chosen. Resolution IV indicates that no main effect is associated with any other main effect 

or second order interaction, but there is interaction between certain second order 

interactions [18]. 

 

Fraction Resolution Design Executions

1/8 V 2(10-3) 128 

1/16 IV 2(10-4) 64 

1/32 IV 2(10-5) 32 

1/64 III 2(10-6) 16 

Table 4. Factorial designs for 10 factors and their resolutions 

 

Experiment A B C D E F G H J K WIP 

1 - - - - - - + + + + 99 

2 + - - - - - + - - - 95 

3 - + - - - - - + - - 101 

4 + + - - - - - - + + 104 

5 - - + - - - - - + - 94 

6 + - + - - - - + - + 98 

7 - + + - - - + - - + 100 

8 + + + - - - + + + - 99 

9 - - - + - - - - - + 93 

10 + - - + - - - + + - 95 

11 - + - + - - + - + - 97 

12 + + - + - - + + - + 98 

13 - - + + - - + + - - 101 

14 + - + + - - + - + + 101 

15 - + + + - - - + + + 99 

16 + + + + - - - - - - 98 

17 - - - - + - + + - - 101 

18 + - - - + - + - + + 95 

19 - + - - + - - + + + 100 

20 + + - - + - - - - - 98 

21 - - + - + - - - - + 94 

22 + - + - + - - + + - 95 

23 - + + - + - + - + - 93 

24 + + + - + - + + - + 99 
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25 - - - + + - - - + - 93 

26 + - - + + - - + - + 98 

27 - + - + + - + - - + 99 

28 + + - + + - + + + - 98 

29 - - + + + - + + + + 95 

30 + - + + + - + - - - 101 

31 - + + + + - - + - - 98 

32 + + + + + - - - + + 100 

33 - - - - - + - - + + 99 

34 + - - - - + - + - - 98 

35 - + - - - + + - - - 97 

36 + + - - - + + + + + 99 

37 - - + - - + + + + - 98 

38 + - + - - + + - - + 100 

39 - + + - - + - + - + 98 

40 + + + - - + - - + - 99 

41 - - - + - + + + - + 98 

42 + - - + - + + - + - 97 

43 - + - + - + - + + - 100 

44 + + - + - + - - - + 96 

45 - - + + - + - - - - 99 

46 + - + + - + - + + + 100 

47 - + + + - + + - + + 98 

48 + + + + - + + + - - 103 

49 - - - - + + - - - - 99 

50 + - - - + + - + + + 96 

51 - + - - + + + - + + 101 

52 + + - - + + + + - - 100 

53 - - + - + + + + - + 99 

54 + - + - + + + - + - 100 

55 - + + - + + - + + - 98 

56 + + + - + + - - - + 102 

57 - - - + + + + + + - 96 

58 + - - + + + + - - + 97 

59 - + - + + + - + - + 95 

60 + + - + + + - - + - 99 

61 - - + + + + - - + + 97 

62 + - + + + + - + - - 97 

63 - + + + + + + - - - 99 

64 + + + + + + + + + + 98 

 
 

Table 5. The 2  design matrix for principal fraction and results 
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Among the resolution IV designs presented in Table 4, the fractional factorial design 2  

was chosen. This design, despite possessing a greater number of executions than the design 2 , allows for the reduction of full factorial designs for six or less factors, without 

requiring new experiments; that is, the results of this design can be used in full factorial 

designs with six or less factors, without needing to conduct additional experiments. 

However, if preliminary studies show that there are a significant number of fewer variables 

(5 or less), the factorial design 2  could be chosen with no problems. 

It is worth mentioning that factorials with a resolution less than IV should be omitted 

because, in these types of design, the main effects are associated with second level 

interactions, and second level interactions could possess interaction between each other, as 

well, thus making these designs undesirable.  

Table 5 shows the design matrix for the principal fraction and the results obtained for the 

WIP. Wip represents the total number of pieces in quality control inspection; its result is 

shown by the variable introduced in the simulation model which subtracts the pieces which 

leave the system (inspected pieces) from the total number of entities which enter the system 

(pieces to be inspected). This value is then offered at the conclusion of the simulation in 

which the report is generated. In the table, the best results attained with the experimentation 

are shown. In Table 5, the symbols – and + indicate the lower and upper levels shown in 

Table 2, respectively. 

As an example, the number of operator types 1, 2 and 3 and the number of inspection posts 

types 1, 2 and 3 (A B C D E F) were defined in the simulator as being equal to the lower level 

(1); for the inspection posts types 4, 5, 6 and 7 (G H J K), the upper level was defined. A 

replica utilizing this configuration was run in the simulation software, and work in process 

(WIP) statistics were stored for analysis. This process was repeated 63 other times until all of 

the experimental matrix’s configurations were run. 

The 2  fractional factorial design used in this research was not replicated. Therefore, it 

is not possible to assess the significance of the main and interaction effects using the 

conventional bilateral t-test or ANOVA. The standard analysis procedure for a non-

replicated two-level design is a normal plot of the estimated factor’s effects. However, these 

designs are so widely used in practice that many formal analysis procedures have been 

proposed to overcome the subjectivity of normal probability [18]. [44], for instance, 

recommend the use of Lenth’s method, a graphical approach based on a Pareto Chart for the 

error term. If the error term has one or more degrees of freedom, the line on the graph is 

drawn at t, where t is the (1 - α/2) quartile of a t-distribution with a number of degrees of 

freedom equal to the number of effects/3. The vertical line in the Pareto Chart is the margin 

of error, defined as ME = t x PSE. Lenth’s pseudo standard error (PSE) is based on 

sparseness of the effects principle, which assumes the variation in the smallest effects is due 

to the random error. To calculate PSE the following steps are necessary: (a) calculates the 

absolute value of the effects; (b) calculates S, which is 1.5 x median of the step (c); calculates 

the median of the effects that are less than 2.5 x S and (d) calculates PSE, which is 1.5 x 

median calculated in step (c). 
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With the aid of statistical software, it was possible to perform quantitative analysis of the 

stored data. Figure 6 presents the Pareto Chart for 2  fractional design with significance 

level of 5%. 

 

Figure 6. Pareto chart for 2  fractional design with a significance level of α = 5% 

By analyzing the figure, it can be seen that factor B (number of type 2 operators) and 

interaction CD (number of type 3 and type 1 inspection posts) are significant. According to 

[18], if the experimenter can reasonably assume that certain high-order interactions are 

negligible, information on the main effects and low-order interactions may be obtained. 

Otherwise, when there are several variables, the system or process is likely to be driven 

primarily by some of the main effects and low-order interactions. For this reason, it is 

reasonable to admit that factors A, E, F, G, H, J and K are not significant, although they are 

still necessary for the simulation model and must be kept at the lower level (-). 

Factors C and D may be considered significant, seeing as the interaction between the two 

factors are quite significant. In Figure 7, it can be seen that B and C exercise a positive effect 

over the WIP; shifting from the lower to upper level causes an increase in the WIP. 

Inversely, factor D exercises a negative effect; shifting from the lower to upper level causes 

WIP to fall. Analysis of interaction behavior in fractional factorial design is not 

recommended, since the effects possess the property of aliases. That is, according to [18], 

two or more factors are aliased when it is not possible to distinguish between the effects of 

overlapping factors.  Only three main factors may be considered significant (B, C, D), and 

full factorial with these factors can be carried out with the data from the 64 experiments. 

Factorial design’s own structure helps explain why only factors B, C and D were chosen to 

compose the new factorial design. The main reason B is aliased with the triple interaction 

CG
DG
CF
HJ

BEF
J

BJ
ACG

CE
AFG

C
BF
G

BC
FK

E
EH

F
A

FH
EJ

BCJ
CJ
HK
GJ

AGK
AH
AC

B
CD

1,61,41,21,00,80,60,40,20,0

T
e

rm

Effect

1,267

Lenth's PSE =  0,609375



 
Discrete Event Simulations – Development and Applications 82 

AGH, which can be disregarded according to the chosen resolution for factorial design and 

by the sparsity of effects principle [18]. In turn, interaction CD is aliased with two triple 

interactions, AFH and BFG, which can be disregarded, just as in the last case. It can also be 

aliased with the double interaction in JK; however, as the main factors J and K are not 

significant, this interaction may also be discarded. The alias structure used in this analysis is 

available in many statistical packages. 

Fractional factorial design 2  was converted into a full factorial design 23 with replicas. 

Residual analysis is also possible, since now there are replicas, seeing that the 

experimentation changed from fractional factorial design 2 to full factorial design 23 (8 

experiments). 
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Figure 7. Main effects plot for WIP 

According to [18], the residues need to be normal, random and not correlated in order to 

validate the experimental values obtained. Figure 8 shows the verification of the residues 

normality. 

Evaluating the normality probability graph, one can see that the data are adjusted to a 

normal distribution, as is evidence by the way the points fall over the line in the graph as 

well as analysis of the P-value. One can see the data points follow the straight line, and the 

P-value for the normality test was less than 0.05, leading to the conclusion that the data are 

normally distributed. Figure 9 shows the verification of the residues independence. The 

standardized graphs versus the observed values do not present any random patterns of 

grouping or bias. 
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Figure 8. Verification of the residues normality 
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Figure 9. Verification of the residues independence  

Once the residual validity was verified, the results could be analyzed using DOE.  

The analyses continued to be carried out via graphical analysis due to its ease of 

comprehension. 
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Figures 10 and 11 present the analysis for the new design. By analyzing figure 10, it can  

be verified that factor B (number of type 2 operators) and the interaction CD (number  

of type 3 operators and number of type 1 inspection posts) remained significant. In this 

new design, no other main factor or interaction demonstrated a significance level greater 

than 5%. 
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Figure 10. Pareto Chart for full factorial design with significance level α = 5% 

Analysis of Figure 11 shows that factors B and C exercise a positive effect over the WIP; that 

is, they should be kept at the lower level in order to minimize the WIP count. Factor D 

should be kept at the upper level, since it exercises a negative effect on the WIP count. By 

observing Figure 11, it can be seen that the CD interaction has a strong effect on diminishing 

the WIP when the main effects C and D remain at their own respective lower and upper 

levels. 

There are strong indications about an improved configuration for the input variables in 

order to minimize the WIP count. However, these suppositions will be tested using 

commercial optimization software. First, 10 input variables will be utilized; afterwards, only 

the three variables which showed to be significant according to the study in this section will 

be evaluated, and the seven other factors will be fixed in the lower level, seeing as they are 

not significant. 
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Figure 11. Factorial and interaction plots for 23 full factorial design 

8.3. Study object 2 

For the second study object, 12 experimental factors were defined, as presented in Table 3. 

Each factor possesses two levels. Unlike the previous case, for this study the objective is to 

maximize the manufacturing cell’s throughput. Thus, the significance of the 12 factors will 

be analyzed. Considering full factorial design, 212 = 4096 experiments would be necessary. 

Similar to the previous case, fractional factorial design was used to reduce the number of 

experiments. 

Table 6 presents four factorial designs for 12 factors and their resolutions. As the analysis 

objective in this case is to identify the model’s performance sensitivity to the factors, a 

resolution IV design was chosen.  

 

Fraction Resolution Design Executions 

1/256 III 2(12-8) 16 

1/128 IV 2(12-7) 32 

1/64 IV 2(12-6) 64 

1/32 IV 2(12-5) 128 

Table 6. Factorial designs for 10 factors and their resolutions  

Out of the resolution IV plans presented in Table 6, fractional factorial design 2  was 

chosen. Researchers opted for this design due to its location between the fractional factorial 

designs 2  and 2  , thus enabling a reduction to full factorial design for six or less 
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factors, without having to carry out new experiments. It should be noted here that if more 

than six factors are shown to be significant, another factorial design could be done while 

taking advantage of the data already acquired from the fractional factorial design 2  

and realizing only the non-tested experiments. 

Table 7 presents the experimental design matrix for the principal fraction and throughput. 

Throughput represents the number of pieces produced by the manufacturing cell. For this 

case, researchers needed to create a variable to store the number of pieces produced and 

present this value at the end of the simulation. The greatest value produced is highlighted. 

 

Experiment A B C D E F G H J K L M Throughput 

1 - - - - - - - - + + + + 369200 

2 + - - - - - - + + + - - 408200 

3 - + - - - - - + - - - + 392600 

4 + + - - - - - - - - + - 390000 

5 - - + - - - - + - - + - 392600 

6 + - + - - - - - - - - + 390000 

7 - + + - - - - - + + - - 400400 

8 + + + - - - - + + + + + 416000 

9 - - - + - - + - - - + + 403000 

10 + - - + - - + + - - - - 413400 

11 - + - + - - + + + + - + 429000 

12 + + - + - - + - + + + - 429000 

13 - - + + - - + + + + + - 413400 

14 + - + + - - + - + + - + 408200 

15 - + + + - - + - - - - - 421200 

16 + + + + - - + + - - + + 429000 

17 - - - - + - + - - + - - 390000 

18 + - - - + - + + - + + + 429000 

19 - + - - + - + + + - + - 426400 

20 + + - - + - + - + - - + 431600 

21 - - + - + - + + + - - + 416000 

22 + - + - + - + - + - + - 410800 

23 - + + - + - + - - + + + 410800 

24 + + + - + - + + - + - - 434200 

25 - - - + + - - - + - - - 392600 

26 + - - + + - - + + - + + 408200 

27 - + - + + - - + - + + - 400400 

28 + + - + + - - - - + - + 395200 

29 - - + + + - - + - + - + 405600 

30 + - + + + - - - - + + - 397800 

31 - + + + + - - - + - + + 395200 

32 + + + + + - - + + - - - 429000 
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33 - - - - - + + - + - - - 400400 

34 + - - - - + + + + - + + 423800 

35 - + - - - + + + - + + - 421200 

36 + + - - - + + - - + - + 421200 

37 - - + - - + + + - + - + 400400 

38 + - + - - + + - - + + - 397800 

39 - + + - - + + - + - + + 405600 

40 + + + - - + + + + - - - 444600 

41 - - - + - + - - - + - - 371800 

42 + - - + - + - + - + + + 410800 

43 - + - + - + - + + - + - 403000 

44 + + - + - + - - + - - + 382200 

45 - - + + - + - + + - - + 384800 

46 + - + + - + - - + - + - 387400 

47 - + + + - + - - - + + + 395200 

48 + + + + - + - + - + - - 421200 

49 - - - - + + - - - - + + 397800 

50 + - - - + + - + - - - - 423800 

51 - + - - + + - + + + - + 382200 

52 + + - - + + - - + + + - 413400 

53 - - + - + + - + + + + - 395200 

54 + - + - + + - - + + - + 405600 

55 - + + - + + - - - - - - 392600 

56 + + + - + + - + - - + + 416000 

57 - - - + + + + - + + + + 395200 

58 + - - + + + + + + + - - 429000 

59 - + - + + + + + - - - + 429000 

60 + + - + + + + - - - + - 434200 

61 - - + + + + + + - - + - 410800 

62 + - + + + + + - - - - + 423800 

63 - + + + + + + - + + - - 418600 

64 + + + + + + + + + + + + 449800 

Table 7. The 2   design matrix for principal fraction and results 

Similar to the last case, fractional factorial design 2  was utilized without replicas. 

With the help of statistical software, the data were analyzed. Figure 12 shows the Pareto 

Chart for 2 , fractional design with a significance level of 5%. By analyzing the  

first figure, it can be seen that factors G (number of type 4 machines), A (number of  

type 1 operators), H (number of type 5 machines), B (number of type 2 operators), E 

(number of type 2 machines) and the interaction BG (number of type two operators  

and number of type 4 machines) are significant according to the adopted significance 

level. It can be said that the factors C, D, F, J, K, L and M are not significant, although 

they are necessary for the simulation and their values may be fixed at the lower level 
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(assuming a value of 1), since they do not exercise a significant effect over the model’s 

throughput. 

By analyzing Figure 13, it can be seen that the main factors A, B, E, G, and G exercise a 

positive effect over throughput; that is, by altering the lower level to the upper level, there is 

an increase in throughput. 

Interaction behavior analysis in fractional factorial design is not recommended, seeing that 

aliasing between effects tends to emerge. Thus, full factorial design with the significant 

factors will be carried out using the data from the 64 experiments carried out. As was the 

previous case, the alias structure for factorial design 2 enables the explanation for why 

A, B, E, G and H were chosen to make up the full factorial design. 

The main factor A is aliased with the two triple interactions BCH and HLM. Factor B is 

aliased with two other triple interactions, ACH and CLM. Factor E is aliased with the 

interactions DFG and FJK. Factor G is aliased with DEF and DKJ. Factor H is aliased with the 

interactions ABC and ALM. Finally, the interaction BG is aliased with four triple interactions, 

ADL, CEK, CFJ and DHM. All these interactions can be disregarded according to the chosen 

level of resolution for factorial design and the principle of sparsity of effects principle [18].  

It can be concluded that, although the simulation model possesses 12 input variables which 

may be arranged in order to maximize total throughput, only 5 variables significantly 

contribute to increased throughput. In following, an optimization of this simulation model 

will be executed, using a commercial software package, first optimizing all 12 input 

variables, and then with only the 5 input variables which are statistically significant.  
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Figure 12. Pareto Chart for 2  fractional design with significance level of 5% 
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Figure 13. Main effects plot for throughput 

Fractional factorial design 2  was converted into a full factorial design 25 with replicas. 

Before analyzing the new design’s results, the validity of the results was tested, as was the 

case with the previous experiment. Once the validity of the new design’s residues’ was 

verified, it was then possible to statistically analyze the results with DOE.  

With the new design, the main factors A, B, E, G and H, the interactions BG, AGH, ABEG 

and AH showed to be significant, according to the 5% significance level (Figure 14). All of 

the main factors presented positive effects on the throughput, according to Figure 15; that is, 

shifting from the lower (–) and upper (+) level, the production cell’s throughput increases.  

It can then be concluded that, although the simulation model possesses 12 input variables 

which can be arranged in order to maximize throughput, only five variables significantly 

contribute to increased production. In following, a comparison will be performed between 

the commercial optimization software; first, all 12 input variables will be optimized, and 

then only the five variables which are statistically significant will be optimized. 

It is worth mentioning here another optimization approach which is commonly utilized in 

simulation optimization. By using full factorial design with replicas, it is possible to generate 

a metamodel for the response variable under analysis. With a mathematical model on hand, 

traditional optimization tools such as Microsoft Excel’s Solver may be utilized in place of 

simulation optimization tools. An example of such a technique can be seen in [43]. 

Another approach which is commonly employed in the literature is Response Surface 

Methodology. As was cited in the previous strategy, a mathematical model, generally non-

linear of second-order, is generated through the experimental data and then is optimized. 

The shortcoming of this strategy is that the model must possess a robust fit, which allows 
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for a satisfactory representation of the response factor. If the model is not robust, 

experimental strategies should be employed in order to redefine the experimental region, 

which many times is not applicable for simulation optimization problems.  
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Figure 14. Pareto Chart for 25 full factorial design with significance level α = 5% 
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Figure 15. Factorial and interaction plots for 25 full factorial design 
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9. Simulation model optimization 

Through the sensitivity analysis, each simulation model’s significant variables may be 

identified. Considering only these results, the best combination of input variables can be 

inferred in order to optimize the simulation models; however, there is no way of 

guaranteeing this affirmation based in only a sensitivity analysis. 

One way of confirming these results is through optimization. An example application of 

simulation optimization will be employed as a means of evaluating the efficiency of 

fractional factorial design in the execution of sensitivity analysis. 

The adopted procedure is to optimize the study objects in two different ways. In the first 

case, all input variables will be optimized and, in the second case, only the factors selected 

in the sensitivity analysis will be optimized. Finally, the results attained will be compared in 

order to verify if the design techniques were advantageous to the process. The time involved 

in the process will not be the basis for comparison; thus it is evident that the number of 

experiments necessary will be reduced for the model to arrive at a solution. 

The simulation software package SimRunner® from the ProModel Corporation will be 

utilized for the execution of experiments; however, there are other simulation optimization 

software packages that could have been chosen for this investigation. SimRunner® 

integrates resources to analyze and optimize simulation models through multivariable 

optimization. This type of optimization tests multiple factor combinations in search of the 

system input variable configuration which leads to the best objective function value [20]. 

SimRunner® is based in a genetic algorithm and possesses three optimization profiles: 

Aggressive, Moderate and Cautious. These profiles are directly related to the confidence in 

the solution and the time necessary to find this solution. The cautious profile was chosen for 

this study in order to consider the greatest possible number of solutions and in turn, 

guarantee a more comprehensive search and present better responses [45]. 

9.1. Optimization of the first study object 

The optimization objective for the first simulation model was to find the best input variable 

combination in order to minimize the system’s work in process count. As presented in Table 2, 

this model possesses 10 input variables, being varied at the lower level (1) and the upper level (2). 

In the first optimization stage, 10 input model variables were selected and the optimizer was 

configured. The results found can be seen in Figure 16. 

The optimizer converged with 296 experiments. The best result obtained was 92, which was 

attained during experiment 261, as seen in Figure 16. The values found for the factors are 

shown in Table 8. 

The sensitivity analysis for the first study object identified three factors with significant 

effects which can be utilized for simulation (Table 9). The other variables were maintained at 

their original values, defined as the lower level (*). 



 
Discrete Event Simulations – Development and Applications 92 

 

Figure 16. Performance measures plot for optimization using all factors  

 

Factor Variable Value

A Type 1 operators 2 

B Type 2 operators 2 

C Type 3 operators 1 

D Type 1 inspection posts 2 

E Type 2 inspection posts 1 

F Type 3 inspection posts 1 

G Type 4 inspection posts 1 

H Type 5 inspection posts 2 

J Type 6 inspection posts 1 

K Type 7 inspection posts 1 

Table 8. The best solution for optimization using all factors 

 

Factor Variables Value Range

B Type 2 operators 1 - 2 

C Type 3 operators 1 - 2 

D Type 1 inspection posts 1 - 2 

Table 9. Significant factors for the first study object 

The results found can be seen in Figure 17. 

Simrunner® converged after 8 experiments. The best result was 93, which was obtained in 

the seventh experiment, as shown in Figure 17. The values are shown in Table 10. 
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Figure 17. Performance measures plot for optimization using significant factors 

 

Factor Variable Value

A Type 1 operators 1* 

B Type 2 operators 1 

C Type 3 operators 1 

D Type 1 inspection posts 2 

E Type 2 inspection posts 1* 

F Type 3 inspection posts 1* 

G Type 4 inspection posts 1* 

H Type 5 inspection posts 1* 

J Type 6 inspection posts 1* 

K Type 7 inspection posts 1* 

Note: The parameters identified with (*) were not used as input for optimization. They were kept at lower level (1). 

Table 10. The best solution for optimization using significant factors 

9.2. Optimization of the second study object 

The optimization objective for the second simulation model was to find the best 

combination of model input variables in order to maximize the manufacturing cell’s 

throughput. As presented in Table 3, the model possesses 12 input variables which are 

varied from the lower level (1) to the upper level (2).  

In the first optimization phase, the 12 model input variables were selected and the 

optimization software was set up for experimentation. The results found can be seen in 

Figure 18. 

The optimizer converged with 173 experiments. The best result found was 452,400, which 

was obtained in experiment 10 (Figure 18). The obtained values are shown in Table 11. 
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Figure 18. Performance measures plot for optimization using all factors 

 

Factor Variable Value

A Type 1 operators 2 

B Type 2 operators 2 

C Type 3 operators 1 

D Type 1 machines 2 

E Type 2 machines 2 

F Type 3 machines 2 

G Type 4 machines 2 

H Type 5 machines 1 

J Type 1 inspection posts 2 

K Type 2 inspection posts 2 

L Type 3 inspection posts 2 

M Type 4 inspection posts 2 

Table 11. Best solution for optimization using all factors 

The sensitivity analysis for the second study object identified five factors with significant 

effects which will be used for simulation optimization inputs (Table 12). The other model 

input variables were kept at their lower level (*).  

 

Factor Variables Value range

A Number of type 1 operators 1 - 2 

B Number of type 2 operators 1 - 2 

E Number of type 2 machines 1 - 2 

G Number of type 4 machines 1 - 2 

H Number of type 5 machines 1 - 2 

Table 12. Significant factors for the second study object 
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The results are shown in Figure 19. 

 

Figure 19. Performance measures plot for optimization using significant factors 

Simrunner® converged after 31 experiments. The best value found was 449,800, which was 

attained in the eighth experiment carried out using the optimizer. The factors’ values can be 

seen in Table 13. 

 

Factor Variable Value

A Type 1 operators 2 

B Type 2 operators 2 

C Type 3 operators 1* 

D Type 1 machines 1* 

E Type 2 machines 2 

F Type 3 machines 1* 

G Type 4 machines 2 

H Type 5 machines 2 

J Type 1 inspection posts 1* 

K Type 2 inspection posts 1* 

L Type 3 inspection posts 1* 

M Type 4 inspection posts 1* 

Note: The parameters identified with (*) were not used as input for optimization. They were kept at lower level (1). 

Table 13. Best solution for optimization using significant factors 

10. Results analysis 

10.1 First study object 

Table 14 presents a comparison of the results attained utilizing the three methods for the 

first study object. As far as the number of experiments executed, the advantage of using 
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sensitivity analysis to identify the significant factors becomes obvious. The commercial 

optimizer carried out 296 experiments when all of the input variables were chosen; when 

only the significant factors were utilized, merely 8 experiments were executed. Summing up 

the 64 experiments utilized with fractional factorial design, the result (72) is still four times 

smaller than the number of experiments executed with the optimizer when all 10 input 

variables were utilized. 

 

Parameter 

Optimization 

using 

all factors 

Optimization using 

significant factors 

Design of 

experiments 

A 2 1* 1 

B 2 1 1 

C 1 1 1 

D 2 2 2 

E 1 2 2 

F 1 1* 1 

G 1 1* 1 

H 2 1* 1 

J 1 1* 2 

K 1 1* 1 

Result (WIP) 92 93 93 

Confidence Interval 

(95%) 
(83 – 100) (86 – 99) - 

Number of runs 296 8 64 

Note: The parameters identified with (*) were not used as input for optimization. They were kept at the lower level (1). 

Table 14. Optimization results for the three procedures of the first study object 

In respect to the responses found, it should be highlighted that, due to the simulation 

model’s stochastic character, the response presented by the optimizer should be analyzed 

with care while considering both the average value and confidence interval of each result 

found. 

Analyzing only the average optimization result found, it can be noted that the result found 

by the optimizer, when all 10 decision variables were manipulated was greater, reaching a 

WIP result of 92. However, when the response’s confidence interval is analyzed, it can be 

said that the optimization’s responses, when considering only the significant factors and 

their respective confidence intervals, are equal. The advantage of the response found using 

the sensitivity analysis is that only two factors (D and E) had to remain at the upper level, 

while the rest were kept at the lower level in order to minimize WIP. 

The results in Table 5 were found with only the use of fractional factorial design and were 

selected using the best results during the experimentation process. This approach, however, 

does not take into consideration any simulation optimization approach and should be 

viewed with caution. The result using only DOE shows the possibility of using experimental 
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design with optimization. This possibility was not explored in detail here, as it was not this 

chapter’s objective; however, many authors [1, 4, 18, 19] present optimization techniques 

using only experimental design. 

10.2. Second study object 

Table 15 shows a comparison of the results obtained using the three methods for the second 

study object.  

 

Parameter 
Optimization using

all factors

Optimization using

significative factors

Design of 

experiments 

A 2 2 2 

B 2 2 2 

C 1 1* 2 

D 2 1* 2 

E 2 2 2 

F 2 1* 2 

G 2 2 2 

H 1 2 2 

J 2 1* 2 

K 2 1* 2 

L 2 1* 2 

M 2 1* 2 

Result (WIP) 452400 449800 449800 

Confidence Interval (95%) (445182 – 459617) (440960 – 458639) - 

Number of runs 173 31 64 

Note: The parameters identified with (*) were not used as input for optimization. They were kept at lower level (1). 

Table 15. Optimization results for the three procedures analyzing the second study object 

In relation to the number of experiments executed, once again, the sensitivity analysis 

showed itself to be efficient. Along with the reduction in the number of factors, the number 

of experiments fell from 173 to 31. With the addition of 64 experiments using fractional 

factorial design, the method was efficient with 95 experiments, a little more than half of the 

experiments when all factors were considered. 

In relation to the optimization result, once again, it was necessary to perform a more 

detailed analysis of the responses. In spite of the average difference between the solutions 

presented with the optimizer (using all 12 and then only 5 significant factors) being around 

2,600 pieces, it was verified that the solutions were within the same confidence interval. 

Thus the post-sensitivity analysis optimization solution’s quality again showed itself to be 

efficient when comparing the optimization of all of the input variables.  

As was true with the last case, the results in Table 7 were found with only the use of 

fractional factorial design and were selected using the best results during the 

experimentation process. 
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11. Conclusion 

The objective of this chapter was to present how experimental design and analysis 

techniques can be employed in order to identify significant variables in discrete-event 

simulation models, thus aiding simulation optimization searches for optimal solutions. 

To develop this application, the main concepts of simulation optimization were presented 

during this chapter. In following, two applications were developed to verify how fractional 

factorial design can be used in sensitivity analysis for simulation models, identifying its 

advantages, disadvantages and effects on model optimization. 

For optimization, the identification of the significant variables was extremely important, as 

it enabled the reduction of the search space and computational potential necessary to 

perform the search for an optimal solution. Optimization was performed for the two 

applications in two distinct forms, utilizing simulation optimization. 

The first simulation optimization approach was to use all of the models’ input variables. No 

previous studies were performed to determine if the models’ variables exercised significant 

effects on overall system performance. The second approach relied on sensitivity analysis in 

order to identify the variables which influenced system performance. After identifying the 

significant variables, model optimization was utilized while using the reduced search space. 

The third approach involved using only the experimentation’s results without using any 

simulation optimization procedure. 

By analyzing the results, the advantages of using sensitivity analysis become evident, not 

only due to the reduction in necessary computational potential for the optimization process, 

but also for the greater level of detail and knowledge acquired about the process under 

study. By using this experimentation, it is possible to verify the process’s variables which 

exercise the greatest effects on overall system performance, thus being able to determine the 

effect each variable has on the process as well as their interactions. These interactions would 

be very difficult to define and easy to disregard in simulation projects without the use of 

DOE.  

It should not go without noting, however, that one must take extreme caution during 

execution of these experiments, as just one experiment realized under incorrect conditions 

or out of the correct matrix order can lead to erroneous results. In order to analyze the 

results obtained during experimentation, the user should have a solid understanding of 

DOE and statistics. Those erroneous conclusions in simulation could possibly lead to 

incorrect implementation, which could generate very tangible costs in the real world. Thus, 

it is recommended that one research further the concepts shown in this chapter. 

One approach that is commonly used for simulation model optimization which was not 

explored in great detail in this chapter is the development of a mathematical metamodel, 

which represents a determined model output, according to optimization. This approach has 

a vast field of application and could have been applied in the problems presented. It is also 

recommended that the reader study this topic further as well [18, 43, 46]. In this sense, the 
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use of Kriging metamodeling for simulation has established itself in the scientific simulation 

community, which can be seen in [46, 47, 48, 49], thus demonstrating its promising research 

field. 

The use of discrete-event simulation along with optimization is still scarce; nonetheless, in 

the last decade, important studies about this area of operational research have started to be 

realized, supporting the wider acceptance of this approach while also investigating the 

barriers to its continuous improvement. The use of sensitivity analysis in DOE enables a 

reduction in search space while increasing the optimization process’s efficiency and speed. 

Simulation optimization helps take simulation from being merely a means of scenario 

evaluation to a much greater solution generator. In doing so, sensitivity analysis plays a 

crucial role in this process, as it helps overcome the time and computational potential 

barriers presented by simulation models with large numbers of variables, thus making 

optimization an even greater tool for aiding decision-making. 

In respect to future research possibilities, a potentially rich area in terms of investigation 

would be the examination of experimental designs which would reduce the number of 

experiments needed in order to identify the significant factors in pre-optimization phases. 

Another point which could be investigated more profoundly is the inclusion of qualitative 

techniques, such as brainstorming, cause and effect diagrams and Soft Systems 

Methodology, in order to select the factors to be utilized in experimentation. A field which is 

little-explored is sensitivity analysis in the optimization of multiple-objective models.   
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