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1. Introduction 

The modeling of movement patterns of human crowds at the exit point of an enclosed space 

is a complex and challenging problem. In a densely populated space, if all the occupants are 

simultaneously rushing for the exits, shuffling, pushing, crushing and trampling of people 

in the crowd may cause serious injuries and even loss of lives. An analytical study of crowd 

dynamics through exits may provide useful information for crowd control purposes. Proper 

understanding of the evacuation dynamics will allow, for example, improvements of 

designs of pedestrian facilities. In particular, the dynamics of evacuation through a narrow 

door during an emergency is a complex problem that is not yet well understood. The 

possible causes for evacuation may include building fires, military or terrorist attacks, 

natural disasters such as earthquakes, etc. In the light of tightened homeland security, 

research on evacuation modeling has been gaining impetus and attracting the attention of 

researchers from various fields. 

In the published literature, one of the first computational studies of human evacuation 

was reported by Helbing et al. [1]. They applied a model of pedestrian behavior to 

investigate the mechanisms of panic and jamming by uncoordinated motion in crowds 

and suggested an optimal strategy for escape from a smoke-filled room involving a 

mixture of individualistic behavior and collective herding instinct. Subsequently, two 

main approaches, referred to as cellular automata or the lattice gas model and the 

continuum modeling framework, have been pursued by researchers in this field for 

modeling studies of human evacuation over the last decade. In the cellular automata 

approach, the computational domain is discretised into cells which can either be empty or 

occupied by one human subject exactly. Each human subject is then simulated to either 

remain stationary or move into an empty neighboring cell according to certain transition 

probability rules. Kirchner and Schadschneider [2] applied such an approach to model 

evacuation from a large room with one or two doors and observed that a proper 

combination of herding behavior and use of knowledge about the surrounding was 
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necessary for achieving optimal evacuation times. Perez et al. [3] used the same modeling 

approach and found that in situations where exit door widths could accommodate the 

simultaneous exit of more than one human subject at any given time, subjects left the 

room in bursts of different sizes. Takimoto and Nagatani [4] applied the lattice gas model 

to simulate the evacuation process from a hall and observed that the average escape time 

was dependent on the average initial distance from the exit. The same conclusion was 

reached by Helbing et al. [5] who applied the same modeling approach and compared 

escape times with experimental results. Subsequently, the authors extended their lattice 

gas model to simulate evacuation of subjects in the absence of visibility and found that 

addition of more exits did not improve escape time due to a kind of herding effect based 

on acoustic interactions in such situations [6]. Nagatani and Nagai [7] then derived the 

probability density distributions of the number of steps of a biased random walk to a wall 

during an evacuation process from a dark room, first contact point on the wall and the 

number of steps of a second walk along the wall. In a following study, the probability 

density distributions of escape times were also derived and shown to be dependent on 

exit configurations [8]. Qiu et al. [9] simulated escaping pedestrian flow along a corridor 

under open boundary condition using the cellular automata approach. It was found that 

transition times were closely dependent on the width of the corridor and maximum speed 

of people but only weakly dependent on the width of doors. More recently, a contrasting 

mathematical approach for modeling crowd dynamics that is based on the framework of 

continuum mechanics has also been introduced by some research workers [10]. Such an 

approach uses the mass conservation equations closed by phenomenological models 

linking mass velocity to density and density gradients. These closures can take into 

account movement in more than one space dimension, presence of obstacles, pedestrian 

strategies and panic conditions. However, it is also recognized that human evacuation 

systems do not strictly satisfy the classical continuum assumption [11] and so macroscopic 

models have to be considered as approximations of physical reality which in some cases, 

such as low density regimes, may not be satisfactory. Furthermore, such macroscopic 

models are derived based on the assumption that all individuals behave in the same way, 

or namely, that the system is homogeneous. 

In the present study, a particle-based simulation approach known as the Discrete Element 

Method (DEM) was applied for modeling of human evacuation from a room with a single 

exit. The governing equations used in this method will be presented in the following 

section. 

2. Mathematical model 

2.1. Discrete Element Method 

The molecular dynamics approach to modeling of granular systems, otherwise known as the 

Discrete Element Method (DEM), has been applied extensively for studies of various aspects 

of granular behavior. The method of implementation in this proposed study followed that 

used by the author in previous studies of various types of granular systems [12–20]. The 
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translational and rotational motions of individual solid particles are governed by Newton’s 

laws of motion: 
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where mi and vi are the mass and velocity of ith particle respectively, N is the number of 

particles in contact with ith particle, fc,ij and fd,ij are the contact and viscous contact damping 

forces respectively, Ii is the moment of inertia of ith particle, i is its angular velocity and Tij is 

the torque arising from contact forces which causes the particle to rotate. 

Contact and damping forces have to be calculated using force-displacement models that 

relate such forces to the relative positions, velocities and angular velocities of the colliding 

particles. Following previous studies, a linear spring-and-dashpot model was 

implemented for the calculation of these collision forces. With such a closure, interparticle 

collisions are modeled as compressions of a perfectly elastic spring while the inelasticities 

associated with such collisions are modeled by the damping of energy in the dashpot 

component of the model. Collisions between particles and a wall may be handled in a 

similar manner but with the latter not incurring any change in its momentum. In other 

words, a wall at the point of contact with a particle may be treated as another particle but 

with an infinite amount of inertia. The normal (fcn,ij, fdn,ij) and tangential (fct,ij, fdt,ij) 

components of the contact and damping forces are calculated according to the following 

equations: 

  , , ,cn ij n i n ij if n    (3) 

  , , ,ct ij t i t ij if t    (4) 

  , ,dn ij n i r i if v n n    (5) 

     , ,dt ij t i r i i i i j jf v t t R R          (6) 

where n,i, n,ij, ni, n,i and t,i, t,ij, ti, t,i are the spring constants, displacements between 

particles, unit vectors and viscous contact damping coefficients in the normal and tangential 

directions respectively, vr is the relative velocity between particles and Ri and Rj are the radii 

of particles i and j respectively. If , , tanct ij cn ijf f  , then ‘slippage’ between two contacting 

surfaces is simulated based on Coulomb-type friction law, i.e. , , tanct ij cn ijf f  , where tan 

 is analogous to the coefficient of friction. 



 
Discrete Event Simulations – Development and Applications 138 

2.2. Simulation conditions 

The geometry of the computational domain considered in this study was in the form of a 

room measuring 10 m × 10 m. A single exit located at the center of one of the walls of the 

room was simulated. The width of the exit was specified as 1 m. A total of 100 human 

subjects initially randomly distributed within the room were considered. During the 

evacuation process, each subject was simulated to move generally in the direction of the exit 

while interacting with other subjects through human-human collisions according to the 

governing equations of the model. 

3. Results and discussions 

Fig. 1 shows the top view of the evacuation process simulated. The exit of the room was 

simulated to be located at the centre of the bottom wall. The arrow symbols associated 

with each subject indicate the instantaneous direction of movement. The subjects were 

originally distributed randomly throughout the room and it was assumed that each 

subject sought to reach the exit in the most direct manner while obeying only basic laws of 

physics as defined by the governing equations of the DEM model. The typical 

phenomenon of jamming that is ubiquitous in various physical systems, such as the flows 

of granular materials for example, could be reproduced computationally with such an 

approach. It can be seen that there was a tendency for the subjects to first cluster round 

the exit of the room and then spread along the wall where the exit was situated. The 

limiting factor of the evacuation process in this case was the necessity for subjects to leave 

the room through the exit one at a time. The speed of movement during the initial stage of 

the evacuation process to form the human cluster around the exit did not play a 

significant role in determining the total amount of time required for the entire evacuation 

process to be completed. In other words, the limiting factor or bottleneck of the overall 

evacuation process in this case was movement of individual subjects through the exit. 

This is consistent with observations of other researchers utilizing other modeling 

approaches, such as cellular automata or the lattice gas model, for simulating such 

evacuation processes. This points towards the possibility of improving the evacuation 

time simply by increasing the width of the exit such that more than one subject can exit at 

any one time or by increasing the total number of exits of the room.  

Fig. 2 shows the spatial distribution of collision forces that developed due to human-human 

collisions during the evacuation process. Here, the color contours indicate high (red) and 

low (blue) magnitudes of such collision forces. This ability to predict collision forces is a 

novel feature of the current approach for crowd dynamics modeling that is unavailable in all 

other approaches reported by other researchers in the literature to date. This will be 

important for subsequent estimations of the likelihood of the human subjects to sustain 

injuries as a result of the evacuation process and so will be crucial for casualty predictions. 

In terms of engineering designs of the interiors of buildings or any enclosed spaces, such 

predictions can also be applied in a reverse engineering sense with a view towards 

minimizing human casualties in such events of emergencies. 



 
Human Evacuation Modeling 139 

 

Figure 1. Top view of an evacuation process involving 100 human subjects from a room measuring 10 

m × 10 m. 
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Figure 2. A novel feature of the current approach where collision forces developed due to human-

human collisions during the evacuation process can be predicted by the algorithm. 

4. Conclusions 

An agent based model has been applied for modeling of the human evacuation process in 

this study. A relatively simple configuration consisting of a room without any obstacles and 

a single exit was considered and the evacuation of 100 subjects was simulated. The typical 

phenomenon of jamming that is ubiquitous in various physical systems, such as the flows of 

granular materials for example, could be reproduced computationally with such an 

approach. The evacuation process was observed to consist of the formation of a human 
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cluster around the exit of the room followed by departure of subjects one at a time that 

created a significant bottleneck for the entire process. 

The application of the agent based approach for extensive parametric studies of effects of 

various engineering factors on the evacuation process such as number of human subjects 

present, initial configuration of the subjects, placement and number of exits, presence of 

unmovable obstacles, size and shape of the enclosed space will be the subject of a future study.  

In particular, in order to study human decisions underlying an evacuation process more 

closely, a multi-objective evolutionary algorithm for emergency response optimization can 

be applied. These algorithms are stochastic optimization methods that simulate the process 

of natural evolution [21]. Such an evolutionary approach is expected to discover and 

develop human factors and useful psychological models that determine decision-making 

processes in an emergency context. 

5. Summary 

An agent based model was applied for crowd dynamics simulation in this study. The 

computational domain consisted of a room without any obstacles and a single exit and the 

evacuation of 100 subjects from the room was simulated. The typical phenomenon of jamming 

that is typical of such systems was reproduced computationally with such an approach. The 

evacuation process was observed to consist of the formation of a human cluster around the 

exit of the room followed by departure of subjects one at a time that created a significant 

bottleneck for the entire process. Future work can adopt an evolutionary algorithm to closely 

predict human decision processes in an emergency context. 
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