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1. Introduction 

RNA polymerases (RNAPs) are among the most important cellular enzymes. They are 

present in all living organisms from Bacteria and Archaea to Eukarya and are responsible 

for DNA-dependent transcription. Although in Bacteria and Archaea there is only one 

RNAP, Eukarya possess up to three RNAPs in animals (I, II and III) and five in plants (IV 

and V) [1-2]. All of the RNAPs are evolutionarily related and have common structural and 

functional properties. The minimally conserved structural organization is represented by the 

bacterial enzyme, which contains only 4 subunits (’’), whereas Archaea and 

Eukarya RNAPs are composed of 12 subunits (Rpb1-Rpb12) [3]. In prokaryotes, one RNAP 

transcribes all of the genes into all of the RNAs, however, in eukaryotes, this is achieved by 

three RNAPs. RNAPI transcribes genes that encode for 18S and 28S ribosomal RNAs; 

RNAPIII transcribes short genes, such as tRNAs and 5S ribosomal RNA, and RNAPII 

transcribes all protein-coding genes and genes for small noncoding RNAs (e.g., small 

nuclear RNAs (snRNAs) that are involved in splicing). The largest catalytic subunits of all 

three eukaryotic polymerases share homology among themselves and with the largest 

subunit of bacterial polymerase [4]. Solely the largest subunit of RNAPII (Rpb1) contains an 

unusual evolutionarily conserved carboxy-terminal domain (CTD) [5], which is subjected to 

numerous post-translational modifications of extraordinary importance in gene expression 

regulation [6-8].RNAPII transcription plays a central role in gene expression and is highly 

regulated at many steps, such as initiation, elongation and termination. Furthermore, 

phosphorylation of the Rpb1 CTD is known to regulate all of the transcription steps and 

coordinate these steps with other nuclear events. Prior to mRNA biosynthesis, RNAPII 

proceeds through several steps, such as promoter recognition, preinitiation complex (PIC) 

assembly, open complex formation, initiation and promoter escape. This sequence of events 

is initiated by the binding of gene-specific activators and coactivators, which results in the 

recruitment of basal transcription machinery (i.e., general transcription factors (GTFs): 
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TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH) and RNAPII to promoters [9-11]. Basal 

transcription factors position RNAPII on promoters to form the PIC but also function at later 

steps, such as promoter melting and initiation site selection. Thereafter, initiation proceeds, 

and RNAPII leaves the promoter during promoter clearance and proceeds into processive 

transcript elongation. Finally, when the gene has been fully transcribed, transcriptional 

termination occurs, and RNAPII is released and recycled to reinitiate a new round of 

transcription [12-14]. 

During its passage across a gene, RNAPII must overcome challenges. Initially, the 

polymerase needs to escape from the promoter, and the synthesis of the pre-mRNAs must 

be tightly coupled to its subsequent processing (i.e., capping, splicing, and polyadenylation). 

Then, initiation factors must be exchanged for elongation factors [15], which are thought to 

increase the transcription rate and RNAPII processivity. In fact, recently, there has been an 

extraordinary increase in the number of proteins known to influence transcription 

elongation by avoiding transcriptional arrest, facilitating chromatin passage and mRNA 

processing [16-21], allowing mRNA packaging into a mature ribonucleoprotein (mRNP) and 

controlling mRNP quality and mRNA export [13, 22-28]. Therefore, the discovery of all of 

these factors has provided further evidence that the elongation phase is also highly 

regulated in eukaryotic cells and strictly coordinated with other nuclear processes [12-14].  

2. RNAPII CTD phosphorylation: The CTD code 

During the last two decades, gene expression studies have provided further evidence that 

many steps in gene expression, originally considered distinct and independent, are, in fact, 

highly coordinated, linked and regulated in a complex web of connections [29-30]. The 

central coordinator that directs this regulatory network (i.e., from transcription initiation to 

termination and with pre-mRNA processing) in combination with many other nuclear 

functions is RNAPII, and the carboxy-terminal domain (CTD) of its largest subunit is of 

remarkable importance. CTD phosphorylation regulates and coordinates the entire 

transcription cycle with  pre-mRNA processing, mRNA transport and with chromatin 

remodeling and modification [13]. The CTD, therefore, has a critical integrating role in 

essentially all of the mRNA biogenesis steps, thus, it is subject to a dynamic regulation 

during the transcription cycle (i.e., [21, 31-32]). Therefore, RNAPII phosphorylation is one of 

the key processes in the regulation of transcription specifically and gene expression in 

general; consequently, deciphering the mechanisms that underlie RNAPII phosphorylation 

regulation has become one of the most studied issues in the field of gene expression. 

RNAPII is comprised of 12 subunits (Rpb1-12) that are structurally and functionally 

conserved from yeast to mammals [33-34]. In 1985, the largest subunit of RNAPII, Rpb1, 

from mouse and Saccharomyces cerevisiae, was cloned [4, 35], and its sequence revealed that it 

contained a highly conserved carboxy-terminal domain (CTD). This domain has been 

extensively studied since then and, although it is a simple repetition in tandem of the 

heptapeptide consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 (YSPTSPS); Figure 1), 

the CTD has an extremely complex functionality. The consensus sequence is present in 
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animals, plants, yeast, and in many protists [5, 36-37], and it has been hypothesized that the 

CTD structure has originated through amplifications of a repetitive DNA sequence and that 

the number of repeats appears directly correlated with genomic complexity (Figure 1A; 

[38]). For example, mouse and human CTDs contain 52 repeats [35, 39-40]; the Drosophila 

CTD contains 45 repeats [41]; 25-27 repeats are found in the yeast CTD (Figure 1A; [4]); and 

15 repeats are found in protozoan CTDs [5, 38]. Although the CTD is completely dispensable 

for in vitro transcription, it is required for efficient RNA processing [17, 42]. In fact, the CTD 

is essential for cell viability because its deletion is lethal in mice, Drosophila and yeast, and 

partial truncations or site-specific mutations cause specific growth defects [5, 42].  
 

 

Figure 1. Human and Saccharomyces cerevisiae Rpb1-CTDs.  

Original studies showed that two RNAPII forms can be differentiated in SDS-PAGE gels 

because of the different mobility of Rpb1 [43]. These two forms were termed RNAPIIA and 

RNAPIIO, and they differ in the extent of CTD phosphorylation. RNAPIIA is 

hypophosphorylated [44], and RNAPIIO is hyperphosphorylated [45]. Moreover, both 

forms, IIA and IIO, are functionally distinct because the IIA form is preferentially recruited 

to the promoter and associated with preinitiation complexes [46], whereas RNAPIIO 

functions during elongation, is highly phosphorylated [44] and thus requires de-

phosphorylation to stimulate its recruitment into the PIC complexes and to reinitiate a new 

round of transcription [47]. We currently know that this earlier two-step transcription cycle 
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model that is based on the two RNAPII forms is overly simple. Different phosphorylated 

forms of RNAPII are specific and characteristic of the different steps that occur during the 

transcription cycle [48], and the correct progression of RNAPII through the transcription 

cycle is dependent on changes in the CTD phosphorylation status. Differential CTD 

phosphorylation promotes the exchange of initiation and elongation factors during 

promoter clearance [15], the exchange of elongation and 3’-end processing factors at 

termination [49], as well as RNAPII recycling [50] and, moreover, links pre-mRNA 

processing and other nuclear events with transcription [17, 42]. Therefore, the CTD 

phosphorylation cycle is very complex. It is widely known that the three serines (i.e., Ser2, 

Ser5, and Ser7) [7, 51], the tyrosine [52-53] and the threonine [54] in each repeat can be 

phosphorylated. Additionally, both proline residues can be isomerized by a prolyl 

isomerase [55]. Moreover, glycosylation of serines and threonine can also occur [8], and in 

human cells, the CTD can be methylated at some of the degenerate repeat sites [56]. The 

multitude of possible CTD modifications, especially Ser phosphorylations, in combination 

with the numerous repetitions, gives rise to a wide range of variations (i.e., phosphorylation 

patterns) that have been termed the “CTD code” (Figure 2) [6-8].  

 

Figure 2. The CTD Code. Only Ser (S) and Thr (T) phosphorylation sites have been considered. CTD 

glycosylation has not been considered [57] because this modification is mutually exclusive of 

phosphorylation [8]. n: number of consensus repetitions.  

The RNAPII CTD code determines and coordinates the timely sequential recruitment of 

required specific factors during the transcription cycle. Therefore, the CTD functions as a 

scaffold that coordinates mRNA biogenesis, such as transcription initiation [58], promoter 

clearance [59], elongation [60], and termination [31, 61-62], as well as RNA processing [17, 

21, 30] and snRNA and snoRNA gene expression [63-65] by recruiting the appropriate set of 

factors when required during active transcription. These factors recognize CTD 
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phosphorylation patterns either indirectly or directly by contacting phosphorylated 

residues. Among the CTD-associated factors are export and histone modifier factors and 

DNA repair factors [21]. 

2.1. Ser2P and Ser5P, and to a lesser extent, Ser7P, are the main determinants of 

the CTD code 

To determine precisely which serine residues are phosphorylated in a particular repeat has 

been challenging because of the numbers of phospho-acceptor amino acid residues and 

consensus motif repetitions (Figure 1). However, studies involving chromatin 

immunoprecipitation with specific monoclonal antibodies have provided evidence that 

differential phosphorylation of the Ser residues coincides with the temporal and spatial 

recruitment of different factors [8, 32, 48, 66-67]. In fact, these antibodies have been largely 

used to decipher and characterize the role of CTD phosphorylation during the transcription 

cycle and in gene expression regulation [8, 32, 68]. Antibodies that selectively recognize 

either Ser2 or Ser5 phosphorylation (i.e., Ser2P or Ser5P, respectively) were the first residues 

to be described [66]; phosphorylation of these two residues has been extensively studied, 

and they have been considered as the two main determinants of the CTD code [6]. It is 

widely known that CTD phosphorylation switch from Ser5 to Ser2 during the course of 

transcription and is subject to a dynamic regulation during the whole transcription cycle 

[69-71]. The level of Ser5 phosphorylation peaks early in the transcription cycle and remains 

constant or decreases as RNAPII progresses to the 3′ end of the gene  (Figure 3); [48, 67, 72]). 

In contrast, Ser2 phosphorylation is the predominant modification in the coding and 3′-end 

gene regions and occurs simultaneously with productive elongation [31, 48, 73]. On the 

other hand, de-phosphorylation of Ser5 occurs during the initiation-elongation transition 

and throughout the entire elongation step, whereas Ser2 de-phosphorylation occurs at the 

end of transcription to recycle the polymerase and reinitiate a new round of transcription. 

Therefore, reversible phosphorylation/de-phosphorylation of the CTD plays a significant 

role in modulating the transcription cycle [31-32]. 

Most recently, the use of new anti-CTD monoclonal antibodies has demonstrated that Ser7, 

which is the most degenerate position of the CTD [41], can be phosphorylated during the 

transcription of snRNA genes and protein-coding genes [64, 68, 74]. Subsequently, this mark 

increases the complexity of the CTD code [7-8]. Ser7 phosphorylation is mediated by the 

same kinase [74-75], although, at least in Saccharomyces cerevisiae, Ser7P appears not to be 

dephosphorylated by the same Ser5 phosphatase (see below) [76].The first study on Ser7 

phosphorylation provided further evidence that this modification is functionally important 

for transcription and processing of snRNAs [8, 64] and hypothesized that the CTD code 

could be gene-transcription dependent. In mammals, Ser7P peaks at the promoter region of 

snRNA genes but is enhanced toward the 3′ end of protein-coding genes [68].  Recent 

genome-wide distribution studies in yeast have provided further evidence that Ser7P in 

protein coding genes occurs early during transcription initiation and is maintained during 

the entire transcription cycle. In fact, Ser7P is not only maintained, but it is also generated de 

novo during transcription elongation. Additionally, it has been hypothesized that Ser7 

phosphorylation could facilitate elongation and suppress cryptic transcription [77]. 
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Figure 3. RNAPII CTD phosphorylation profile in Sacharomyces cerevisiae. During transcription 

initiation and promoter escape RNAPII CTD is phosphorylated on Ser5 (Ser5P) [48, 78]. Concurrently, 

Ser7 is phosphorylated (Ser7P), establishing a bivalent mark at both protein-coding and noncoding 

genes [74-76]. Shortly after promoter dissociation, Ser5P is rapidly removed while phosphorylated Ser2 

(Ser2P) and Ser7P continue to accumulate [70, 77]. Finally, all CTD marks are rapidly removed at the 

end of transcription, and the hypophosphorylated RNAPII (in grey) is ready to assemble into the pre-

initiation complex and re-initiate transcription [73, 79-80]. Small circles represent phosphorylated serine 

residues (green cirlces for Ser5P, blue circles for Ser7P and red circles for Ser2P). Differently colored big 

circles represent the distinct phosphorylated forms of RNAPII during initiation, elongation and 

termination. TSS: transcription start site; p(A): polyadenylation site. 

2.2. Tyrosine 1 and Threonine 4 can also be phosphorylated 

Tyrosine 1 (Tyr1) is evolutionarily conserved and present in all of the 52 repeats of the 

mammalian CTD, and in all of the 26-27 repeats of the yeast CTD. Although, it is well 

known that Tyr1 is susceptible to phosphorylation by tyrosine kinases in vivo [52-53] and 

that Tyr1 mutations are lethal in yeast [81], the function of this modification is unknown. 

Additionally, threonine 4 (Thr4) is also subjected to phosphorylation, at least in mammalian 

and in yeast cells [54, 82], and recently it has been demonstrated that phosphorylation of the 

Thr4 residues is required specifically for histone mRNA 3' end processing, which facilitates 

the recruitment of 3' processing factors to histone genes, and is evolutionarily conserved 

from yeast to human [54]. 

In mammals, there is an important degeneracy at some positions in the CTD, mainly in most 

of the carboxy-terminal repeats. Thus, the last repeat of the CTD is followed by a conserved 

10 amino acid extension (Figure 1; [5]) that contains a constitutive site for the casein kinase 

(CK) II site [83]. Though deletion of this extension results in degradation of the CT, and 
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effects in transcription and pre-mRNA processing [83-84], mutation of the CKII target site 

does not affect RNAPII CTD stability. Additionally, this extension is required for the 

phosphorylation of Tyr1 by c-Abl in mammals and it has been suggested that Tyr1 

phosphorylation could be involved in functions specific of these higher eukaryotes [85]. 

Finally, non-consensus residues, such as lysine and arginine, are also present in the CTD, 

and they could be potentially modified by acetylation, ubiquitylation, sumoylation (lysine 

residues) and methylation (lysine and arginine residues) [86]. Therefore, the possibilities of 

CTD modifications are enormous, and only some of the modifications have been 

demonstrated to influence, while interacting with numerous factors, different aspects of 

gene expression. 

3. Modifying enzymes: Kinases and phosphatases 

Most of what is known concerning CTD-protein interactions, and in particular RNAPII 

CTD modifying enzymes, is derived from animal and yeast models, especially 

Saccharomyces cerevisiae, since the consensus sequence and repetitive structure of the CTD 

in addition to the CTD-modifying enzymes are highly conserved across a wide range of 

organisms. A number of kinases and phosphatases that target the CTD have been 

described and extensively studied (Tables 1 and 2, and reference therein). Recent genome-

wide distribution studies of the CTD modifications in yeast have provided further 

evidence that complex interplay exists between these enzymes (i.e., kinases, phosphatases 

and isomerase), which coordinate a universal RNAPII CTD cycle [69]. These modifying 

enzymes alter specific serine residues within the CTD repeats and have distinct and 

specific functions along the transcription cycle. Although the catalytic mechanisms of 

CTD kinases and phosphatases are known, the basis for their specificity remains 

incompletely understood [87-88]. 

Below, in figure 4, we will highlight the most relevant features and functions of CTD kinases 

and phosphatases, with special emphasis on the budding yeast enzymes because extensive 

studies on RNAPII CTD phosphorylation have been performed on that organism, and most 

of these enzyme complexes are evolutionarily conserved.  

3.1. RNAPII CTD kinases 

The CTD is phosphorylated by members of the cyclin-dependent kinase (CDK) family, 

which usually consists of a catalytic and a cyclin subunit. Although CDKs are cell cycle 

regulators, several members of this family have direct functions in RNAPII activity 

regulation [39, 88]. All these kinases are members of multiprotein transcription regulatory 

complexes and, in mammals, the best known are Cdk7/CycH, Cdk8/CycC and Cdk9/CycT; 

recently, Cdk12/CycK has been characterized as a new CTD kinase [89]. These kinases are 

evolutionarily conserved, and the following four complexes with kinase activity have been 

identified in the well-known yeast model Saccharomyces cerevisae: Kin28/Ccl1, Srb10/Srb11, 

Bur1/Bur2 and Ctk1/Ctk2 (Table 1).  
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KINASES SPECIFICITY FUNCTION 

 

REFERENCES 

 

 

 

ySrb10 / Srb11 

hCdk8 / CycC 

 

CTD-Ser2 

CTD-Ser5 

 

Other substrates 

Bdf1 and Taf2, Med2 

Gcn4, Msn2, Ste12, 

Gal4 

 

 

TFIIH inhibition 

PIC inhibition / activation 

Scaffold complex formation 

SAGA-dependent transcription 

 

 

[90-94] 

 

 

 

 

yKin28 / Ccl1-

Tfb3 

hCdk7 / CycH 

 

 

CTD-Ser5 

CTD-Ser7 

 

Other substrates 

Med4 

Rgr1/Med14 

 

Promoter scape 

Scaffold complex formation  

Capping complex recruitment 

Bur1 activity stimulation 

Set1/COMPASS recruitment 

Elongation factor Paf1C recruitment 

SAGA complex recruitment 

snRNA 3’ processing 

Promoter-pausing  

Gene looping 

 

 

[64, 72, 74-76, 90, 94-

100] 

 

 

 

yBur1 / Bur2 

hCdk9 / CycT 

 

CTD-Ser2 

CTD-Ser5 

CTD-Ser7 

CTD-Thr4 

 

Other Substrates 

hDSIF (ySpt5),   

Rad6/Bre1 

 

 

Ctk1 activity stimulation 

Elongation 

PAF complex recruitment 

H3K4 methylation 

H2B monoubiquitination 

Histone genes 3’-end processing 

 

[54, 99, 101-104] 

 

 

yCtk1 / Ctk2-

Ctk3 

hCdk12 / CycK 

 

 

CTD-Ser2 

 

Other Substrates 

Rps2 

 

RNAPII release from basal initiation            

factors 

3’-processing factors recruitment 

Transcription termination 

Spt6 recruitment 

H3K36 methylation 

Translation elongation 

 

 

[16, 49, 89, 105-112]  

 

 

Table 1. RNAPII CTD kinases. Mammalian and Saccharomyces cerevisiae kinases are shown. 
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Figure 4. The levels of CTD phosphorylation are precisely modulated during the whole transcription 

cycle by the action of evolutionary conserved kinases and phosphatases. The level of Ser5 

phosphorylation peaks early in the transcription cycle due to the action of Kin28 (Cdk7 in human) and 

remains constant or decreases as RNAPII progresses to the 3′ end of the gene [48, 67, 72]. In contrast, 

Ser2 phosphorylation is the predominant modification in the gene body and towards the 3′ end, and 

occurs concurrently with productive elongation [31, 48]. Ctk1 is the principal kinase responsible for Ser2 

phosphorylation in the body of the genes [16, 73]. In addition to Ctk1, the Bur1/Bur2 kinase complex 

phosphorylates Ser2 when RNAPII is near the promoter and stimulates Ser2 phosphorylation by Ctk1 

during elongation [99]. Several CTD-phosphatases have been shown to specifically de-phosphorylate 

Ser5P (Ssu72 and Rtr1), Ser2P (Fcp1) and Ser7 (Ssu72) to promote the initiation-elongation transition, 

elongation, termination, and RNAPII recycling [50, 73, 79, 167, 182]. Srb10 was demonstrated to 

phosphorylate the RNAPII CTD prior to PIC assembly, negatively regulating transcription initiation 

[92]. 

3.1.1. Pre-initiation and Initiation RNAPII CTD kinases 

Cdk8/CycC and Srb10/Srb11 

Human Cdk8/CycC and yeast Srb10/Srb11 are part of the CDK-module of Mediator [113], a 

large complex of 25-30 proteins that is structured in 4 sub-complexes or modules that act as 

a molecular bridge between DNA-binding transcription factors and RNAPII [114-115]. 

Mediator is required for the expression of nearly all RNAPII transcribed genes [116]. 

Cdk8/Srb10 is part of the CDK-module (Cdk8, cyclin C, MED12 and MED13 in mammals; 

Srb8, 9, 10 and 11 in yeast), which dynamically associates with Mediator [93, 117]. Although 

Cdk8/Srb10 can phosphorylate Ser2 and Ser5 of the CTD repeats in vitro [90, 92-94, 109, 113], 

the in vivo relevance of Cdk8/Srb10 remains to be defined. In fact, several studies have 

provided evidence that Srb10/11 can have both negative [116] and positive [118] effects on 

gene expression in vivo. Srb10 was demonstrated to phosphorylate the RNAPII CTD prior to 

PIC assembly, negatively regulating transcription initiation (Figure 4; [92]). Notably, human 

Cdk8 represses transcription via phosphorylation and inactivation of the cyclin H subunit of 
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TFIIH, which is the Cdk7 partner [90]. However, subsequent work showed that Srb10 

functions in association with Kin28 (hCdk7) to promote RNAPII re-initiation [94]. Following 

PIC formation and an initial round of transcription, it is thought that subsequent rounds of 

RNAPII binding and promoter clearance are facilitated via a “scaffold complex” that is 

composed of a subset of Mediator subunits and GTFs (except TFIIB and TFIIF) that remains 

bound at the promoter [119]. Therefore, Kin28 and Srb10 have overlapping positive 

functions in promoting transcription and in the formation of the scaffold complex [94]. Srb10 

phosphorylates two subunits of the general transcription factor TFIID (Bdf1 and Taf2) at the 

PIC; however, the role of these phosphorylation events has not yet been defined. Moreover, 

Srb10 phosphorylates and inactivates some transcription factors [120-122]  by triggering 

their nuclear export or degradation [123-124] and phosphorylates and enhances the activity 

of others (Table 1). In summary, the in vivo relevance of RNAPII phosphorylation by 

Cdk8/Srb10 and its role in gene expression have yet to be elucidated. 

Cdk7/CycH  and Kin28/Ccl1-Tfb3 

The Cdk7/cyclin H complex in mammals and its homolog in Saccharomyces cerevisiae, 

Kin28/Ccl1, are part of the TFIIH general transcription factor. In yeast, Kin28 is found 

associated with a third subunit (Tfb3) to form a trimer, called TFIIK (Kin28-Ccl1-Tfb3) 

within TFIIH [125]. Mammalian Cdk7 was isolated as a RNAPII CTD kinase that possesses 

Cdk-activating kinase (CAK) activity [126-128], whereas in yeast, Kin28 lacks this activity 

[129]. The CAK activity is fulfilled by a different kinase, Cak1 [130-131]. Cdk7 and Kin28 are 

both essential for cell viability [132], and the in vivo function of Kin28 has been extensively 

studied in yeast. Cdk7/Kin28 is the primary kinase that phosphorylates the CTD within a 

transcription initiation complex (Figure 4). Cdk7/Kin28 has been demonstrated to 

phosphorylate both Ser5 and Ser7 in vitro and in vivo [72, 74-76, 92]. Phosphorylation on Ser5 

by Cdk7/Kin28 is thought to disrupt the stable interactions between the CTD and PIC 

components, thereby permitting the polymerase to release from the promoter and 

commence productive transcript elongation [92, 133-134]. Ser5 phosphorylation by 

Cdk7/Kin28 is required for the recruitment of the mRNA-capping complex [72, 135-137] and 

nuclear cap-binding complex (CBC) [100] to nascent transcripts and for co-transcriptional 

recruitment of elongation factor Paf1C [138], histone H3-lysine 4 methyltransferase complex 

(SET1/COMPASS) [98], and histone acetyltransferase complex SAGA [97]. 

Additionally, yeast Kin28 phosphorylates two subunits of Mediator (i.e., Med4 and 

Rgr1/Med14), and although the functionally of these modifications is unknown, it has been 

demonstrated that Mediator significantly enhances the phosphorylation of RNAPII CTD by 

Kin28 [94, 96]. In fact, in vitro assembly of TFIIH into a pre-initiation complex requires 

Mediator [139], and following transcription initiation, phosphorylation of Ser5 by Kin28 

parallels with the release of Mediator from the CTD of RNAPII as promoter clearance occurs 

[80]. 

As discussed above, in yeast, Kin28 and Srb10 have overlapping functions in promoting 

transcription, PIC dissociation and subsequent scaffold complex formation [94]. Genetic 

analysis has provided further evidence that Kin28 and Srb10 are not redundant because only 
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Kin28 is essential for growth, and Srb10 is much less processive in terms of phosphorylation 

than Kin28 [140]. It is clear that Kin28 is the primary kinase responsible for the high level of 

phosphorylation of RNAPII during initiation [48, 67, 94, 141]. In fact, one essential role of 

Kin28 that Srb10 does not have is the stimulation of pre-mRNA processing. However, what 

appears clear, at least in yeast, is that PIC dissociation is dependent on the kinase activities 

of Kin28 and Srb10. Additionally, another function of RNAPII CTD Ser5 phosphorylation by 

Kin28 is the enhancement of Bur1/Bur2 recruitment and Ser2 CTD phosphorylation near the 

promoters [99]. Moreover, it has recently been demonstrated that TFIIH kinase places 

bivalent marks on the CTD, thereby phosphorylating Ser7 during transcription initiation 

[74-75]. 

3.1.2. RNAPII CTD elongating kinases 

Cdk9/CycT and Cdk12/CycK 

Eukaryotic organisms possess many factors that regulate transcriptional elongation; among 

these factors is Cdk9 kinase, which is the catalytic subunit of the positive transcription 

elongation factor b (P-TEFb) that controls the elongation phase of transcription by RNAPII in 

mammals and Drosophila melanogaster [12]. Cdk9 is the major Ser2 kinase, but it also 

contributes to Ser5 phosphorylation in vitro and in vivo during the initiation-elongation 

transition and the polymerase release of promoter-proximal pausing [109, 142]. Cdk9 activity 

is also required for efficient coupling of transcription with pre-mRNA processing [108]. 

Additionally,  very recently, it has been shown that Thr4 is phosphorylated by Cdk9 [54]. 

In higher eukaryotes, the transcription factor P-TEFb not only regulates CTD 

phosphorylation, but it also inhibits the action of transcriptional repressors and is required 

for the association of several elongation factors with the transcribing polymerase. P-TEFb 

also targets DRB sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) 

[142-144] (Table 1). Thus, P-TEFb promotes transcription by the following two different 

mechanisms: inhibiting the action of transcriptional repressors and phosphorylating the 

CTD during transcription elongation. Until recently, it was believed that Cdk9 was the only 

CTD Ser2 kinase in higher eukaryotes. In fact, Cdk9 can reconstitute the activity of both S. 

cerevisiae Ser2 CTD kinases, Bur1 and Ctk1. However, it has recently been demonstrated that 

Drosophila have one ortholog of yeast Ctk1, Cdk12, whereas humans have two, Cdk12 and 

Cdk13; only Cdk12 has been clearly demonstrated to be an elongating CTD kinase [89, 145]. 

Notably and similarly, fission yeast Schizosaccharomyces pombe has the following two Ser2 

elongating kinases: Lsk1 (ScCtk1) and Cdk9 (ScBur1) [146]. 

Bur1/Bur2 

Bur1 kinase and its cyclin, Bur2, form an essential CDK in S. cerevisiae involved in transcription 

elongation [147-148]. Although Bur1 and Ctk1 kinase complexes appear to functionally 

reconstitute the activity of P-TEFb in yeast [149], Bur1 is more related in sequence and 

functionally to mammalian P-TEFb than Ctk1 [147, 149], and as we have discussed, it is clear 

that Cdk12 is the functional equivalent of yeast Ctk1 [89, 145]. Bur1 can phosphorylate Ser2 
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and Ser5 [99, 147, 150] [151], and although it was first demonstrated to show some preference 

for Ser5 and to be less active than Ctk1 or Kin28 [147], later studies provided evidence that 

Bur1 interacts with the RNAPII CTD and phosphorylates at Ser2. In fact, Bur1 phosphorylates 

elongating RNAPII molecules that have been previously phosphorylated at Ser5 and are 

located near the promoter during early transcription elongation (Figure 4, and [99]. Thus, it 

has been hypothesized that Bur1/Bur2 is recruited to RNAPII, whose repeats are 

phosphorylated on Ser5 to enhance phosphorylation on Ser2 by Ctk1. Consistent with it, Bur1 

produces the Ser2 phosphorylated residues that remains when Ctk1 is inactivated [152]. Bur1 

also stimulates transcription elongation as its mammalian homologue P-TEFb [150, 152], and 

mutations on BUR1 cause sensitivity to drugs that are known to affect transcription elongation 

(e.g., 6-azauracil) [147, 150]. More recently, a chemical-genomic analysis has provided further 

evidence that Bur1 also phosphorylates Ser7 in the body of the genes [77].  

Bur1 shares another function with the mammalian and Schizosaccharomyces pombe Cdk9 [142, 

153]. Bur1 kinase activity is important for the in vivo phosphorylation of the elongation factor 

Spt5 (mammalian DSIF) [102, 154]. Spt5 contains a carboxy-terminal domain that consists of 

approximately 15 repeats (CTR) that are similar to the RNAPII CTD [102], which is subject to 

phosphorylation. The Spt5-CTR is required for efficient elongation by RNAPII and for chromatin 

modifications in transcribed regions (see below). Thus, Spt5 phosphorylation mediates, at least in 

part, Bur1 kinase roles on transcription elongation and histone modifications [154].  

Ctk1/Ctk2-Ctk3 

Ctk1 was originally identified as the kinase subunit of the yeast CTDK-I complex that 

catalyzes phosphorylation of the RNAPII CTD [155]. Ctk2 is the cyclin, and the Ctk3 

function remains unknown. Ctk1 is the principal kinase that is responsible for CTD-Ser2P 

during transcription elongation, which is coincident with reduced Ser5P [73, 156]. Although 

Ctk1 is not directly involved in transcription elongation [16, 18, 157], it associates with 

RNAPII throughout elongation [49], and the kinase activity of Ctk1 is required for the 

association of polyadenylation and termination factors [16] and histone modification factors 

[158]. Additionally, Ctk1 interacts genetically as well as biochemically with the TREX 

complex [159], which couples transcription elongation to mRNA export [160]. Moreover, 

Ctk1 promotes the dissociation of basal transcription factors from elongating RNAPII, early 

during transcription, however, kinase activity is not required [105].  

In addition to its functions in transcribing gene coding proteins, Ctk1 is involved in RNAPI 

transcription, interacts with RNAPI in vivo [161], and it is required for the integrity of the 

rDNA tandem array [162]. All of these studies suggest that Ctk1 might participate in the 

regulation of distinct nuclear transcriptional machineries. Additionally, it has been 

demonstrated that Ctk1 is required for DNA damage-induced transcription [163], and notably, 

that Ctk1 has a role in the fidelity of translation elongation in the cytoplasm [110, 164]. 

3.2. RNAPII CTD phosphatases 

Dynamic de-phosphorylation of Ser2P and Ser5P make a significant contribution to changes 

in CTD phosphorylation patterns during the transcription cycle and is essential for RNAPII 
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recycling [8, 31]. Dephosphrylation is achieved by several CTD phosphatases (Table 2). 

Initially, only one phosphatase was identified, Fcp1, which is required for Ser2P de-

phosphorylation, transcription elongation and RNAPII recycling to initiate new rounds of 

transcription [47, 165]. Two other CTD phosphatase were later identified in yeast, Ssu72, a 

component of the mRNA 3' end processing machinery [79, 88, 166] and Rtr1 [167]. In 

mammals, in addition to Fcp1, there are other CTD phosphatases, i.e., the small phosphatase 

SCP1 [168] and RPAP2, which is the human homolog of Rtr1 [169]. Briefly, Fcp1 

dephosphorylates Ser2P [73]; Ssu72 dephosphorylates Ser5P and Ser7P [50, 69]; and Rtr1 in 

yeast and SCP1 in mammals specifically dephosphorylate Ser5P [79, 167-168]. 

Rtr1 / RPAP2 

Chromatin immunoprecipitation studies have provided further evidence that the increase in 

Ser2P occurs as transcription progresses through the gene and follows Ser5P de-

phosphorylation. Rtr1 in yeast was identified as the RNAPII CTD phosphatase driven the 

Ser5-Ser2P transition at the 5’ regions of the transcribed genes. Rtr1 genetically interacts 

with the RNAPII machinery, and Rtr1 deletion provokes global Ser5P accumulation in 

whole-cell extracts and Ser5P association throughout the coding regions [167, 171]. RPAP2 

was identified in a systematic analysis carried out to determine the composition and 

organization of the soluble RNAPII machinery [169], and as in the case of Rtr1, Ser5P levels 

increase in vivo when RPAP2 is knocked down. Additionally, RPAP2 depletion affects 

snRNA gene expression as it does mutations of the Ser7 residue [64]. In fact, Ser7P recruits 

the 3’-end processing Integrator complex and RPAP2 to drive Ser5 de-phosphorylation of 

RNAPII CTD during the transcription of snRNA genes [170, 183]. Recently, a model has 

been proposed in which RPAP2 recruitment to snRNA genes through CTD-Ser7P triggers a 

cascade of events that are critical for proper gene expression [170]. 

  

 

PHOSPHATASES SPECIFICITY FUNCTION 

 

REFERENCES 

 

yRtr1 

hRpap2 

 

CTD-Ser5P 

 

Promote Ser5P to Ser2P transition 

Association of Integrator with snRNA genes    
 

 

[167, 169-171] 

 

 

ySsu72 

hSsu72 

 

CTD-Ser5P, 

Ser7P 

CTD-Ser5P 

 

Transcription initiation/elongation  

Transcription termination and 3’-end processing  

Facilitate Fcp1 activity 

Gene looping and RNAPII recycling 

 

[50, 69, 79, 166, 172-

176] 

 

 

 

y/h Fcp1 

 

 

 

CTD-Ser2P 

 

Positive regulator of RNAPII transcription  

Transcription elongation 

Transcription termination and  RNAPII 

recycling 

 

 

[47, 73, 165, 177-

182] 

 

hSCP1 

 

CTD-Ser5P 

Transition from initiation / capping to processive 

transcript elongation. 

 

[168] 

Table 2. RNAPII CTD phosphatases. Human and Saccharomyces cerevisiae phosphatases are shown. 
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Ssu72 

Ssu72 was first described as a Ser5P phosphatase and recently as a Ser7P phosphatase [50, 

69]. In fact, Ssu72 was originally identified as functionally interacting with the general 

transcription factor TFIIB [184-185]. Afterward, it was demonstrated that Ssu72 is part of the 

cleavage and polyadenylation factor (CPF) with a role at the 3’-end of genes [166, 175]. In 

fact, Ssu72 is crucial for transcription-coupled 3’-end processing and termination of protein-

coding genes [175, 186-187]. Later, Ssu72 was characterized as a Ser5P phosphatase [79] and 

a potential tyrosine phosphatase [188] and, most recently, it has been demonstrated that 

Ssu72 is also a Ser7 phosphatase [50, 69]. A genome-wide distribution analysis of Ssu72 has 

demonstrated two peaks of association (Figure 4): a low peak at the 5’-end of genes and a 

higher peak at the cleavage and polyadenylation site or immediately after it [50]. In 

agreement with it, Ssu72 dephosphorylates RNAPII CTD following cleavage and 

polyadenylation and recycles the terminating RNAPII, giving rise to a hypophosphorylated 

polymerase. In fact, inactivation of Ssu72 leads to the accumulation of Ser7P marks that 

avoids RNAPII recruitment to the PIC, and therefore inhibits transcription initiation, which 

results in cell death [50]. In other words, Ssu72 is critical for transcription termination, 3’-

end processing and RNAPII recycling to restart a new round of transcription. Additionally, 

it has been shown that Ssu72 has a function in gene looping [172]. In a screen looking for 

mammalian retinoblastoma tumor suppressors, a human homolog of yeast Ssu72 was 

identified. As in yeast, mammalian Ssu72 associates with TFIIB and the yeast 

cleavage/polyadenylation factor Pta1, and exhibits intrinsic phosphatase activity [176]. The 

crystal complex structure that is formed by human symplekin (Pta1 in yeast), hSsu72 and a 

CTD phosphopeptide has been elucidated, and hSsu72 was demonstrated to have a function 

in coupling transcription to pre-mRNA 3'-end processing [187]. 

Fcp1 / SCP1 

Fcp1 was the first discovered CTD phosphatase and is highly conserved among eukarya [177, 

189-191]. It directly de-phosphorylates RNAPII, and its activity is stimulated in vitro by TFIIF 

and inhibited by TFIIB [73, 177-178]. Fcp1 is essential for cell viability and for transcription in 

yeast [177-178] and preferentially dephosphorylates Ser2P [73, 192]. Fcp1 has two essential 

domains: an FCP homologous domain near the amino-terminus and a downstream BRCA1 

carboxy-terminal (BRCT) domain [87]. Higher eukaryotes have additional small CTD 

phosphatases (SCPs) that contain only the FCPH domain characteristic of the Fcp1 proteins. 

However, SCP1 preferentially catalyzes Ser5P de-phosphorylation and is especially active on 

RNAPII molecules that have been phosphorylated by TFIIH [168].  

Gene transcription is decreased in cells lacking Fcp1 function, and fcp1 mutants exhibited a 

general accumulation of hyperphosphorylated RNAPII in whole-cell extracts, and 

specifically in the gene coding regions [178]. Fcp1 also has the ability to stimulate RNAPII 

transcript elongation in vitro independent of its phosphatase activity [182], which suggests 

that it associates with and modulates elongating RNAPII. In agreement with this, chromatin 

immunoprecipitation studies have demonstrated that Fcp1 associates with the promoter and 

coding region of active genes in vivo [73]. Recent genome-wide studies have provided 
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further evidence that Fcp1 associates with genes from promoter to 3’-end regions, showing 

the highest association of Fcp1 with the cleavage and polyadenylation site. This association 

occurs after Bur1 and Ctk1 have dissociated, which permits Fcp1 to completely 

dephosphorylate all the remaining Ser2P residues ([50], Figure 4). Fcp1 is also responsible 

for de-phosphorylation of RNAPII following its release from DNA [165]. Fcp1 association 

with genes at the cleavage polyadenylation site overlaps with Ssu72 association, whereas 

this overlapping does not exist at the 5’ and coding regions (Figure 4). This fact indicates 

that CTD de-phosphorylation may be coupled at the 3’-ends, and it has been hypothesized 

that Ssu72 activity may be important for Fcp1 function, thereby coupling Ser2P de-

phosphorylation to the removal of Ser5P and Ser7P [69]. 

4. Other factors influencing RNAPII CTD phosphorylation  

Although many factors can have effects on CTD phosphorylation, we will highlight the 

following two that we believe are of significant relevance: the prolyl isomerases hPin1/yEss1 

and the structure of the RNAPII itself. In addition, we will describe the role of ySub1 in CTD 

phosphorylation, because it has been extensively studied by us.   

4.1. hPin1 / yEss1 

The CTD can adopt either cis- or trans-conformations, which can significantly affect its 

modification, especially its phosphorylation. Peptidyl prolyl isomerases (PPIases) are 

enzymes that accelerate the rates of rotation about the peptide bond preceding proline and 

are important for protein folding and regulation of dynamic cellular processes [193-194]. Pin1 

in mammals and Ess1 in S. cerevisiae are RNAPII CTD PPIases. Phosphorylated Ser2 and Ser5 

match with the pSer-Pro sequence that is recognized by Pin1, and the CTD appears to be its 

principal target of regulation [195-196]. Pin1 has specificity for phosphorylated Ser/Thr-Pro 

sequences, and it modulates RNAPII activity during cell cycle at least in part by regulating 

RNAPII CTD phosphorylation levels [195]. Yeast Ess1 physically interacts with the CTD [55, 

197], and it preferentially binds and isomerizes in vitro Ser5P residues [198]. Although Pin1 

stimulates RNAPII CTD hyperphosphorylation, which results in transcription repression and 

inhibition of mRNA splicing [195-196], in vivo studies have proposed that Ess1 promotes 

RNAPII CTD de-phosphorylation. In any case, both isomerases have important functions in 

transcription. Therefore, initiation-elongation transition is inhibited by Pin1 [196], whereas 

Ess1 affects multiple steps, such as initiation, elongation, 3′-end processing, and termination 

[197, 199-201]. In fact, it has been demonstrated that Ess1 promotes Ssu72-dependent function 

by creating the CTD structural conformation that is recognized by Ssu72 [202], and recently it 

has been confirmed that isomerization is a key regulator of RNAPII CTD de-phosphorylation 

at the end of genes [69].  

4.2. RNAPII structure and Rpb1-CTD localization 

The structure of the complete 12-subunit RNAPII (Rpb1-12) is known [203-204]. Rpb4 and 

Rpb7 subunits form a conserved sub-complex that is conserved in all three eukaryotic RNA 
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polymerases and archaea RNAP [205-206]. Crystal structures of the Rpb4/7 heterodimer in 

the context of the complete RNAPII complex localized it in the proximity of the Rpb1-CTD 

[203, 207], and biochemical and genetic studies suggest that Rpb4/7 might have a function in 

the recruitment of some CTD-binding proteins to transcribing RNAPII. Moreover, it is 

possible that this sub-complex, Rpb4/7, would regulate the access of CTD modifying 

enzymes during the whole transcription cycle [203, 207, 209-212]. Actually, structural 

studies have provided further evidence that the CTD extends from the RNAPII core enzyme 

near the RNA exit channel [204], where it is ideally located to bind and be affected by the 

action of a multitude of factors, among them kinases, phosphatases and isomerases. In fact, 

in yeast, the isopropylisomerase Ess1 and the phosphatase Fcp1 are associated with Rpb7 

and Rpb4, respectively [55, 87, 208]. 

4.3. The ssDNA binding protein Sub1 as a general regulator of transcription 

Sub1 is an ssDNA binding protein that has been implicated in several steps of mRNA 

metabolism, such as initiation, transcription termination and 3’-end processing [186, 213-

215]. Sub1 was originally described as a transcriptional stimulatory protein that is 

homologous to the human positive coactivator PC4, which physically interacts with 

activators and components of the RNAPII basal transcription machinery [216-220]. Sub1 

genetically and physically interacts with TFIIB [214-215, 221], and several functions have 

been proposed for Sub1 that include stimulating PIC recruitment and promoter escape. In 

fact, most recently, using a quantitative proteomic screen to identify promoter-bound PIC 

components, Sub1 was identified as a functional PIC component that is associated with 

RNAPII complexes [225]. In addition, we have recently demonstrated that Sub1 globally 

regulates RNAPII CTD phosphorylation (Figure 5, [222]) and that it is a bona fide elongation 

factor that influences transcription elongation rates (García and Calvo, unpublished results). 

Although it has been broadly studied, and several functions have been hypothesized for 

Sub1 [213, 215, 222-225]; however, the exact mechanism by which Sub1 functions in 

transcription remains unclear. Sub1 globally regulates RNAPII-CTD phosphorylation 

during the entire transcription cycle by modulating, albeit differentially, the activity and 

recruitment of CTD modifying enzymes [222, 224]. We have proposed a model showing 

how Sub1 might function to globally regulate RNAPII CTD phosphorylation (Figure 5). In 

wild-type cells (wt), non-phosphorylated Sub1 joins the promoter (possibly via TFIIB; [214-

215, 221]), contacting the promoter via its DNA binding domain. At that point, Sub1 

interacts with the Cdk8-Mediator complex, helping to maintain the PIC in a stable but 

inactive conformation. Sub1 is then phosphorylated (possibly by the action of kinases at the 

PIC, similarly to PC4, its human homolog), losing its DNA binding capacity and promoting 

clearance of TFIIB [214-215, 226]. The PIC next changes conformation such that Kin28 can be 

activated, and with the help of Srb10 promotes PIC dissociation into the scaffold complex as 

well as the recruitment of elongating kinases Ctk1 and Bur1. In contrast, in the absence of 

Sub1 (sub1Δ), Srb10 activity and recruitment are decreased, while Kin28 recruitment and 

activity increases, in agreement with TFIIH being negatively regulated by Cdk8-containing 

Mediator complexes [90, 227]. As a result, Ser5P levels are increased, and consequently Bur1 

and Ctk1 association with chromatin is also enhanced [99, 228]. Furthermore, in sub1Δ cells 
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there is a reduction on Fcp1 phosphatase levels and its association with chromatin, which 

induces an additional increase in Ser2P, impairing RNAPII recycling after transcription 

termination. Thus, a decrease in RNAPII recruitment is observed in cells lacking Sub1 [224]. 

Additionally, Sub1 also influences Spt5 elongation factor phosphorylation by Bur1 (García 

and Calvo, unpublished results). We currently do not understand the biochemical basis for 

these effects. We have not found evidence that Sub1 associates with any of the CTD kinases 

or evidence that Sub1 influences the CTD kinase activities by influencing post-translational 

modifications of the kinases. Therefore, we currently consider two possible explanations for 

the effects of Sub1 on the activities of the CTD kinases. One explanation is that Sub1 

enhances the association (or dissociation) of an unidentified, common regulator with the 

kinases, whereas the other is that Sub1 in some manner influences kinase accessibility to the 

CTD. 

 

Figure 5. Model showing how Sub1 might function to globally regulate RNAPII CTD 

phosphorylation [222] . Different font sizes in the figure text indicate the increase or decrease of the 

corresponding CTD modifying enzymes in sub1Δ versus wt cells. 

5. RNAPII CTD phosphorylation and pre-mRNA processing 

The CTD is an unordered structure that extends from the RNAPII core enzyme, near the 

RNA exit channel [204, 209]. This localization is convenient to interact with a plethora of 

factors, such as the CTD-modifying enzymes and binding factors involved in distinct 
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nuclear processes, for example, components of the RNA processing machinery [32, 88]. 

Furthermore, its length and the ability to adopt numerous conformations permit it to 

interact with different factors at the same time [31-32], and it is currently clear that  these 

interactions depends on the CTD phosphorylation patterns during the transcription cycle [8, 

21]. 

As transcription progresses the nascent RNA is capped to protect the 5′ end, intron 

sequences are removed, and a polyadenylated tail is added to the 3’ end. Coupling mRNA 

processing to transcription increases processing efficiency and allows multiple regulatory 

pathways to guarantee that only correctly modified mRNAs are exported. For more than a 

decade, numerous studies have provided evidence that the CTD serves as a scaffold for the 

assembly of an enormous variety of protein complexes to coordinate not only transcription 

of non-coding and protein-coding genes [8, 58-62, 64-65], but also pre-mRNA processing [21, 

31-32]: capping [42, 135, 137], splicing [229], and 3’-end cleavage and polyadenylation [42]. 

All of these functions are achieved through the recognition and reading of the CTD code 

during the transcription cycle [6-8, 31]. Thus, co-transcriptional CTD-mediated processing of 

nascent RNA plays a crucial role in both recruitment of RNA processing machineries and 

regulation of their activities. Indeed, a functional CTD is not required for in vitro 

transcription by RNAPII, but it is essential for efficient pre-mRNA processing [42, 230-231]. 

Capping  

The capping reaction consists in the addition of an inverted 7-methylguanosine cap to the 

first RNA residue by a 5'-5' triphosphate bridge. It is a characteristic of all RNAPII 

transcripts and is added to the 5’-end of nascent transcripts when they are only 25-50 bases 

long. The capping complex contains the following three enzymatic activities: RNA 5'-

triphosphatase, guanylyl transferase and RNA (guanine-7) methyltransferase [17, 67]. In 

yeast, these activities are achieved by three enzymes (i.e., Cet1, Ceg1 and Abd1, 

respectively), whereas in metazoans, these activities are performed by two enzymes (i.e., 

HCE and MT) because guanylyl transferase and RNA 5'-triphosphatase are two functionally 

domains of HCE protein [17]. Following Ser5 phosphorylation by TFIIH, the mRNA capping 

complex binds directly and specifically to Ser5P residues through the Ceg1 subunit in yeast 

or the guanylyl transferase domain in metazoans [48, 67, 78, 95, 137]. Furthermore, 

phosphorylated CTD interaction with the capping complex allosterically stimulates the 

capping enzyme activity and in response, enhances early transcription [136, 232]. Because 

the CTD is located near the RNA exit channel, its interaction with the capping complex 

permits its positioning for rapid processing of the mRNA 5’-end as the nascent transcript 

emerges from the polymerase. This is thought to protect the RNA from degradation and 

promote RNAPII to proceed into productive transcription elongation. In fact, by coupling 

capping and early transcription, only capped RNA will be elongated [67, 136, 232-233].  

3’-end processing 

Not only capping and transcription are linked at the 5’-end regions of protein coding-genes, 

but also polyadenylation and transcription termination at the 3’-end regions. In brief, 3’-end 
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processing consists of the following two-step reaction: endonucleolytic cleavage of the pre-

mRNA and subsequent addition of a poly(A) tail [17]. Both enzymatic reactions require a 

functional CTD [42, 230]. In fact, deletion of the CTD or absence of CTD phosphorylation 

negatively affects 3’-end processing [16, 30, 106, 157, 234]. Furthermore, the CTD binds 3′-
end processing factors and stimulates cleavage/polyadenylation in vivo and in vitro [42, 230]. 

The cleavage is achieved by a complex that consists of CstF, CPSF, CF1, and CF2 in higher 

eukaryotes and CF1A, CF1B, and CFII in yeast, whereas the polyadenylation reaction is 

performed by a poly(A) polymerase in both cases [17] . Cleavage/polyadenylation factors 

CPSF and CstF can specifically bind to CTD affinity columns and are copurified with 

RNAPII [42]. In yeast, several 3’-end factors preferentially binds phosphorylated CTD [72, 

106-107, 235]. Furthermore, yeast 3'-end processing factors are recruited depending on Ser2 

phosphorylation by Ctk1 when RNAPII reaches the 3’-end regions of the transcribed genes. 

Therefore, regulation of CTD phosphorylation as the polymerase transcribes facilitates 

coordination of the assembly of the 3′-end processing machinery with transcription [16]. 

Additionally, the polyadenylation signals are required for proper transcription termination 

in mammals and yeast [236-237]. In fact, Rtt103, which is a 3'-end mRNA processing factor, 

interacts with the CTD phosphorylated on Ser2 and recruits a 5’-3’ RNA exonuclease, 

thereby promoting the release of RNAPII from the DNA [238-239]. In summary, Ser5 

phosphorylation by TFIIH kinase (Kin28/Cdk7) is required to recruit the RNA-capping 

machinery to RNAPII [48, 67, 72], whereas Ser2 phosphorylation is required for the 

recruitment of 3’-end processing complexes and for transcription termination [16, 30, 106, 

238-239] (Figure 7). However, it is unknown whether phosphorylation of Ser5 and Ser2 of all 

of the repeats or only some of the repeats is required to enhance capping and 

cleavage/polyadenylation, respectively.  

Ser7 phosphorylation has been functionally related with 3’-end processing of snRNA in 

higher eukaryotes. Human snRNA genes, contrary to protein-coding genes, are not 

polyadenylated, and instead of a poly(A) signal, they contain a conserved 3′ box RNA-

processing element that is recognized by the snRNA gene-specific Integrator RNA 3′ end-

processing complex. This complex binds to RNAPII CTD and links transcription and 3’-end 

processing [63-64, 240-241]. Therefore, in metazoans, Ser7P, in combination with Ser2P, is a 

major determinant for the recruitment of the Integrator complex to snRNA genes during its 

transcription [64, 240-241]. In yeast, the Integrator-like complex recruitment depends on 

Ser7 phosphorylation, the promoter elements and the specialized PIC that binds those 

elements [74]. After promoter escape, the RNA processing complex travels with the 

elongating phosphorylated polymerase up to the 3’-end box at the end of the snRNA 

transcription unit, where it associates with the nascent transcript in a co-transcriptional-

dependent manner.  

Splicing 

As in the case of capping and cleavage/polyadenylation, a number of studies performed in 

vivo and in vitro during the last decades have demonstrated the existence of a functional 

interaction between the transcriptional machinery and the splicing apparatus [21, 242]. 

However, this functional interaction and the underlying mechanism are less accurately 
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understood. The most complex pre-mRNA processing reaction is splicing, which is carried 

out by a large complex, the spliceosome, consisting of at least 150 protein components and 

five snRNAs [242]. The first indication of a coupling between transcription and splicing 

came from studies demonstrating that truncation of the CTD severely altered splicing in 

vitro [42]. Later it was shown that the CTD directly affects splicing, and that a 

phosphorylated CTD is required for the efficient splicing reaction [231, 243]. These data 

provided evidence that an elongating RNAPII with phosphorylated CTD is an active 

component of the splicing reaction. A number of physical links between the phosphorylated 

CTD and the splicing apparatus have been established, and chromatin immunoprecipitation 

analysis have shown that the direct binding of the splicing machinery to the nascent RNA is 

responsible in a large part for the co-transcriptional splicing in yeast and mammals [244-

245]. Hyperphosphorylated, but not hypophosphorylated RNAPII, has been found 

associated with splicing factors and detected in active spliceosomes [246-248]. For instance, 

in yeast, the splicing factor Prp40 binds to phosphorylated CTD [249]; in mammals, Spt6 

binds selectively to the CTD-Ser2P [112], and the spliceosome-associated protein CA150 

interacts with phosphorylated CTD while interacting with the SF1 splicing factor [250-251]. 

Therefore, all these studies led to the idea that the phosphorylated CTD acts as a scaffold, 

binding multiple splicing factors, and directly enhancing the spliceosome assembly. 

Corroborating this idea, a recent study identified a splicing factor, U2AF65, that interacts 

directly with the CTD to activate splicing and likely plays a role in spliceosome assembly 

[242, 252]. Another recent study provided evidence that coupling transcription and splicing 

through CTD phosphorylation can be a regulatory point in the control of gene expression. 

For instance, it has been described that a set of inducible genes can be actively transcribed 

by RNAPII phosphorylated on Ser5, but not on Ser2, under non-inducing conditions, giving 

rise to a full length unspliced transcript. However, after induction, Cdk9 is recruited, 

phosphorylates the CTD on Ser2 and the generated transcript is properly spliced [253]. This 

fact strongly implicates Ser2P as a key in the integration of splicing and transcription. In 

addition to constitutive splicing, functional links between the CTD and alternative splicing 

have also been provided [86]. Thus, it has been suggested that the CTD may regulate the 

choice of alternative exons by increasing the local concentration of splicing factors [229], and 

that possibility participate in the physical modulation of alternative splicing. 

6. RNAPII CTD phosphorylation coordinates transcription to other 

nuclear processes 

6.1. Coupling the CTD code and the histone code 

The nucleosome is the basic element of chromatin and consists of a histone octamer 

composed of two copies of histone 2A (H2A), H2B, H3 and H4, wrapped by 146 bp of DNA 

[254]. The histones carry numerous post-translational modifications, and some of these are 

associated with transcription. In fact, a general view is that histone post-translational 

modifications draw parallel with either positive or negative transcriptional states. 

Numerous discoveries have led to the idea that such modifications regulate transcription 
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either directly by causing structural changes to chromatin (e.g., histone acetylation) or 

indirectly by recruiting protein complexes (e.g., histone methylation) [255-257]. Therefore, 

chromatin not only plays an essential role in packaging the DNA, but also in regulating 

gene expression. Most histone modifications reside in their amino- and carboxy-terminal 

tails, and a few of them in their globular domains. As in the case of CTD phosphorylation, 

where Ser5P triggers Ser2 phosphorylation, some histone modifications mark the deposition 

of another, thus creating a complex epigenetic signal code, the “histone code”, that governs 

chromatin organization and DNA-dependent processes such as transcription. Therefore, the 

histone code is responsible for an active or inactive chromatin state with respect to 

transcription, because it coordinates the recruitment of various chromatin modifying and 

remodeling complexes to regulate chromatin structure and, consequently, transcription 

[258-259]. Because this review focuses on RNAPII CTD phosphorylation, only certain 

histone modifications, which are functionally related to the CTD code and transcription, will 

be discussed. There are excellent reviews that discuss all the histone modifications and their 

roles in different nuclear processes [255, 258, 260-261]. 

Lysine is a key substrate residue because it undergoes many exclusive modifications 

important for transcription regulation (i.e., acetylation, methylation, ubiquitination and 

SUMOylation [255, 261]. The lysine residues can be mono-, di- or trimethylated, and each 

level of modification can result in distinct biological effects. In brief, with respect to 

transcription, acetylation activates and sumoylation appears to be repressive, and both 

modifications may mutually interfere. On the other hand, methylation can have distinct 

effects; thus, lysine 4 in histone H3 (H3K4me3) is trimethylated at the 5’-ends of genes 

during activation, whereas trimethylation of H3K9 occurs in transcriptionally silent regions. 

Arginine residues of H3 and H4 can also be mono- or dimethylated, which activate 

transcription. Serine/threonine phosphorylation of H3 in specific sites also marks activated 

transcription, and ubiquitination of H2B and H2A are associated with active and repressed 

transcription, respectively (reviewed by [255-257]. All histone modifications are removable 

by specific enzymes (e.g., histone deacetylases (HDACs), phosphatases, and ubiquitin 

proteases ([255-257], and references therein). In fact HDACs play important regulatory roles 

during active transcription [262].  

Methylation of H3K4 and K36 are the most well characterized histone modifications with 

roles in active transcription [263], and whose functions are directly linked to RNAPII CTD 

phosphorylation (Figure 6). H3K4 is methylated by the Set1/COMPASS complex, while K36 

is mediated by the Set2 complex. The profile of H3K4 tri-methylation (H3K4me3) strongly 

correlates with the distribution pattern of the RNAPII CTD-Ser5P. It is mainly found around 

the transcriptional start site (TSS) contributing to transcription initiation, elongation and 

RNA processing [264]. Set1 recruitment and H3K4 tri-methylation usually peaks at the 

promoter and 5’ region of a gene, depending on Kin28/Cdk7 activity (Figure 7)  and Paf1 

complex, a RNAPII-associated complex [265], and contributes to transcription initiation, 

elongation and RNA processing [264] [98]. H3K4 mono and di-methylation tend to expand 

along the coding regions compared to try-methylation. On the other hand, H3K36 

methylation by Set2 is observed across the entire coding region with an increase toward the 
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3’-ends of actively transcribed genes. Ctk1 also regulates H3K4 methylation [158, 266]. 

Thereby, differently phosphorylated CTD by Kin28 and Ctk1 is responsible for the 

characteristic distribution of H3K4 tri-methylation in the coding region [158]. In contrast to 

Set1, the recruitment of Set2 and H3K36 methylation depends on a CTD-Ser2P/Ser5P double 

mark (Figure 6), and therefore, on Ctk1 kinase activity [158, 266]. Interestingly, the other 

Ser2 kinase complex, Bur1/2, also promotes Set2 recruitment and assists H3-K36 

methylation, particularly at the 5′ ends of genes and is required for the histone 2B 

ubiquitination activity of the Rad6/Bre1 complex [101, 103, 152]. 

 

Figure 6. Histone H3 tri-, di-, and mono-methylation and acetylation during RNAPII transcription in S. 

cerevisiae. 

H3 acetylation / deacetylation is also relevant during active transcription. Thus, histone 

acetyl and deacetyl transferase complexes (HAT and HDACs, respectively) are recruited to 

the transcriptional machinery during elongation through the interaction with RNAPII. 

Indeed, they modulate histone occupancy in the coding regions of actively transcribed 

genes, and this depends on CTD phosphorylation status [267-268]. HAT acetylates 

nucleosomes promoting nucleosomes eviction and allowing RNAPII to pass through. 

Afterward, the nucleosomes are immediately reassembled behind the polymerase and 

HDACs are co-transcriptionally recruited to rapidly and efficiently deacetylate the 

reassembled nucleosomes behind the polymerase. Altogether, this avoids cryptic 

transcription and maintains active transcription [262]. Methylation of histone H3 by Set1 

and Set2 is required for deacetylation of nucleosomes in coding regions by the histone 
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deacetylase complexes (HDACs) Set3C and Rpd3C(S), respectively. HDACs’ recruitment is 

triggered by H3K4 methylation at promoters and within coding regions to restrict 

hyperactetylated histones to promoters and to maintain transcription activity. Set1-

H3K4me2 can be recognized by two different HDACs, RPD3S or SET3C [264]. The Set1-

SET3C pathway preferentially affects actively transcribed genes with promoters configured 

for efficient initiation/re-initiation [269]. In contrast, Set1-RPD3S pathway is active at loci 

subjected to cryptic and weak transcription encompassing repressed promoters of coding 

genes. Related to this, phosphorylation of the CTD by Kin28/Cdk7 is important for the initial 

recruitment of the Rpd3S and Set3 HDACs to coding sequences ([268], Figure 7). In fact, it 

has been reported that Set3C and Rpd3C(S) are co-transcriptionally recruited in the absence 

of Set1 and Set2, but stimulated by the CTD kinase Kin28/Cdk7. Hence, the Rpd3C(S) and 

Set3C co-transcriptional recruitment is stimulated by CTD Ser5P to achieve the 

deacetylation of H3 residues. This, together with evidence that the RNAPII CTD recruits 

additional chromatin modifying complexes, histone chaperones and elongation factors, 

suggest that phosphorylated RNAPII is crucial in coordinating the activities of the many 

factors required for regulating histone dynamics and consequently transcription elongation 

at actively transcribing genes ([262], and references therein).  

6.2. Transport 

In addition to the complexes involved in mRNA processing, several other proteins bind to 

the RNAs as soon as their 5’-end emerges from the RNAPII, packaging them into a 

messenger ribonucleoparticle (mRNP). This set of interactions of packaging and export 

factors play a dual function of protecting the RNA from degradation and preparing it to be 

exported. Although interactions between the CTD and many mRNA processing factors have 

been characterized, this is not the case for mRNA packaging and export factors. However, 

packaging and export seems to be also coupled to transcription through RNAPII CTD 

interactions because defects in transcription elongation, splicing, and 3′-end processing 

affect export [270]. In yeast, mRNA export is linked to transcription through the TREX 

(transcription export) complex, which is composed of the THO complex (Tho2, Hpr1, Mft1, 

and Thp2) and the evolutionally conserved RNA export proteins, Sub2 (UAP56 in human) 

and Yra1 (REF/Aly in human), and a novel protein termed Tex1 [271-272]. Deletions of the 

individual THO components causes defects on transcription, transcription-dependent 

hyper-recombination, and on mRNA export [160, 273]. In addition, the Sub2/Yra1 complex 

is directly recruited to the actively transcribed regions via the THO complex [272, 274]. 

Although it has been shown that the TREX complex and Ctk1 are functionally related [159], 

recruitment of the TREX complex to transcribed genes is not dependent on Ctk1 in yeast 

[16], and the association of the human TREX complex to transcript might be coupled to 

transcription indirectly through splicing [275]. Then, the potential role of the CTD and CTD 

phosphorylation in this process remains unclear, however in a very recent study, the mRNA 

export factor Yra1 was identified as a CTD phosphorylated-binding protein [276]. Then, this 

study provides strong support for the idea that the phosphorylated CTD is directly involved 

in the cotranscriptional recruitment of export factors to active genes. In summary, many 
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aspects of the mRNA metabolism from the 5' capping to the export occur co-

transcriptionally and are coordinated through transcription, with the RNAPII CTD and its 

phosphorylation being the main coordinator in most cases (Figure 7). 

 

Figure 7. RNAPII CTD phosphorylation/ de-phosphorylation is co-transcriptionally connected and 

coordinated with other nuclear processes: pre-mRNA processing; histone modifications and mRNA 

export. The main complexes required for co-transcriptional processes occurring during the expression 

of a regular protein coding-gene are shown. See text for details.  

7. RNAPII CTD phosphorylation and transcription regulation 

The levels of CTD phosphorylation/de-phosphorylation are precisely modulated during the 

entire transcription cycle, which regulates the association of many important factors with 

initiating and elongating RNAPII, such as transcription and pre-mRNA processing factors, 

chromatin modifiers and mRNA export factors [21]. The interplay of all of these factors is 

essential to regulating transcription and, consequently, gene expression. Subsequently, in a 

regular protein-coding gene, the following set of coordinated nuclear events must occur for 

it to be properly transcribed in a functional mRNA before it is exported to the cytoplasm 

and translated (Figure 7). Unphosphorylated RNAPII is recruited to the pre-initiation 

complex (PIC); then, after its binding to the promoters, it is phosphorylated on Ser5 by 

yKin28 (hCdk7). Ser5 phosphorylation is required for RNAPII dissociation from the PIC and 
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consequently promotes transcription initiation. Simultaneously, Ser5 phosphorylation 

targets capping and splicing factor recruitment, the Set1 methyltransferase complex, and the 

Set3C and Rpd3S histone deacetylase complexes. During early elongation, Ser5P levels are 

decreased, whereas Ser2P levels increase due to the kinase activity of yBur1 (hCdk9) near 

the promoters, and by the kinase activity of yCtk1 (hCdk12) at the forward coding and 3’-

ends, which leads to the recruitment of the histone methyltransferase Set2 and the activation 

of the Rpd3S complex, which prevents cryptic transcription within the genes. When RNAPII 

arrives at and recognizes the termination site, the 3’-end-processing factors that are 

associated with the CTD achieve cleavage and polyadenylation of the nascent mRNA, which 

also requires proper phosphorylation of the polymerase. During the termination process, the 

CTD is de-phosphorylated by Ssu72 and Fcp1, and the polymerase is recycled to initiate a 

new round of transcription. All along the gene, packaging and export factors (TREX 

complexes) are incorporated into the transcriptional machinery protecting the transcript 

from degradation and preparing it for export to the cytoplasm. 

8. Therapeutic potential 

Cellular differentiation, morphogenesis, development and adaptability of all organisms are 

subjected to proper gene expression and, therefore, variations in gene regulation can have 

profound effects on protein function, challenging the viability of the organisms. Currently, it 

is clear that RNAPII phosphorylation has an important role on gene expression, and 

therefore, in all the processes mentioned above. Consequently, over the last decade CTD 

phosphorylation has attracted the attention of biomedical research, especially due to the fact 

that the CTD kinase Cdk9 has been involved in several physiological cell processes, whose 

deregulation may be associated with cancer, and also due to the fact that Cdk9 activity is 

required for human immunodeficiency virus type 1 (HIV-1) replication. Related to it, many 

studies have shown the enormous potential of Cdk9 kinase inhibition as a treatment of 

several kinds of tumors, HIV infection, and cardiac hypertrophy. 

The human immunodeficiency virus type 1 (HIV-1) requires host cell factors for all steps of 

the viral replication, among them the transcription elongation factor P-TEFb. Transcription 

of HIV-1 viral genes is achieved by host RNAPII and is induced by a viral trans-activator 

protein, Tat. When bound to the TAR viral RNA region, Tat activates HIV-1 transcription by 

early recruiting of host transcriptional activators including P-TEFb, which phosphorylates 

RNAPII CTD promoting viral transcript elongation [280]. Thus, treatment with drugs that 

inhibit Cdk9, such as flavopiridol, has been used as a retroviral therapy on AIDS patients 

[281]. Therefore, from the point of view of basic research, the study of the functions of Cdk9 

and RNAPII CTD phosphorylations are of great interest in understanding the mechanisms 

that regulate HIV replication, which consequently lead to progress on AIDS biomedical 

research. Further evidence has been provided of a deregulated Cdk9 function in several 

tumors such as lymphoma, neuroblastoma, primary neuroectodermal tumor, 

rhabidomiosarcoma or prostate cancer [282-284]. The Cdk9 inhibition by chemotherapeutic 

agents, such as flavopiridol or CY-202, has shown to reduce transcription in malignant cells, 
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mainly affecting the short half-lives RNAs. Most of these RNAs code for anti-apoptotic 

proteins, for instance onco-protein Mcl-1, which is necessary in tumor proliferation 

maintenance. Unfortunately, they only have a modest activity in patients although 

promising studies continue at present [285]. Cardiac hypertrophy consists of an increased 

size of cardiomyocytes, associated to some cardiac diseases as hypertension or diminished 

heart function. Hypertrophy is a physiological response to a stress stimulus that results in 

an increase of the cell size, and that may eventually produce a heart failure. Increased cell 

size produces increased mRNAs transcription, which requires Cdk9 activity. Thus, it has 

been shown that therapy with Cdk9 inhibitors benefits patients with cardiovascular 

disorders [286]. 

9. Concluding remarks 

The primary function of the RNAPII CTD phosphorylation in eukaryotes is the integration 

of transcription with distinct nuclear processes. Thus, CTD phosphorylation operates as a 

fine-tuning regulatory mechanism during the whole transcription cycle and is consequently 

of extraordinary importance for proper gene expression. Since the late 1980’s, an 

overwhelming number of laboratories have tried to decipher the mechanism underlying the 

creation of a CTD code and how this code is translated during transcription to coordinate 

mRNA processing, export and chromatin modifications. Although great progress has been 

achieved, most recently due to wide-genomic analysis techniques, a number of issues 

remained unsolved. For instance, it is very challenging to determine the exact 

phosphorylation state of specific residues within specific repeats during each step of 

transcription, as well as to determine the exact number of repeats that are phosphorylated 

within the CTD at every step of transcription, and how this is related to CTD specific roles 

in gene expression. Moreover, it needs to be determined if phosphorylation of the repeats 

with non-consensus sequences is regulated in the same manner as the consensus repeats, 

and if this is achieved by the same set of CTD modifying enzymes. In addition, other 

residues such as lysine and arginine can be potentially modified; therefore, further 

increasing the complexity of the CTD, and suggesting that if they are transcriptionally 

modified, may further elucidate the CTD functions or discover new ones. Finally, detailed 

understanding of RNAPII CTD phosphorylation is very relevant and will add insight into 

the processes that alter gene expression, such as HIV infection and cancer, and will help to 

investigate if other human CTD modifying enzymes, in addition to Cdk9, may be good 

candidates for therapy. In conclusion, research has made much progress, but further 

progress is still needed, and the new massive techniques in genomics and proteomics will 

help to advance complete understanding much faster. 
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