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1. Introduction 

Dual specificity phosphatases of the Cdc25 family are critically important regulators of the 

cell cycle. They activate cyclin-dependent kinases (CDKs) at key cell cycle transitions such as 

the initiation of DNA synthesis and mitosis. They also represent key points of regulation for 

pathways monitoring DNA integrity, DNA replication, growth factor signaling and 

extracellular stress. Since their mis-regulation allows cells to function in a genetically 

unstable state, it is not surprising that these phosphatases are involved in transformation to 

a cancerous state. Cdc25 phosphatases are heavily regulated by phosphorylation. Many 

regulatory phosphorylation sites on Cdc25 influence catalytic activity, substrate specificity, 

subcellular localization and stability. This chapter summarizes the current literature on the 

phospho-regulation of these proteins.  

2. Yeast genetics and Xenopus oocyte maturation – Setting the stage 

The study of cell division in eukaryotes was dramatically changed with the isolation of 

temperature sensitive “cell division cycle” (cdc-) mutants of the yeasts Schizosaccharomyces 

pombe and Saccharomyces cerevisiae. These mutants arrested uniformly at a particular cell 

cycle stage and uncoupled cell growth from cell cycle progression.[1-3] S. pombe cells are 

cylindrical cells growing from the tips while keeping a constant diameter.[3] At the 

restrictive temperature, fission yeast cdc- mutants arrest at their restriction point and become 

abnormally elongated. Within the fission yeast cdc- collection was the cdc25-22 mutation 

which arrests at mitotic entry when incubated at its restrictive temperature.[3] The collection 

also included cdc9-50 which divided at approximately half the length of a wildtype cell; it 

was later renamed wee1-50 in reference to its small size.[4] The wee1-50 mutation suppresses 

the cell cycle phenotype of cdc25-22 demonstrating that these two proteins act in opposition 

during the G2/M transition.[5] Analysis of these mutations showed that Cdc2 is rate limiting 
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for mitotic entry and is inhibited by Wee1 and activated by Cdc25.[6,7] Regulation of Cdc2 

by Wee1 and Cdc25 in fission yeast was one of the first connected pathways in cell cycle 

research in any organism. The gene names Cdc25 and Wee1 are used in almost all 

organisms today. 

Concurrently, Maturation Promoting Factor (MPF) was discovered through a series of elegant 

cytoplasmic transfer experiments conducted on frog, starfish and sea urchin oocytes [8-10]. 

Immature Xenopus oocytes arrest at prophase I. Progesterone induced MPF activation induces 

maturation whereby oocytes complete meiosis I and arrest at meiotic metaphase II.[9,11] 

Microinjection of cytoplasm from a mature oocyte into an immature oocyte also induces 

maturation.[8,9] This bioassay for maturation promoting factor (MPF) activity allowed it to be 

tracked through the meiotic and later mitotic cycles. Activity falls after anaphase I, rising again 

as cells enter prophase II. Although MPF activity is high, mature oocytes arrest due to the 

presence of a second soluble factor called Cyto-Static Factor (CSF).[9] Subsequent entry of the 

sperm nucleus causes an influx of extracellular calcium, ultimately removing CSF inhibition 

and serving as the trigger for completion of meiosis and the start of mitotic divisions. Extracts 

from prophase II arrested mature oocytes can be induced to undergo alternating DNA 

synthesis and mitotic phases by the addition of calcium, providing an excellent cell free system 

for studying MPF regulation.[12] A peak of MPF activity accompanies each round of mitosis, 

reaching maximal activity during meiotic prophase, followed by a catastrophic drop as 

chromosomes segregate at anaphase. Fertilization is followed by a rapid succession of 12 

rounds of DNA synthesis and cell division with no intervening gap phases, driven solely by 

maternally derived mRNA.[13] Gap phases are re-established at the mid-blastula transition 

followed by typical somatic cell cycles.[14] MPF consists of three proteins: Cdk1 kinase, cyclin 

B (Cdc2 [19-21] and Cdc13 [22,23] respectively in fission yeast) and the small regulatory 

protein Suc1.[15-19] The activator of both MPF in Xenopus and the Cdc2-Cdc13 complex in S. 

pombe is Cdc25 phosphatase.[24,25] 

The cytoplasmic transfer experiments showed that MPF activity correlates with increased 

protein phosphorylation in donor oocytes [26], targeting a large number of nuclear 

proteins.[27,28] MPF is a histone H1 kinase, an activity which is still used today to measure 

CDK function.[29] MPF induces many of the cytological changes associated with mitosis 

such as nuclear envelope breakdown, chromosome condensation and mitotic spindle 

formation.[30-32] Mass spectrometry has shown that the single Cdk1 homologue in budding 

yeast (CDC28) phosphorylates 547 sites on 308 proteins in vivo.[33] The regulation of only 

about 75 of these CDC28 substrates has been examined in any detail.[34] Undoubtedly, the 

network of CDK mediated phosphorylation events in vertebrate cells will turn out to be far 

more complex. 

3. Taxonomic distribution, duplication and divergence of Cdc25 

homologues 

Cdc25 is present in all eukaryotic cells. The yeasts, S. cerevisiae and S. pombe, possess a 

single Cdc25 protein (referred to as MIH1 in the former).[35] Duplication and divergence 
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led to three Cdc25 paralogues in vertebrates, Cdc25A, Cdc25B, and Cdc25C.[36,36-40] 

Cdc25A acts early in the cell cycle, regulating the G1/S transition, whereas Cdc25B and 

Cdc25C act at G2/M. Human Cdc25A, Cdc25B and Cdc25C have several isoforms through 

alternative splicing.[41-44] Cdc25C was discovered based on sequence similarity to fission 

yeast Cdc25 by using degenerate PCR primers to conserved residues in the catalytic 

region.[38] Human Cdc25A and Cdc25B were cloned by complementation of the 

temperature sensitive cdc25-22ts allele of S. pombe, demonstrating the strong conservation 

of function in this protein family.[37] Xenopus Cdc25A and Cdc25C were initially 

discovered based on sequence similarity to human Cdc25C.[40,45] Injection of 

recombinant Xenopus Cdc25A or Cdc25C into oocytes induces their maturation, the first 

direct indication that this protein was a positive regulator of MPF.[40,45,46] Xenopus 

Cdc25C also complements the cdc25-22ts mutation in fission yeast.[45] Four Cdc25 

homologues are present in Caenorhabditis [47], whereas Drosophila contains two, string and 

twine.[48,49] The conserved C-terminal domain of string contains the intrinsic phosphatase 

activity against a Cdk1-derived peptide containing phosphorylated Y15 and against the 

synthetic substrate p-nitrophenyl phosphate.[50] Few plant Cdc25 homologues can be 

found by sequence comparison in the NCBI database and those only in unicellular algae, 

eg Ostreococcus tauri.[51] In Arabidopsis thaliana [52] the full length protein is only 146 

residues long representing only the phosphatase domain and it shows marginal similarity 

to vertebrate and fission yeast Cdc25. Overexpression of A. thaliana Cdc25 causes 

premature mitotic entry in fission yeast.[53] 

4. Regulation of cell cycle transitions by Cdc25 

4.1. The fission yeast G2/M transition – The prototype Cdc25/cyclin-CDK circuit 

Regulation of the transition from G2 to mitosis in S. pombe is typical of the positive feedback 

loops seen between Cdc25 and CDKs in all systems. Cdc2 (Cdk1) drives all cell cycle 

transitions in fission yeast.[20] During G2 and early mitosis Cdc2 complexes with the B-type 

cyclin Cdc13 [54,55], the only essential cyclin in fission yeast.[56] Whereas Cdc2 is 

constitutively expressed throughout the cell cycle [57], Cdc25 and Cdc13 begin to 

accumulate in G2 and are degraded during mitotic entry.[58-60] Prior to M-phase, the Cdc2-

Cdc13 complex is kept inactive by phosphorylation of threonine 14 (T14) and tyrosine 15 

(Y15).[61,62] Y15 is phosphorylated by the S-phase specific kinase Mik1 [63,64] and T14 and 

Y15 are modified by Wee1.[63,65-67] In G2 Cdc25 translocates to the nucleus via the 

importin-β homologue Sal3.[68] After cells grow to a critical size for mitotic entry, Cdc25 

becomes active and dephosphorylates Cdc2 Y15.[69] Cdc25 is activated and 

hyperphosphorylated by Cdc2 as the cell enters mitosis.[58, 70] CDKs phosphorylate a 

serine or threonine residue in the context of a consensus site (S/T)PX(K/R).[71,72] The 

positions of the Cdc2 phosphorylation sites on Cdc25 have not been determined, but 

mutagenesis of 15 potential CDK consensus sites abrogates phosphorylation by Cdc2-

Cdc13.[73] In S. pombe, the feedback loop between Cdc25 and Cdc2-Cdc13 is strengthened 

by the involvement of the S. pombe Polo kinase homologue Plo1 which phosphorylates 

Cdc25 downstream of Cdc2 activation.[74] After the metaphase-anaphase transition, Polo 
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kinase activation encourages cyclin degradation through activation of the anaphase 

promoting complex (APC).[75] Thus, this kinase simultaneously ensures that Cdc2 

activation will be robust, and brief, as its cyclin partner Cdc13 is degraded by the APC 

immediately following anaphase initiation. 

4.2 Vertebrate cell cycle 

While fission yeast Cdc25 is solely involved in the G2/M transition, Cdc25 orthologues in 

vertebrates also play a role in G1 and S-phase progression. Vertebrates have several CDK-

cyclin complexes which participate in these transitions through positive feedback loops with 

Cdc25. In addition to associating with cyclin B, Cdk1 associates with cyclin A during late S-

phase and G2.[76] A second CDK, Cdk2, was discovered as a cDNA which could 

complement the loss of the budding yeast Cdk1 homologue, CDC28.[77] Cdk2 functions 

early in the cell cycle and is likewise negatively regulated by phosphorylation of Y15.[78,79] 

It forms a complex with Cyclin A and Cyclin E.[80,81] Cdk4 and Cdk6 operate early in G1 in 

association with D-type cyclins.[82] In many cases a particular cyclin class (ie. A, B, D, E) has 

multiple members. For the sake of clarity, cyclins will be referred to by their subtype only. 

Furthermore, only the CDKs and cyclins directly responsible for cell cycle transitions in 

concert with Cdc25 orthologues will be discussed. For instance, Cdk1/cyclin B is activated 

by a CDK-Activating Kinase (CAK), a complex of Cdk7 and cyclin H [83], but as CAKs are 

not activated by Cdc25 they are outside the scope of this review.  

4.2.1. Cell cycle re-entry from Go 

Most somatic cells spend their time in Go. Cells in Go may commit to entry into the cell cycle 

when they receive stimuli in the form of growth factors The cells then deactivate the cell 

cycle repressors which have kept them in Go and transcribe the positive regulators of the 

next cell cycle transition, G1/S. 

In non-dividing cells, the Retinoblastoma protein (Rb) binds to E2F thus preventing 

transcription of genes required for cell cycle progression including cyclin D, cyclin A and 

Cdc25A.[84-87] (Figure 1) After exposure to growth factors, cells in Go re-enter the cell cycle 

through activation of the Ras pathway via the Raf/MAP (Mitogen Activated Protein) kinase 

pathway.[88] This leads to the degradation of the Cdk4 inhibitors p15INK4B and p16INK4A and 

the Cdk2 inhibitors p27KIP, p21CIP and induction of cyclin D. Cdk4 and Cdk6 bound to cyclin 

D inhibit the Rb protein [89] allowing transcription of cyclin E and cyclin A.[89,90] Cdc25A 

activates Cdk4-cyclin D but not Cdk6-cyclin D in vitro.[91] Cyclin E associates with Cdk2 in 

late G1 and helps complete the inhibition of Rb.[89,92] 

4.2.2. The G1/S transition 

Cdc25A is transcribed following relief of Rb-mediated transcriptional repression, reaching 

its maximal level at the end of G1 and dephosphorylating Y15 on Cdk2.[87,91] Cdk2 is 

phosphorylated on Y15 by Wee1.[93] Dephosphorylation of Cdk2 takes place via both 
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Cdc25A and Cdc25B.[94-97] Cdk2 immunoprecipitated from cell lysates where Cdc25A has 

been overexpressed has high histone H1 kinase activity and low levels of Y15 

phosphorylation.[91] Such overexpression accelerates entry into S-phase through activation 

of Cdk2-cyclin E.[91,98] DNA-synthesis can be blocked in these cells by injecting them with 

anti-Cdc25A antibodies.[99] Cdk2-cyclin E and Cdc25A are mutually activated by a positive 

feedback loop allowing passage of the G1/S boundary.[95] Depletion of Cdk2 or cyclin E 

prevents phosphorylation of Cdc25A and recombinant Cdc25A can be activated by Cdk2-

cyclin E in vitro.[95] In addition phosphorylation of Cdc25A by Cdk2 destabilizes the 

phosphatase. Conversely, exposure of cells to CDK inhibitors roscovitine and olomoucine 

causes stabilization of Cdc25A.[99] 

 

 

Figure 1. Positive feedback loops between Cdk-cyclin complexes and Cdc25 family members drive cell 

cycle transitions. 

S-phase initiation requires activation of DNA replication proteins by Cdk2-cyclin A. 

Injecting G1 cells with anti-cyclin A antibodies stops entry into S-phase.[100] 

Phosphorylation of the essential DNA replication initiator Cdc6 by Cdk2-cyclin A leads to 

its nuclear import.[101,102] Cdk2 is recruited to chromatin by the replication initiation factor 

Cdc45 where it phosphorylates histone H1 and induces chromosome de-condensation.[103] 

As S-phase progresses high Cdk2-cyclin A activity induces degradation of Cdc6, preventing 

re-initiation of DNA synthesis at origins which have already fired.[102] 

Cdc25B has a role late in S-phase as Cdc25B immunoprecipitated from late S-phase HeLa 

cell extracts is phosphorylated, activated, and able to dephosphorylate Cdk2-cyclin A.[97] 

The murine homologue of Cdc25B purified from S-phase extracts promotes cyclin A and 

cyclin E associated histone H1 kinase activity in vitro.[94] In addition, siRNA knockdown of 

human Cdc25B causes a delay in initiation of DNA synthesis.[104] The Cdk1-cyclin A 

complex regulates late origin firing in S-phase. A constitutively activated Cdk1 allele 

increases firing of late S-phase origins, whereas a loss of function temperature sensitive 

allele of Cdk1 has a defect in late origin firing at the restrictive temperature.[76] 
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4.2.3. The G2/M transition 

Unlike the simple circuit of Cdc25-Cdc2 activation in fission yeast, the vertebrate G2/M 

transition involves a series of interconnected loops with positive and negative inputs from a 

variety of pathways. This led to what could be considered the “traditional model” of G2/M 

transition in vertebrates with respect to Cdc25 regulation by CDK-cyclin complexes. In 

reality things may be more complex. Cdc25C is not explicitly required for mitotic entry; 

siRNA knockdown of Cdc25C does not prevent the G2/M transition.[105] In addition, 

mouse lines which lack Cdc25B and/or Cdc25C are viable with the only obvious phenotype 

being a defect in oocyte maturation observed in cdc25B-/- mice.[106-108] In addition, the 

creation of CDK and cyclin knockout mice has revealed a network of compensatory 

mechanisms which cloud the traditional model. Cdk2-/-, Cdk4-/-, or Cdk6-/- mice show some 

abnormalities as adults, but are not embryonic lethal indicating that these Cdks are not 

individually essential for cell division.[92] There is considerable redundancy. Mitotic entry 

is best viewed as a three step process. First, Cdc25B and CDK-cyclin A are activated 

followed by basal activation of Cdk1-cyclin B at the centrosome.[109] Second, Cdk1-cyclinB, 

Cdc25B and Cdc25C localize to the nucleus. Third, Cdk1-cyclin B and Cdc25C mutually 

activate. Cdk1-cyclin B then induces overt mitotic events such as breakdown of the nuclear 

envelope and spindle formation. [81,110,111] 

4.2.4. Activation of Cdc25B and Cdk1/2-cyclinA 

Phosphorylation of human Cdc25B by Cdk1-cyclin A during G2 causes Cdc25B activation 

but also destabilizes the protein.[112,113] Cdc25B activates Cdk2-cyclinA in a positive 

feedback loop.[114] Cdk2-cyclin A mediated destabilization of Cdc25B has not been 

reported, although the Cdk1 and Cdk2 kinase complexes modify Cdc25B to approximately 

the same degree and have a similar set of substrates.[113,115] However, Cdk2 is the 

preferred binding partner of cyclin A and is more active than Cdk1-cyclin A during 

G2.[80,100] Cdk2 cyclin A has two peaks of activation, one during S-phase and one prior to 

G2/M. [80,116] Inhibition of Cdk2-cyclin A delays mitotic entry.[109] Depletion of Cdk1-

cyclin A, activation of the CDK inhibitor p21cip , or addition of an inhibitory ATP analogue 

destabilizes Cdc25B in Sf9 cell extracts.[112] Similarly, in cycloheximide treated cells 

Cdc25B, but not Cdc25A or Cdc25C, is unstable and uniquely labile during the cell 

cycle.[117] 

Cyclin B accumulates throughout G2 but Cdc25A and Cdc25B are required to induce 

formation of the Cdk1-cyclin B complex at G2/M.[118] Cdk1-cyclin B interaction occurs 

earlier in G2 when Cdc25A or Cdc25B are overexpressed. Cdk1 and cyclin B are almost 

exclusively cytoplasmic during interphase with a small portion of the complex associating 

with the centrosome at G2/M.[119-121] A population of Cdk2-cyclinA is likewise localized 

to the centrosomes prior to prophase.[116] In Xenopus, centrosomal localization of Cdk1-

cyclin B requires Aurora kinase.[122] Aurora is involved in a diverse set of mitotic events 

such as spindle assembly, centrosome maturation, and cytokinesis.[123] Aurora can also 

phosphorylate Cdc25B at S353 in vivo, activating the phosphatase.[124] (Table 1) Although 
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some Cdk1-cyclin B is activated by Cdc25B [120,125], this does not represent a full mitotic 

activation and is only sufficient for progression as far as prophase. Injection of a dominant-

negative mutant of Cdc25B into HeLa cells causes arrest in prophase with condensed 

chromosomes and disassembled nucleoli, but without nuclear envelope breakdown [109]. 

Microinjection of Cdk1-cyclin B lets cells pass this block and complete mitosis. 

Species Member Kinase Site(s) References

S. pombe Cdc25 Cds1/Chk1/Srk1

S99, S148, S178, S192, S204, S206, T226, S234, 

S359, T561, S567, T569 [60, 156, 157, 162]

Cdk1-cyclin B S18, S40, S88, S116, S261, S283, S321 [149, 151, 167]

Chk1 S76, S124, S178, T507 [168-173, 200]

Chk2 S124, S278 [173, 175]

Casein Kinase 1ε S82 [199]

Casein Kinase 1α S79, S82 [198]

p38 S76, S124 [168, 175]

GSK-3β S76 [193, 194]

NEK11 S82, S88 [187]

Plk3 S80 [193, 194]

Cdk1-cyclinB S50, S160, S321 [135, 136, 246]

Chk1 S151, S230, S323, S563 [236, 238, 239]

Aurora S353 [124]

Casein Kinase 2 S186, S187 [235]

JNK S101, S103 [280]

MEK/ERK S249 [259]

p38 S323 [208]

MK2 S323 [210]

Plk1 T167, S209, T404, S465 [136]

Cdk1/cyclin B T48, T67, S122, T130, S168, S214 [42, 143, 145, 246]

Chk1 S216, S247, S263 [219-221, 225, 226]

Chk2 S216 [209, 242]

Casein Kinase 2 T236 [234]

MK2 S216 [210]

C-TAK1 S216 [276]

JNK S168 [281, 282]

MEK/ERK S216 [278]

Plk1 S198 [140]

Plk3 S191, S198 [141]

Cdc25A Chk1 S73, T504 [201, 207]

Cdk1/cylinB Cdk1-cyclinA T48, T67, T138, S205, S285; [193, 247, 249]

Chk1 S287, T533 [207, 229-231, 241] 

p42 S48, T138, S205 [272]

p90
rsk

S287 [269, 270]

Rsk2 S317, S318, S319 [271]

Human Cdc25A

Cdc25B*

Cdc25C

Xenopus

Cdc25C

 

Table 1. Summary of known phosphorylation sites on Cdc25 family members and the kinases 

responsible 

4.2.5. Everybody into the nucleus 

Cyclin B has a cytoplasmic retention sequence which is sufficient to induce cytoplasmic 

localization of the normally nuclear protein and contains a nuclear export signal (NES).[126] 
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Nuclear export is blocked by phosphorylation of S126 at the end of prophase.[127-129] 

Cyclin B is phosphorylated by Cdk1-Cyclin B as starfish oocytes pass the prophase II to 

metaphase II arrest.[130] Human cyclin B S126 is followed by a proline residue suggesting 

Cdk1-cyclin B autophosphorylation. Cyclin B is phosphorylated by the Xenopus Polo kinase 

homologue Plx1 on S133 and S147 (homologous to human cyclin B S177 and S181) 

enhancing its nuclear import.[125,131] Initial Cdc25B mediated activation of Cdk1-cyclin B 

may result in a priming autophosphorylation of S126 followed by docking of Polo kinase 

and inhibition of nuclear export. Such a Cdk1 mediated priming phosphorylation has been 

shown to induce Plx1 phosphorylation of Cdc25B (see below). Human Polo kinase Plk1 also 

deactivates Cdk1-cyclin B inhibitory kinases. Plk1 inhibits the cytoplasmic Cdk1 inhibitory 

kinase Myt1.[132,133] Wee1 is phosphorylated on S53 and S123 by Plk1 and Cdk1-cyclin B, 

respectively, resulting in its degradation by β-TrCP.[134] 

The activated cytoplasmic pool of Cdk1-cyclin B phosphorylates Cdc25B on S160 inducing 

its nuclear import. [135] (All phosphorylated residues on human Cdc25B are numbered 

according to the sequence of the longest splice variant Cdc25B3). Overexpression of human 

Cdc25B causes an increase in cells with condensed chromatin, whereas overexpression of 

Cdc25B-S160G does not induce mitotic entry. S160 phosphorylation does not affect the in 

vitro activity of human Cdc25B against a fluorescein diphosphate substrate, but instead 

positively regulates its nuclear import. In vitro phosphorylation assays show Cdk1-cyclin B 

can phosphorylate residues on Cdc25B which are not targeted by Cdk1-cyclin A or Cdk2-

cyclin A.[113] Interestingly, Cdk1-cyclin A cannot phosphorylate Cdc25B that has 

previously been phosphorylated by Cdk1-cyclin B.[112] 

Plk1 is involved in human Cdc25B nuclear import following the initial activation of Cdk1-

cyclin B. After addition of the Plk1 inhibitor thiophene benzimidazole, nuclear accumulation 

of GFP-Cdc25B is reduced. Conversely, expression of a constitutively active Plk1 mutant 

enhances Cdc25 nuclear localization.[136] Co-overexpression of Plk1 and Cdc25B in U2OS 

osteosarcoma cells induces chromosome condensation to a greater degree compared to cells 

expressing Plk1 or Cdc25B alone. This is partially dependent on the presence of a functional 

nuclear localization signal (NLS) in Cdc25B. Plk1 docking to Cdc25B requires prior 

phosphorylation of S50 by Cdk1/cyclin B.[137] Mass spectrometry identified thirteen 

phosphorylated Plk1 sites on Cdc25B in vitro and showed that T167, S209, T404, S465 and 

S513 appear to be particularly strong targets.[137] Plk1 is required for Cdk1-cyclin B 

activation, at least in part by negatively regulating Cdc25C nuclear export. Depletion of Plx1 

from oocyte extracts prevents the activation of Cdc25C and Cdk1-cyclin B.[138] Unlike 

Cdc25B, phosphorylation of Cdc25C by Cdk1 is not a prerequisite for Plk1 targeting the 

phosphatase; Plk1 affects Cdc25C phosphatase activity and its localization. In vitro 

phosphorylation of Cdc25C enhances its ability to dephosphorylate kinase dead Cdc2 on 

Y15.[139] Plk1 phosphorylates human Cdc25C on S198 which resides within the nuclear 

export signal (NES) of the phosphatase, promoting its nuclear localization.[140] Polo kinase 

family member Plk3 also interacts with human Cdc25C and phosphorylates it on S191, and 

S198 to a lesser degree.[141] Substitutions S191D, S198D or Plk3 overexpression result in 

constitutive nuclear localization, while siRNA knockdown of Plk3 or substitutions S191A 
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and S198A leads to nuclear exclusion.[141] Another polo family member, Plk4, 

phosphorylates human Cdc25C on undetermined sites.[142] 

4.2.6. Full activation of Cdk1-CyclinB and Cdc25C 

Activated Cdk1-cyclin B phosphorylates human Cdc25C on T48, T67, S122, T130, S168 and S214 

in vitro and in vivo, driving a positive feedback loop which culminates in the phosphorylation of 

mitotic Cdk1 substrates.[42,143] Cdk1 phosphorylated Cdc25C has an increased Cdk1 Y15 

phosphatase activity.[143] Recombinant Cdc25C can activate Cdk1 thereby increasing its 

histone H1 kinase activity.[144] Use of phospho-specific antibodies recently showed that 

phosphorylation of T48, T67 and T130 occur on spatially separate pools of human Cdc25C.[145] 

T67-phosphorylated Cdc25C is chromatin associated from prophase until telophase while T130-

phosphorylated Cdc25C localizes to the centrosomes. T130 phosphorylation creates a Plk1 

binding site on Cdc25C. Three distinct pools of T48, T67 and T130 mono-phosphorylated 

Cdc25C protein can be detected by immunoprecipitation with each individual phospho-specific 

antibody; Cdc25C pulled down with one antibody is not bound by the other two. In Xenopus 

oocyte extracts Cdc25C is heavily phosphorylated while cells undergo germinal vesicle 

breakdown (meiosis I).[45] Xenopus Cdc25C residues T48, T67, T138, S205 and S285 are 

phosphorylated by Cdk1-cyclin A and Cdk1-cyclin B in vitro.[146] Mutation of the major targets, 

T48, T67 and T138, to alanine prevents Xenopus Cdc25C activation in vitro.[147] Although G2/M 

is not normally associated with Cdc25A function, it also contributes to Cdk1-cyclin B activation. 

Depleting cells of Cdc25A reduces Cdk1-cyclin B activation by approximately fifty percent.[148] 

In cells arrested in mitosis by addition of nocodazole, a microtubule polymerization inhibitor 

and spindle poison, Cdc25A is phosphorylated by Cdk1-cyclin B on S18 and S116. Substitution 

of these residues with alanine leads to Cdc25A instability. Cdc25A S40, S88, S261 and S283 are 

also Cdk1-cyclin B phosphorylated in vitro.[149] 

4.2.7. Mitotic exit 

Following chromosome alignment on the metaphase plate a cascade of APC mediated 

degradation events occurs to reset conditions for the start of the next cell cycle.[150] The 

APC regulates two important processes required for completion of mitosis. First, it targets 

Securin, the inhibitory subunit of Separase, which is responsible for Cohesin cleavage and 

chromosome separation. Second, it targets cyclin A and cyclin B for destruction, inactivating 

Cdk1. Cyclin B is degraded after the metaphase-anaphase transition while cyclin A is 

degraded during metaphase. [121] Cdk1 mediated phosphorylation of Cdc25 paralogues is 

reversed by Cdc14 family phosphatases. Cdk1-cyclin B phosphorylates human Cdc25A S18, 

S40, S88, S116, S261 and S283 in vitro.[149] Of these sites, human Cdc14A dephosphorylates 

S116, Cdc14B targets S88 and S261, while both phosphatases can dephosphorylate S40. 

Cdc14A was independently identified as also dephosphorylating Cdc25A S321.[151] siRNA 

knockdown of Cdc14B leads to accumulation of phosphorylated Cdc25B and Cdc25C.[149] 

In S. pombe Cdc14 homologue Clp1 dephosphorylates Cdc25 and this is required for its 

ubiquitination and APC mediated proteolysis at the end of mitosis.[73] Similarly, in 

vertebrates Cdc25A and Cdc25B are targeted by the APC at mitotic exit.[152,153] 
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5. Cdc25 phosphorylation by the DNA damage and replication 

checkpoint 

DNA damage causes activation of checkpoints which delay cell cycle transitions to allow 

sufficient time for repair. Stalling of replication forks causes a similar cell cycle arrest, with 

additional need for stabilizing replication forks and/or modulating replication origin firing 

until the cause of the stalling is eliminated. Checkpoint effector kinases impinge on the 

central cell cycle machinery by phosphorylating Cdc25. This modification variously inhibits 

Cdc25 phosphatase activity, induces degradation or creates binding sites for 14-3-3 proteins 

which modify localization of the protein. 

5.1. Fission yeast 

Cell cycle arrest following DNA damage requires that Cdc2 is kept in a Y15- 

phosphorylated, inhibited state.[154] Cdc25 is inhibited through phosphorylation by Chk1 

and Cds1 kinases in response to DNA damage and replication fork arrest, respectively.[155-

157] Cells over-expressing Cdc25 or expressing a Y15F phospho-mimetic mutation of Cdc2 

fail to arrest cell cycle progression after exposure to ionizing radiation.[154] In the absence 

of Cds1, Chk1 can cause cell cycle arrest following stalling of replication forks by 

hydroxyurea (HU) exposure. Cells lacking both kinases are unable to arrest.[155] Cds1 also 

phosphorylates multiple substrates to stabilize stalled replication forks and prevent the 

occurrence of inappropriate recombination events.[158] Upstream regulation of the DNA 

damage and replication checkpoint pathway occurs through activation of the ATM (Ataxia-

telangiectasia mutated) homologue Rad3 through a well conserved signaling cascade.[159] 

Phosphorylation of Cdc25 by Chk1 and Cds1 creates binding sites for the 14-3-3 homologues 

Rad24 and Rad25.[160,161] Phosphorylation and 14-3-3 binding stabilizes Cdc25, a 

phenomena referred to as “stockpiling”, thought to allow the cell to rapidly re-enter the cell 

cycle once replication or DNA damage arrest has been lifted.[70] The first Chk1/Cds1 

phosphorylated Cdc25 residue identified, S99, partially impairs the replication and DNA 

damage checkpoint when mutated to alanine.[157] S99 modified Cdc25 is also 

phosphorylated on S192 and S359 by Cds1 and Chk1 in vivo and in vitro.[156] By 

phosphorylating Cdc25 in vitro with Cds1, nine additional sites were identified by mass 

spectrometry (S148, S178, S204, S206, T226, S234, T561, S567, T569) as well as the three sites 

previously known.[162] Nine sites between S99 and S359 are distributed through the poorly 

conserved N-terminal two thirds of the protein, while three sites reside in the extreme C-

terminus. Alanine substitutions of all nine sites in the amino two thirds of Cdc25, cdc25(9A), 

overrides the DNA replication checkpoint when expressed under control of a relatively 

weak heterologous promoter.[162] However, when cdc25(9A) is expressed from the native 

cdc25+ locus under the control of its own promoter it does not cause a cell cycle phenotype, 

and the cell is checkpoint competent.[60] In addition, Cdc25(9A) is unstable following 

replication arrest suggesting redundancy in checkpoint control, such that Cdc25 which 

cannot be inhibited by Cds1 is eliminated from the cell. The S-phase specific Cdc2-Y15 

kinase Mik1 is sufficient to prevent mitotic entry in these cells. Alanine substitutions of only 
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the three C-terminal Cdc25 sites (T561, S567, T569) have a clear replication checkpoint defect 

in a mik1- background and appear to be involved in maintenance, but not establishment, of 

the DNA damage checkpoint. [305] 

5.2. Vertebrate Cdc25 regulation by DNA damage and replication checkpoints 

In vertebrate cells detection of DNA damage is relayed through ATM and ATR (ATM-

Related) to two checkpoint effectors, Chk1 and Chk2. While the S. pombe ATM homologue 

Rad3 is involved in activation of both Chk1 and Cds1; DNA damage signaling in vertebrates 

shows separation of ATR-Chk1 and ATM-Chk2 axes.[163,164] The target of these effector 

proteins is determined by the cell cycle stage at which the damage occurs and the nature of 

the damage itself. ATM-Chk2 signaling is initiated by double strand breaks, while ATR-

Chk1 is activated by stalled replication forks and single stranded breaks. The p38 MAP 

kinase pathway is critical for cell cycle arrest following UV induced DNA damage. (Figure 

2) 

5.2.1. G1/S and Intra-S checkpoints 

The G1/S checkpoint prevents the start of DNA synthesis in the presence of DNA damage 

while the Intra-S checkpoint protects replication forks, prevents activation of late replication 

origins, and keeps the cell from entering mitosis until S-phase is completed. G1-S checkpoint 

arrest is manifested through inhibition of Cdc25A, thus preventing activation of Cdk4-cyclin 

D and Cdk2-cyclin E. The checkpoint also activates p53 resulting in the induction of the 

Cdk2 inhibitor p21CIP and the targeting of Cyclin E to the SCF complex to reinforce Cdk2 

inhibition.[165] In rat fibroblasts UV induced DNA damage during G1 results in cell cycle 

arrest at the G1/S transition requiring inhibition of Cdc25A and phosphorylation of Cdk4-

Y14.[166] In U2OS osteosarcoma cells Cdk2-cyclin E kinase activity decreases and Y15 

phosphorylation increases coincident with Cdc25A degradation following UV 

exposure.[167] Conversely, Cdc25A overexpression in UV exposed U2OS osteosarcoma cells 

results in bypass of the checkpoint and dephosphorylation of Cdk2-cyclin E. Cdc25A 

inhibition involves a combination of destabilization and inhibition of phosphatase activity 

by Chk1.[167] Treatment with caffeine (an ATM/ATR inhibitor) or the Chk1 inhibitor UNC-

01, or depletion of Chk1, stabilizes the phosphatase.[167,168] In humans, Chk1 

phosphorylates Cdc25A S76, S124 , S178, and T507.[168-170] Cdc25A catalytic activity is 

reduced three-fold when it is phosphorylated by hChk1 in vitro.[169] S76 and S124 are 

phosphorylated following ionizing radiation resulting in Cdc25A instability.[168,169,171-

173] Mutation of S76 to alanine stabilizes human Cdc25A [171,172]; however, neither S76A 

nor S124A overrides checkpoint arrest following ionizing radiation or UV.[168] Mouse cells 

homozygous for the Cdc25A S124A mutation display Cdc25A stabilization following 

ionizing radiation;[174] however, there are no changes in proportion of cells in S-phase, or 

radiation resistant DNA synthesis indicating their S-phase checkpoint is intact. 

Human Cdc25A S76, S124 and/or S178 are identified in several publications as “S75, S123 

and S177,” respectively.[168,169,174-176] In the original cloning of human Cdc25A.[37], 



 
Protein Phosphorylation in Human Health 406 

there are several substitutions in the N-terminus (Accession: AAA58415.1) and a one residue 

gap corresponding to residue R12 in all other full length human Cdc25A sequences in the 

NCBI database (Accession: P30304). Residues have been re-numbered as per “P30304” for 

the sake of consistency. 

Cdc25A S76, S124, S178 and T507 match the consensus site for 14-3-3 binding, RXXpS/T [177] 

However, only the Chk1 dependent phosphorylation of S178 and T507 results in association 

with 14-3-3.[170] Substitution of these residues to alanine results in a complete loss of 14-3-3 

interaction in vivo. Phosphorylation of T507 in particular, and subsequent 14-3-3 binding, 

interferes with Cdk1-cyclin B association by blocking a cyclin B docking site. A recent study 

suggests that a ternary complex between Cdc25A, 14-3-3γ and Chk1 is formed following 

ionizing radiation.[178] The Chk1/14-3-3γ interaction requires auto-phosphorylation of 

Chk1 S296. Substituting Chk1 S296 for alanine precludes 14-3-3 binding and Cdc25A S76 

phosphorylation and deactivates the DNA damage checkpoint.[178] 14-3-3 proteins 

preferably exist as thermostable homo- and heterodimers. Each isoform in a heterodimer 

binding a different protein provides a common mechanism for bringing enzymes and their 

substrate proteins into close proximity.[179,180] 

Defects in the Intra-S checkpoint allow replication of damaged DNA.[173,176,181] In 

mammalian cells, DNA damage results in destabilization of Cdc25A and inhibition of 

Cdk2.[173] Cdk2 is involved in loading the Cdc45 origin binding factor. Inhibition of 

Cdc25A stops further origin firing once DNA damage is detected.[182] Cdc25A is also 

unstable after HU induced replication fork stalling, which unlike in fission yeast, is 

controlled by activation of Chk1 in mammalian cells.[183] 

 

Figure 2. Inhibitory phosphorylation of Cdc25 family members following DNA damage and replication 

arrest 

5.2.1.1. Phosphorylation mediated degradation of Cdc25A by the SCF- βTrCP complex 

The mechanism by which Cdc25A is destabilized following DNA structure checkpoint 

activation is well understood (Figure 3). Human Cdc25A phosphorylation by Chk1 

following S-phase DNA damage causes degradation by F-box protein β-TrCP associated 

with the Skp1-cullin-Fbox (SCF) complex.[171,184] Mutating the destruction box or KEN 
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box (APC interaction motifs) of Cdc25A does not stabilize the protein following exposure to 

ionizing radiation.[152] This indicates that SCF-mediated degradation of Cdc25A after DNA 

damage is independent of the cell cycle regulated APC-mediated degradation which occurs 

at mitotic exit. β-TrCP recognizes a degron motif of DSG(X)4S where both serine residues are 

phosphorylated.[185] siRNA knockdown of β-TrCP causes stabilization of Cdc25A, and 

radiation-resistant DNA synthesis in cells exposed to ionizing radiation.[171,184] Human 

Cdc25A contains such a motif: DS82GFCLDS88. The S88A substitution does not stabilize the 

phosphatase, suggesting that S88 phosphorylation is not explicitly required for β-TrCP 

binding to Cdc25A.[171] Following ionizing radiation, Chk1 primes Cdc25A for destruction 

through phosphorylation of S76.[171,186] The NimA-related NEK11 kinase targets Cdc25A 

S82 and S88, within the DSG degron sequence.[187] Depletion of NEK11 causes a marked 

decrease in S82 and S88 phosphorylation in vivo, and prevents Cdc25A degradation 

following IR. NEK11, itself thought to be a Chk1 substrate, can directly phosphorylate S82 

and S88 in vitro. 

Following ATM activation, Chk2 phosphorylates and activates the oncogene p53, and 

inhibits its negative regulator MDM2 after ionizing radiation.[188-191] p53 then induces the 

Cdk2-cyclin E inhibitor p21WAF.[192] p53 also activates Glycogen Synthase Kinase (GSK-3β), 

which phosphorylates human Cdc25A S76 following a priming phosphorylation of S80 

which can be targeted in vitro by Plk3.[193,194] Plk3 is unique among Polo kinase family 

members in causing Cdc25A stabilization when knocked down with siRNA.[194] In Plk3 

null mice Cdc25A is stabilized following DNA damage.[195] Plk3 also phosphorylates and 

activates p53 following DNA damage and contributes to Chk2 activation.[196,197] In HeLa 

cells, Casein Kinase 1α (CK1α) sequentially phosphorylates both S79 and S82 following 

priming phosphorylation of S76 by Chk1 or GSK-3β.[198] The CK1ε isoform negatively 

regulates Cdc25A by S82 phosphorylation in HEK293 cells.[199] S82 phosphorylation in vitro 

and in vivo takes place in response to DNA damage, dependent on CK1α first 

phosphorylating S79.[198] S79A substitution prevents S82 phosphorylation. S76 

phosphorylation appears to be the first target in the cascade, since it does not require prior 

phosphorylation of S79, T80, S82 or S88. Only alanine substitutions of S76, S79 and S82 

impair β-TrCP interaction with Cdc25A and stabilize the phosphatase suggesting that T80 

and S88 are not critical for Cdc25A degradation. Additional sites (S107, S156, S192, S279 

S293) are phosphorylated by Chk1 or Cds1 in vitro but mutating any of these sites does not 

eliminate β-TrCP binding.[200] Although an interaction between phosphorylated Xenopus 

Cdc25A and β-TrCP has not been demonstrated, Chk1 is required for Cdc25A degradation 

at the mid-blastula transition through phosphorylation of S73.[201] Interestingly, Xenopus 

Cdc25A lacks the first serine in the DSG(X)4S degron motif found in human Cdc25A, instead 

possessing DDG. Xenopus Cdc25A S73 lies just upstream of the mutated degron and is 

analogous to S76 in human Cdc25A. The DAG motif of Xenopus Cdc25A lies within a larger 

PEST motif which regulates stability of the phosphatase through β-TrCP binding, 

independent of Chk1.[202] In mouse embryonic stem cells, which lack a G1/S DNA damage 

response, Cdk2 kinase activity is not affected by Cdc25A degradation following exposure to 

ionizing radiation.[203] Cdc25A degradation is independent of Chk1 and Chk2 but instead 

dependent on GSK-3β. Like Cdc25A, mammalian Cdc25B is unstable following HU induced 
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arrest.[117] Cdc25B binds β-TrCP strongly and contains the residues DAG rather than the 

DSG degron motif.[202,204] In contrast, Cdc25B accumulates following G2 DNA damage 

checkpoint arrest induced by a variety of agents.[205] This is reminiscent of the 

“stockpiling” phenomena noted earlier in S. pombe.[70] β-TrCP interaction with Cdc25B may 

also be required for mitotic exit.[204] A Cdc25B-DDA degron mutant which cannot bind β-

TrCP accelerates mitotic entry slightly, but has a significant delay completing mitosis and 

progressing to G1. This mitotic delay is due to an extended metaphase in which Cdc25B-

DDA shows a high proportion of lagging, misaligned and bridged chromosomes as well as 

mis-oriented spindles.[204] 

 

Figure 3. Multi-step phosphorylation cascades involved in targeting human Cdc25A for degradation by 

the β-TrCP SCF complex following DNA damage in S-phase and G2. 

5.2.1.2. Cdc25A inhibition by 14-3-3 binding 

Cdc25A S76, S124, S178 and T507 match the consensus site for 14-3-3 binding RXXpS/T [177] 

However, only the Chk1 dependent phosphorylation of S178 and T507 results in association 

with 14-3-3.[170] Substitution of these residues to alanine results in a complete loss of 14-3-3 

interaction in vivo. Phosphorylation of T507 in particular, and subsequent 14-3-3 binding, 

interferes with Cdk1-cyclin B association by blocking a cyclin B docking site. A recent study 

suggests that a ternary complex between Cdc25A, 14-3-3γ and Chk1 is formed following 

ionizing radiation.[178] The Chk1/14-3-3γ interaction requires auto-phosphorylation of 

Chk1 S296. Substituting Chk1 S296 to alanine precludes 14-3-3 binding and Cdc25A S76 

phosphorylation and deactivates the DNA damage checkpoint.[178] 14-3-3 proteins 

preferably exist as thermostable homo- and heterodimers. Each isoform in a heterodimer 

binding a different protein provides a common mechanism for bringing enzymes and their 

substrate proteins into close proximity.[179,180] 
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Following exposure to ionizing radiation during G1 phosphorylation of Cdc25A on S124 by 

Chk2 prevents entry to S-phase .[173] Chk2 cannot efficiently phosphorylate Cdc25A on S76 

and so cannot induce Cdc25A degradation by the β-TrCP route.[206] The mechanism by 

which S124 phosphorylation induces Cdc25A degradation is not clear because it is not 

required for degradation via β-TrCP.[173] S124 conforms to a 14-3-3 phospho-serine binding 

site, but doesn’t bind 14-3-3.[170]In contrast to the effects of Cdc25A phosphorylation sites 

discussed thus far, modification of Xenopus Cdc25A T504 by Chk1 negatively regulates 

interaction with Cdk1-cyclin A, Cdk1-cyclin B and Cdk2-cyclin E but in a 14-3-3 

independent manner.[207] 

5.2.2. G2/M DNA damage checkpoint 

The response to damage in G2 is dependent on the nature of the damage signal. Exposure to 

UV activates p38 MAP kinase and checkpoint arrest is independent of ATM and ATR since 

the arrest is not caffeine sensitive.[208] The primary target following UV irradiation is 

Cdc25B and although p38 can phosphorylate Cdc25C in vitro, UV exposure does not affect 

the Cdc25C/14-3-3 interaction.[208] Ionizing radiation activates ATM and ATR and results 

in Cdc25C phosphorylation by Chk1 and Chk2.[209] 

5.2.2.1. Cdc25B inhibition following UV induced DNA damage 

A number of conflicting reports have appeared relating to Cdc25B regulation following UV 

exposure. Some groups have reported that UV has no effect on Cdc25B protein levels 

[208,210], but others have shown that UV causes either MAP kinase mediated Cdc25B 

degradation or Cdc25B accumulation.[205,208,211] Cell line specific effects have no doubt 

contributed to these inconsistencies as human molecular biology relies heavily on 

transformed cell lines and mis-regulation of Cdc25B is a common phenomenon in 

tumors.[212] Cdc25B isolated from UV irradiated A2058 melanoma cells still retains a 

substantial portion of its Y15 phosphatase activity and is localized to the nucleus.[213] In 

HeLa cells Cdc25B is localized almost exclusively to the cytoplasm as detected by cell 

fractionation and immunofluorescence.[120] Variation in the apparatus used for UV 

irradiation could also have contributed to contradictory accounts of Cdc25B regulation. A 

recent re-examination of the effect of UV on Cdc25B showed that after 10 J/m2 exposure, 

Cdc25B levels did not decrease, although following 60 J/m2 Cdc25B was clearly 

downregulated.[214] Exposure of U2OS osteosarcoma cells to 10 J/m2 UV leads to Cdc25B 

nuclear export. Based on chemical inhibitor experiments Cdc25B downregulation is not 

mediated by ATM/ATR, p38 MAPK or JNK, but rather following 60 J/m2, by inhibiting 

Cdc25 translation. The eukaryotic initiation factor regulating Cdc25B expression, eIF2α, is 

phosphorylated and inhibited following UV exposure.[215] UV mediated DNA damage 

during G2 involves human Cdc25B S323 phosphorylation through the p38 kinase during 

interphase.[208] ATM/ATR inhibitor caffeine and the Chk1 inhibitor UNC-01 have no effect 

on UV mediated checkpoint arrest. Isoforms 14-3-3β and 14-3-3ε bind preferentially to 

Cdc25B phosphorylated S323, allowing its nuclear export.[216] Nuclear export of Cdc25B is 

abolished in cells expressing the Cdc25B S323A substitution, regardless of which 14-3-3 
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isoform is co-expressed.[216] Two amino-truncated Cdc25B isoforms localize to the nucleus 

in vivo and regulate recovery from G2/M checkpoint arrest but neither is required for mitotic 

entry.[44] Although one of these isoforms contains the DDG degron described above, both 

are more stable than the full length Cdc25B. 

5.2.2.2. Inhibition of Cdc25C following DNA damage 

Cdk1 activation is prevented by UV induced checkpoint activity coincident with the 

appearance of a phosphorylated form of Cdc25C.[213] In contrast with fission yeast Cdc25, 

which gradually accumulates in the nucleus during G2, human Cdc25C is primarily 

localized to the cytoplasm during interphase and only enters the nucleus at mitotic 

entry.[217] Thus, nuclear export of Cdc25C is not a requirement for G2 DNA damage 

response, since the phosphatase is already cytoplasmic at this time. However, exposure to 

ionizing radiation decreases the enzymatic activity of human Cdc25C.[218] Several research 

groups showed relatively early in the Cdc25 phosphorylation story that residue S216 is 

phosphorylated by Chk1 [219-221] and Chk2 in vitro.[209,222] Phosphorylation of S216 

results in 14-3-3 binding and nuclear export.[219] Residues surrounding S216, RSPS216MP, 

correspond to the canonical 14-3-3 consensus binding site RSXpSXP.[177] Cdc25C S216A 

mutants are unable to bind 14-3-3.[219] This is likely due to close proximity of S216 to the 

NLS, leading to the obstruction of the import signal and trapping of the phosphatase in the 

cytoplasm.[221,223] A higher proportion of cells expressing Cdc25 S216A have nuclear 

abnormalities indicative of progression to mitosis prior to completion of DNA synthesis; this 

effect is exacerbated by addition of HU.[217,219] Such cells also have reduced ability to 

delay entry to mitosis following ionizing radiation exposure.[224] 

Although Cdc25C S216A is a relatively poor substrate for Chk1 compared to the wildtype 

protein, Chk1 can still execute some degree of phosphorylation on the mutant 

phosphatase.[220] This observation suggests the possibility that additional Cdc25C 

phosphorylation negatively regulates its enzymatic activity. Recent bioinformatics 

approaches to generate profiles from peptide binding arrays based on three diverse 14-3-3 

binding sites have generated an improved 14-3-3 binding motif consensus.[225] This helped 

to identify two additional phosphorylated Cdc25C residues, Ser247 and Ser263, which 

interact with 14-3-3. Mutation of either residue to alanine reduces 14-3-3 binding, but neither 

of these mutant peptides was affected by Cdc25 S216 phosphorylation when expressed in 

cells. S263 was previously identified in an isolated report which showed phosphorylation of 

this residue induces Cdc25B nuclear export.[226] Cdc25C purified from cells treated with 

the topoisomerase II inhibitor etoposide is phosphorylated on S263, but S263A substitution 

results in enhanced nuclear localization. The kinase targeting this residue has yet to be 

determined experimentally. However, the residues surrounding S263 (KKTVpSLCD) 

conform to a Chk1 consensus site as Chk1 can tolerate a lysine (K) at the -3 position relative 

to the phosphorylated serine or threonine in vitro.[227] 

Regulation of Xenopus Cdc25C localization is similar to its human counterpart. In cultured 

Xenopus tissue Cdc25C is primarily in the cytoplasm while the Cdc25C S287A mutant, 

corresponding to S216 in human Cdc25C, is almost exclusively nuclear.[228] Cdc25C is 
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phosphorylated on multiple sites by Chk1 but only S287 phosphorylation is required for 14-

3-3 binding.[229-231] Although Xenopus Cdc25C can be made exclusively cytoplasmic by co-

expression with 14-3-3ε, Cdc25C S287A is not affected. Nuclear export depends on the 

intrinsic 14-3-3ε nuclear export signal and re-import is prevented by blocking Cdc25C 

association with importin-α.[228] In egg extracts depleted of endogenous Cdc25C, 

expressing Cdc25C S287A accelerates mitotic entry relative to overexpression of the 

wildtype protein.[229] However, Cdc25C S287A has a less than two fold increase of in vitro 

Cdk1 Y15 dephosphorylation activity over wildtype Cdc25C when pre-incubated with 14-3-

3ε. Thus, it seems likely that Xenopus Cdc25C phosphorylation and 14-3-3 binding regulates 

the phosphatase at the level of cellular localization, rather than inhibiting its activity per se. 

Cdc25A is considered to regulate the G1/S transition in the “Traditional Model” of the 

human cell cycle but it also has a significant role in mitotic entry. As such, Cdc25A is an 

important target of the DNA damage checkpoint. In fact, mice lacking Cdc25B and Cdc25C 

do not have a G2/M checkpoint defect.[106,107] Phosphorylation by Chk1 causes 

degradation of Cdc25A following DNA damage during G2 ionizing radiation and exposure 

to the DNA intercalating agent adriamycin.[172,181] 

5.3. Chk1 regulation of Cdc25 orthologues in unperturbed cell cycles 

Cdc25A, B and C are all phosphorylated by Chk1 in the absence of externally induced DNA 

damage. As Cdc25 phosphatases are such potent positive regulators of cell cycle transitions 

it is perhaps not surprising that the cell maintains their activity at a low level until their 

precise point of activation. Chk1 regulates human Cdc25A stability during unperturbed cell 

cycles. Phosphorylation of S82 and S88 can be detected using phospho-specific antibodies in 

unperturbed cells.[184] Depletion of the S82/S88 kinase NEK1 and S76 kinase CK1ε by 

siRNA, results in Cdc25A stabilization in the absence of DNA damage.[187,199] Cdc25A 

S124 phosphorylation by Chk1 also occurs in the absence of damage and destabilizes the 

phosphatase.[168,169,200] Inhibiting ATM/ATR, or a variety of upstream checkpoint 

components, also stabilizes in the absence of externally induced DNA damage which may 

indicate there is some basal level of spontaneous damage checkpoint signaling.[232] Cdc25A 

is also phosphorylated by Casein kinase 2β (CK2β) in a damage independent manner.[233] 

CK2 phosphorylates human Cdc25C T236 adjacent to the NLS in vitro.[234] A T236D 

mutation reduces β-importin binding, thus excluding Cdc25 from the nucleus.[234] CK2 

phosphorylates Cdc25B on residues S186 and S187, just downstream from the KEN box, 

modestly increases its phosphatase activity, and potentially blocking APC mediated 

degradation.[235]  

Human Cdc25B is phosphorylated in vitro by Chk1 at S230 and S563 in the absence of DNA 

damage.[236] S230 phosphospecific antibodies show that Cdc25B modified on this residue is 

centrosome associated from S-phase until mitosis.[236] A population of Chk1 is localized to 

the centrosome during G2 and can prevent promiscuous Cdk1-cyclin B activation by 

Cdc25B.[237] S323 was previously identified as the major 14-3-3 binding site.[238] S151 and 

S230 account for the remainder of the interaction, but both need to be dephosphorylated 
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before interaction with 14-3-3 is lost.[239] Human Cdc25B S563 resides in the extreme C-

terminus of Cdc25B and is analogous to Cdc25A S504 and S. pombe Cdc25 T569. Cdc25B 

lacking the S323 phosphorylation site is almost exclusively nuclear. It is interesting that this 

residue is targeted by Chk1, but does not appear to bind 14-3-3 when phosphorylated. If the 

function of this phosphorylation is conserved between Cdc25A S504 and Cdc25B S563, 

phosphorylation may affect interaction with Cdk1-cyclin B.[240]  

Chk1 phosphorylation of human Cdc25C and nuclear export by 14-3-3 binding keeps the 

phosphatase cytoplasmic during unperturbed cell cycles.[217] Nuclear localization of 

Cdc25C(S216A) is enhanced, suggesting that part of the function of 14-3-3 binding is to 

obscure the NLS located adjacent to this residue.[224] Overexpression of Cdc25C(S216A) 

induces a higher degree of premature mitotic entry.[217] Xenopus Cdc25C is likewise 

phosphorylated on S287 by Chk1 during interphase.[228,241] Phospho-S287 is bound by 14-

3-3ε and 14-3-3ζ obscuring the NLS and preventing nuclear import.[228] Xenopus Cdc25C is 

phosphorylated on T533 by Chk1, but not Chk2.[207] Injecting Cdc25C T533A mRNA into 

Xenopus oocytes results in more rapid dephosphorylation of Cdk1 Y15.[207] Again, this 

suggests that regulation of CDK-cyclin interaction with Cdc25 orthologues by C-terminal 

phosphorylation is a common mechanism for inhibiting cell cycle progression. 

Although Cdc25A and Cdc25B are dispensable for embryonic development, Chk1 and ATR 

kinases are essential.[242,243] The Cdc25B/14-3-3 interaction is important for maintaining 

G2 arrest, and inhibiting germinal vesicle breakdown in Xenopus oocytes prior to 

progesterone exposure.[244] 

In S. pombe, Chk1 does not appear to negatively regulate Cdc25 in the absence of DNA 

damage. Loss of a negative regulator of Cdc25 is expected to cause the cell to divide at a 

reduced length. However, deletion of Chk1 does not cause a cell cycle phenotype.[245] In 

addition, expressing Cdc25 where all twelve putative Cds1/Chk1 phosphorylation sites are 

mutated to alanine does not cause acceleration of the cell cycle.[60] 

5.4. Cdk1 phosphorylation of Cdc25 precludes checkpoint mediated inhibition 

during mitosis 

If Cdc25C is phosphorylated and inactivated during interphase via 14-3-3 binding, how is it 

then activated at mitotic entry? Cdk1-cyclin B phosphorylation of Cdc25C causes 14-3-3 

dissociation and allows removal of interphase phosphorylations. Re-phosphorylation of 

these residues is simultaneously blocked. Cdk1-cyclin B thus potentiates Cdc25C for its pro-

mitotic function and ensures that it remains active. The region surrounding S216 in human 

Cdc25C and S287 in Xenopus Cdc25C is a well conserved stretch in the N-terminal region of 

the two proteins; LYRSPS216MPE is identical between Human and Xenopus and contains 

S216 and S287, respectively.(Figure 4) In both organisms, the two serine residues upstream 

of the major phosphorylated 14-3-3 binding residue, S214 in human and S285 in Xenopus, is 

targeted by Cdk1-cyclin B.[42,246-248] In human cells phosphorylation of S214 precludes 

phosphorylation of S216 by Chk1 and 14-3-3 binding.[42,246] Substituting S214D prevents 

phosphorylation of S216.[246] S216 is not phosphorylated during M-phase in vivo, and 
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ionizing radiation in M-phase cells cannot induce its phosphorylation.[246] 14-3-3 is unable 

to bind Cdc25C immunoprecipitated from cells arrested in mitosis with nocodazole.[219] In 

Xenopus, Cdc25C S285 phosphorylation prevents the phosphorylation of S287.[247,249] S285 

can be phosphorylated by both Cdk1-cyclin B and Cdk1-cyclin A in vitro.[146] Until the mid-

blastula transition, Xenopus Cdc25C is phosphorylated on S285 which precludes Chk1 

mediated phosphorylation of S287 and subsequent 14-3-3 binding.[247] Human Cdc25C 

S214 is also phosphorylated in maturing human oocytes.[250] Removal of phospho-S287 

bound 14-3-3 and phosphorylation of Xenopus Cdc25C S285 requires prior phosphorylation 

of Cdc25C T138.[249] T138 is a substrate of Cdk1-cyclin B.[146] However, selective depletion 

of Cdk2 from Xenopus egg extracts using the N-terminus of the Cdk2 inhibitor p21, 

completely prevents removal of 14-3-3 from Cdc25C.[251] In Xenopus egg extracts Cdk2 is 

required for mitotic entry.[81] Other CDK phosphorylation sites on Xenopus Cdc25C such as 

T48 and T67 negatively regulate its activity in an S287 independent manner.[249] 

Phosphorylation of T138 is not sufficient to cause 14-3-3 dissociation.[248] How is 14-3-3 

physically removed from phospho-S287? The pelleted fraction from ultracentrifuged 

interphase egg extracts contains a 14-3-3 dissociating activity, which was determined to be 

the intermediate filament component Keratin 8/18[248]. Keratin is phosphorylated during 

mitosis, binds 14-3-3, and has a role in mitotic progression in hepatocytes.[252] Keratin may 

act as a “14-3-3 sink” during mitosis, stripping 14-3-3 from S287.[248] Xenopus Cdc25C T138 

corresponds with T130 in human Cdc25C. A phospho-T130 specific antibody shows that 

Cdc25C phosphorylated on this site localizes to the centrosome.[145] A localization for the 

de-inhibition of Cdc25C fits well with the putative centrosomal localization of Cdc25C 

activation. 

PP1 phosphatase removes S287 phosphorylation once 14-3-3 has dissociated.[251] Binding of 

PP1 to Xenopus Cdc25C requires a docking motif “VXF”, amino acids 105-107, the loss of 

which prevents S287 dephosphorylation.[251] Phosphorylation of Xenopus Cdc25C S285 by 

Cdk1-cyclin B enhances recruitment of phosphatase PP1 to Cdc25C, inducing the 

dephosphorylation of S287.[249] PP2A/B56δ dephosphorylates Xenopus Cdc25C T138 during 

interphase, mitotic exit and following replication arrest.[248] This maintains the phosphatase 

in a state where it can be inhibited by S287 phosphorylation. Inhibition of PP2A by okadaic 

acid prematurely induces mitotic entry in Xenopus egg extracts.[253] T138 is also 

dephosphorylated during replication arrest where B56δ is itself phosphorylated by Chk1, 

enhancing complex formation with PP2A.[248] PP2A mediated dephosphorylation of Cdc25 is 

assisted by the action of the Pin1 prolyl isomerase. Pin1 isomerizes the peptide bond between 

phospho-serine/threonine and proline placing their R-groups in a trans orientation.[254] This 

isomerization makes the phosphorylated residue a better substrate for the PP2A 

phosphatase.[255] In vitro, Pin1 decreases the catalytic activity of Cdc25C that has previously 

been phosphorylated by Cdk1.[256] Pin1 is also involved in maintenance of replication 

checkpoint arrest in Xenopus encouraging the reversal of Cdk1 mediated Cdc25C 

phosphorylation.[257] In Humans, Cdc25C is deactivated in a similar manner. T130 on Cdc25C 

is dephosphorylated by PP2A.[258] Mitotic exit is delayed when PP2A is knocked down, 

suggesting that dephosphorylation of Cdc25C T130 in human cells is also important for the 

transition from M to G1 of the next cycle. A similar situation may exist where human Cdc25B1 
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S321 phosphorylation blocks phosphorylation of the major 14-3-3 binding residue S323 by 

p38.[246] Expression of the phosphorylation-mimicking Cdc25B1 S321D prevents p38 

mediated phosphorylation of S323 and abolishes binding by 14-3-3β and 14-3-3ε.[246,259] 14-3-

3σ binding is unaffected by S321 phosphorylation.[259] 14-3-3σ preferentially interacts with 

Cdc25B3 S230 [216] and is induced by p53 following activation by ATM/Chk2.[260] 
 

 

Figure 4. Cdk-cyclin mediated removal of inhibitory S216/S287 phosphorylation and 14-3-3 binding in 

human and Xenopus Cdc25C, respectively. 

There are no Cdc2 phosphorylation motifs (S/TP) directly upstream of any of the twelve 

Cds1 in vitro phosphorylation sites in S. pombe. Large scale phosphoproteome analysis has 

detected S99, S178 and S359 phosphorylation of fission yeast Cdc25 in M-phase arrested 

cells.[261] Thus it appears that the vertebrate mechanism for reversing and preventing Chk1 

phosphorylation of Cdc25C evolved relatively recently. However, parallels exist between 

some aspects of Cdc25 dephosphorylation between fission yeast and vertebrates. Treatment 

with okadaic acid or deletion of PP2A homologue Ppa2 causes premature mitotic entry in 

fission yeast.[262,263] Loss of ppa2 suppresses the cdc25-22ts mutation, a genetic interaction 

indicative of a negative regulator.[263] Loss of PP1 homologue Dis2 results in cell 

elongation, suggesting its role as a positive regulator of Cdc25 is conserved in S. pombe.[264] 

Temperature sensitive dis2 mutants have a defect in exit from mitosis, similar to the effect of 

siRNA inhibition of human PP2A.[258,264] 

6. Cdc25 phosphorylation by MAP kinase cascades 

In addition to regulation by DNA damage and DNA replication checkpoints, Cdc25 is the 

target of several MAPK cascades responding to stress and mitogenic signals. A detailed 
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description of the variety of MAPK pathways is outside of the scope of this manuscript, but 

excellent reviews are available.[265]. In general, MAP kinase cascades involve the sequential 

activation of three kinases; a MAP kinase kinase kinase (MAPKKK) phosphorylates a MAP 

kinase kinase (MAPKK), which phosphorylates a MAP kinase (MAPK). There are three such 

cascades which are salient to our discussion of Cdc25 regulation. 

6.1. Raf/MEK/ERK 

The ERK1/ERK2 MAPKs are activated by Raf MAPKKKs working on MEK1/MEK2 

MAPKKs. This cascade is primarily activated by extracellular signaling through receptor 

tyrosine kinases in response to mitogenic signals.[266] During Cyto-Static Factor arrest in 

mature Xenopus oocytes metaphase II arrest is enforced by the combined activity of the 

MEK/ERK pathway upregulating ribosomal subunit S6 kinase/CamKII homologue p90rsk, 

and APC inhibition by the Emi2 kinase.[267] Calcium influx as a result of fertilization 

activates p90rsk (a Ca2+/calmodulin dependent kinase II homologue) which phosphorylates 

Emi2.[268] This allows APC activation, cyclin B degradation, and progression through 

meiosis II. Cdc25C is phosphorylated on S287 by p90Rsk in vitro resulting in its inhibition via 

14-3-3 binding.[269,270] Conversely, Xenopus Cdc25C S317, T318 and S319 are 

phosphorylated by p90rsk orthologue Rsk2 which serves to activate the phosphatase in 

mature oocyte extracts.[271] The Xenopus ERK homologue, p42, phosphorylates Cdc25C 

T48, T138 and S205 in vitro.[272] T138 and S205 are also Cdk1-cyclinB targets [146], but T48 

is uniquely phosphorylated by p42. In HeLa cells after activation of MEK/ERK signaling by 

addition of 12-O-tetradecanoylphorbol-13- acetate (TPA), G2/M transition is inhibited by 

degradation of Cdc25B.[273] This is mediated through MEK dependent phosphorylation of 

Cdc25B S249 by CamKII, an activator of human Cdc25C.[274] Inhibition of CamKII results 

in a G2 arrest. Overexpression of CamKII can also arrest cells in G2, but with a high level of 

Cdk1/Cyclin B activity.[275] Another member of the CamKII family, C-TAK1, 

phosphorylates human Cdc25C on S216 resulting in inhibition via 14-3-3 binding and 

nuclear export.[276] Xenopus Cdc25C can be phosphorylated by CamKII in vitro.[277] Lastly, 

p14arf upregulation in response to anti-proliferative signals results in human Cdc25C 

downregulation through MEK/ERK MAPK signaling.[278] Human Cdc25C becomes 

phosphorylated on S216 and is subsequently ubiquitinated and degraded.[278] 

6.2. p38 and JNK MAPKs 

The p38 and JNK kinases activate in response to extracellular stimuli such as heatshock, 

oxidative stress, ionizing radiation, UV and growth factor deprivation. Both are activated by 

MAPKKs of the MKK family which are themselves activated by a large variety of 

MAPKKKs. We have already discussed the function of p38 in response to UV irradiation. 

p38 also phosphorylates human Cdc25A on S124 and S76 in response to osmotic stress, 

destabilizing the protein [168] and a 42 C heatshock causes p38 and Chk2 to phosphorylate 

S76 and S178 of human Cdc25A, respectively.[175] MAPKAP kinase 2 (MK2) functions 

downstream of p38 and regulates G1 and S-phase cell cycle progression in response to 

UV.[210] Downstream of p38, it phosphorylates RxxS/T motifs and activation of MK2 
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correlates with increased binding of 14-3-3 to Cdc25B. p38 and MK2 kinase form a tight 

complex and are imported into the nucleus together, so previous work showing that p38 

directly phosphorylates S216 on Cdc25C and S323 on Cdc25B may in fact have been 

inadvertently monitoring MK2 activity.[279] Cdc25A may also be an MK2 substrate as MK2 

knockdowns ablate the G1 and S-phase checkpoints. JNK activity targets two serines within 

the region DAGLCMDS101PS103P of the DSG degron on human Cdc25B.[280] Simultaneous 

S101A and S103A substitution prevents β-TrCP binding and Cdc25B ubiquitination. JNK 

also phosphorylates Cdc25C on S168 inhibiting its phosphatase activity.[281,282] This 

residue is transiently phosphorylated in vivo on nuclear Cdc25C prior to and after mitotic 

entry.[281] S168 is phosphorylated following UV irradiation and osmotic shock.[281,282] 

6.3. The S. pombe stress activated MAP kinase pathway 

In fission yeast, Cdc25 is phosphorylated by the CamKII homologue Srk1 in response to 

extracellular stress.[283] Srk1 is activated downstream of the Spc1 MAPK, Wis1 MAPKK, 

and Win1 or Wak1MAPKKKs.[284] This phosphorylation occurs on residues also targeted 

by Cds1 as Cdc25(9A) is not sensitive to Srk1 mediated inhibition.[283] Srk1 

phosphorylation of Cdc25 results in its nuclear export, similar to the response to DNA 

damage and replication arrest. 

7. Other kinases which phosphorylate Cdc25s 

PKA prevents oocyte maturation by inhibition of Polo kinase mediated Cdc25 activation, 

and deactivating the Mos/MEK/ERK MAP kinase cascade which inhibits Myt1.[285] 

Progesterone exposure in Xenopus oocytes down regulates adenylate cyclase, lowering 

cyclicAMP levels and consequently deactivating PKA. Prior to maturation, Xenopus Cdc25C 

is also inhibited by PKA phosphorylation of S287 and T318 in vitro.[286] Murine PKA 

phosphorylates Cdc25B S321, negatively regulating the phosphatase; S321A mutants cause 

enhanced germinal vesicle breakdown when injected into mouse oocytes.[287] 

Pim1 is a serine/threonine kinase induced by the SAT3 and SAT5 transcription factors 

following cytokine exposure thus linking pro-proliferative signals to the cell cycle control 

machinery.[288] Pim1 phosphorylates and activates Cdc25A and represses the Cdk4/6 

inhibitor p21CIP to encourage the G1/S transition.[289,290] Pim1 is also able to phosphorylate 

and inhibit the CamKII homologue c-TAK and accelerate Cdc25C mediated mitotic 

entry.[291]PAR-1/MARK (partitioning-defective 1/Microtubule affinity-Regulating Kinase) 

protein homologue pEG3 phosphorylates human Cdc25A S263, Cdc25B S169 and Cdc25C 

S216.[292,293] Overexpressing pEg3 results in G2 arrest which can be reversed by co-

expressing Cdc25B.[292] Anti-phospho PAR1 S169 antibodies stain spindle pole and 

centrosome in immunofluorescence experiments.[293] In C. elegans the first cell division is 

unequal which produces a larger anterior cell and a smaller posterior one. The next cell 

division is asynchronous with the anterior cell dividing prior to the posterior one.[294] 

Rapid anterior cell cycle timing is due to enrichment of Polo kinase and Cdc25.1 in the 

anterior cell. This is dependent on a network of polarity proteins, including Par1.[295] 



 
Phosphorylation Mediated Regulation of Cdc25 Activity, Localization and Stability 417 

8. Cdc25 and disease 

Cdc25 orthologues are the subject of much attention as they are commonly upregulated in 

human tumors.[296] This is perhaps not surprising considering the role of Cdc25 inhibition 

in maintaining genomic stability and the regulation of these phosphatases by Rb, p53 and a 

number of other oncogenes. Cdc25A and Cdc25B themselves are oncogenes in humans.[212] 

Cdc25B is overexpressed in 32% of breast cancer tissue samples, and high Cdc25B levels 

correlate with high incidences of recurrence and decreased 10 year survival.[212] 

Overexpression of Cdc25A is similarly linked to poor clinical outcome.[296,297] Cells 

bearing oncogenic mutations of myc have elevated Cdc25A and Cdc25B levels.[298] Anti-

Cdc25B autoantibody has been shown to be a predictor of poor prognosis in esophageal 

cancer patients.[299] Overexpression of Cdc25B has recently been shown to cause a variety 

of S-phase effects including increased Cdc45 recruitment to chromatin, impairment of 

replication fork progression DNA damage and chromosome instability.[300] 

An interesting link between Cdc25 and disease comes from the finding that the HIV-1 

protein vpr causes G2/M arrest.[301] When expressed in S. pombe, vpr activates Srk1 kinase, 

resulting in Cdc25 phosphorylation and 14-3-3 mediated nuclear export.[302,303] The vpr 

protein also acts through upregulation of PP2A phosphatase acting on both Wee1 kinase 

and Cdc25, reversing activating Cdc2 phosphorylation.[304] 

9. Conclusion 

It has been more than thirty five years since Cdc25 was first isolated as an elongated 

temperature-sensitive fission yeast mutant and twenty one years since its biochemical 

function was determined. The field of cell cycle research and the study of Cdc25 in 

particular are extremely active with numerous new manuscripts appearing each year. This 

research has revealed that Cdc25 is one of the most intricately regulated proteins in the cell. 

Cdc25 accepts input from numerous pathways and checkpoints monitoring whether 

conditions inside and outside the cell are permissive for cell cycle progression. When 

conditions warrant caution, Cdc25 is inhibited by phosphorylation leading to alterations in 

its catalytic activity, cellular localization, substrate recognition and stability. When the green 

light is given Cdc25 participates in an intricate series of interconnected positive feedback 

loops with the beating heart of cell cycle regulation, the Cyclin-CDK complex. When the cell 

loses control of Cdc25 regulation, the results are deadly. 
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