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1. Introduction 

Carboxylic acids together with water-soluble inorganic ions are an important group of 

water-soluble organic compounds in the atmospheric aerosols (Jacobson et al., 2000, 

Bourotte et al., 2007). They are highlighted because they account for substantial portion of 

atmospheric aerosols, and potentially control chemical and physical properties of the 

particles. Consequently, they may have direct and indirect effects on the earth’s radiation 

balance by scattering incoming solar radiation, which counteracts the global warming 

(IPCC, 2007). More attention has been paid to carboxylic acids due to their potential to 

modify the hygroscopic properties of atmospheric particles, including cloud condensation 

nuclei activity and hence to change global radiation balance (Kerminen, 2001; Peng et al., 

2001). Major water-soluble inorganic ions are associated with atmospheric visibility 

degradation, adverse human health effects, and acidity of precipitation (Dockery & Pope, 

1996; IPCC, 2007).  

Among the organic acids, low molecular weight carboxylic acids such as acetic, oxalic and 

malonic are generally most abundant in the atmospheric aerosols. Carboxylic acids in 

variable concentrations have been reported in various environments including rural and 

urban atmosphere (Kawamura & Sakaguchi, 1999; Kerminen et al., 2000; Nicolas et al., 2009) 

and have different source origin, including biomass burning, fossil fuel combustion 

(Kawamura 1987; Narukawa et al., 1999), sea spray, traffic and industrial emissions and 

photochemical oxidation of precursors from anthropogenic and biogenic origin (Kawamura 

& Sakaguchi, 1999; Limbeck & Puxbaum, 1999; Kumar et al., 2001; Chakraborty & Gupta, 

2010). Other sources for carboxylic acids in the marine atmosphere include in-cloud and 

heterogeneous formations (Warneck, 2003).  
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Chemical composition of PM2.5 and even that of PM10 aerosols is important to gain insights 

into sources and of their toxicity and to evaluate effectiveness of abatement strategies for 

relevant emission sectors. Particulate matter (PM) with aerodynamic diameter less than 2.5 

μm (PM2.5) exhibited stronger relation with health than those with aerodynamic diameter 

less than 10 μm (PM10), but other studies have reported a strong potential of PM10 to 

human health (Salma et al., 2002; Kappos et al., 2004). Most studies on low molecular weight 

carboxylic acids and their related compounds (Limbeck et al., 2001; Limon-Sanchez et al., 

2002; Kawamura & Yasui, 2005) and major ions (Harrison et al., 2004; Karthikeyan & 

Balasubramanian, 2006; Mariani et al., 2007; Kundu et al., 2010; Mkoma et al., 2010) have 

extensively been reported.  

In Africa similar aerosols measurements especially of organic components are missing. 

Therefore, a full scenario of air quality is far from being revealed because some pollutants 

including carboxylic acids have not been measured. The knowledge of elucidating chemical 

composition, levels, and source profiles of aerosols in the Tanzania atmosphere remains a 

challenge and is needed for both scientific and policy reasons. The continuous changes in 

socioeconomic and political environments in Tanzania result in changes in development, 

particularly in transport, industry, energy, and construction sectors. This chapter reports for 

the first time in Tanzania, composition of low molecular weight carboxylic acids in PM2.5 

and PM10 aerosol samples collected from a rural background atmosphere in Morogoro. An 

insight of characteristics of water-soluble inorganic ions is also discussed in this chapter. 

2. Experimental 

2.1. Aerosol sampling site 

Aerosol samples were collected at a rural site in Morogoro (300,000 inhabitants) between 26 

April and 10 May 2011. This site is located at about 200 km west of the Indian Ocean and the 

city of Dar es Salaam, a business capital in Tanzania (Fig. 1). The samples were collected at 

Solomon Mahlangu Campus of Sokoine University of Agriculture (06°47'41"S, 37°37'44"E, 

altitude 504 m a.s.l.). This site is located about 5 km from Morogoro central area and major 

road systems and possible aerosol sources include biomass burning, agriculture, livestock 

and soil dust. Approximately 70% of this area is covered by vegetation and about 15% with 

pasture field. Conversely, tropical savannah is the most important land cover in large part of 

the sampling site. 

2.2. Aerosol collection 

Two samplers were used in parallel to collect aerosol particles: a “Gent” PM2.5 and PM10 

filter holder each with two quartz fibre filters (Whatman QM-A) in series. Quartz fibre filters 

can adsorb volatile organic compounds (VOCs) causing positive artifacts when measuring 

PM and particulate OC. On the other hand, semi-volatile organic compounds (SVOCs) in 

aerosols may partially evaporate during sampling resulting in negative artifacts (Turpin et 

al., 2000; Mader et al., 2003; Hitzenberger et al., 2004). The quartz fibre filters were pre-fired 
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at 550 °C during 24 h before use. Samplers operated at a flow rate of 17 L/min and were 

mounted on grass survey at SMC synoptic station approximately 2.7 m above ground level. 

The sampling was carried out approximately in 24 h intervals and exchange of filters during 

sampling periods was done at 7:30 am. A total of 11 sets of actual filed samples and 2 blanks 

were collected for each sampler and used in this chapter. After sampling the exposed filters 

were folded in half face to face, placed in polyethylene plastic bags and kept frozen at -4 °C 

during storage and transported cool to the laboratory of research and development in 

chemistry (LPQ) at the Institute of chemistry, Federal University of Bahia (UFBA). The 

samples were stored in a freezer at −20 °C prior to analysis. All the procedures were strictly 

quality-controlled to avoid any possible contamination of the samples. 

 

Figure 1. Location of the sampling site in Morogoro, Tanzania 

During the sampling period meteorological data were collected from the site. The daily winds 

were predominantly south-easterly with an average speed of 6.8 m/s. Average temperature 

was 26.8 oC and average relative humidity was 73%. The recorded maximum temperature and 

relative humidity were 29.8 °C and 79.5%, while minimum values were 23.7 °C and 63.5%, 

respectively. During the campaigns 5 days hand rainfall of a total 19.9 mm. 

2.3. Aerosol analyses 

For particulate mass measurements, the filter samples were weighed before and after 

sampling with an analytical microbalance balance Mettler Toledo MX5 (reading precision 1 

μg). Before weighing, the filters were conditioned in a chamber equipped with hydro-

Morogoro

Dar es Salaam

Zanzibar

KENYA

UGANDA

ZAMBIA

MOZAMBIQUE

RWANDA

BURUNDI

  
  
  
D

E
M

. 
R

E
P

. 
  
  

O
F

 C
O

N
G

O

TANZANIA

INDIAN

OCEAN

LAKE

VICTORIA

LAKE
NYASA

0
40E35E30E0

10S

30E 35E 40E

10S

5S

M
A

L
A

W
I

LAKE
TANGANYIKA

5S

0 100 200km



 
Atmospheric Aerosols – Regional Characteristics – Chemistry and Physics 206 

thermometer clock at a temperature of 20 °C and relative humidity of 40% for 48 h and the 

weightings were done under these conditions.  

For determination of carboxylic acids and water-soluble ions one-half of 12.88 cm2 portions 

punched from of each PTFE filter was extracted using 5 ml Milli-Q ultrapure water 

(resistivity of 18.2 MΩcm, Barnstead International, USA) in a shaker tubes Model AT56 

(Fanem Ltd, Sao Paulo, Brazil) for 5 minutes, followed by filtering through 

Polytetrafluoroethylene (PTFE) filter (0.45 μm pore size, Sartorius Stedim, Germany). The 

concentrations of aqueous extracts were determined by Dionex ion chromatography ICS 

1100 and ICS 2100 for acids/anions and cations respectively which was equipped with an 

auto sampler (Dionex ICS Series AS-DV). An analytical column AS16 (3 x 50 mm) with 

AG16 guard column (3 x 50 mm) and CSRS-300 I (2 mm) suppressor in ion-exchange mode 

was used to determine carboxylates (monocarboxylates: formate and acetate; dicarboxylates: 

oxalate, malonate, succinate, and maleate; ketocarboxylate: pyruvate) and water-soluble 

anions (chloride Cl−, nitrate NO3− and sulphate SO42−). The eluent gradient programme was 

sweeping from 6.0 to 8.0 mmol/L KOH in 35 minutes under flow rate of 0.38 μL/min, except 

for acetic acid which was determined in another run, reducing injection time to avoid 

overlap of peaks. For determination of water-soluble cations (NH4+, Na+, K+, Mg2+ and Ca2+) 

an analytical column CS16 and Guard column CG16 (both 3 x 50 mm) and CSRS-I (2 mm) 

suppressor in a chemical mode were used. An eluent of 17.5 mmol/L H2SO4 was used at 

flow rate of 0.35 μL/min. The injection volume was 25 μL for all detection. Peak 

identification was confirmed based on a match of ion chromatograph retention times and 

standard samples. Limit of detection determined as mean equal to 3 times standard 

deviation of the field blank value corresponded to a range of 0.008 to 0.017 ng/L for 

carboxylates, 0.008 to 0.023 ng/L for anions and 0.021 to 0.083 ng/L for cations. Limits of 

quantification were between 0.026 and 0.058 ng/L for carboxylates, 0.028 and 0.078 ng/L for 

anions and 0.063 and 0.252 ng/L for cations. 

3. Results and discussion 

3.1. Concentrations of PM mass 

Mean PM mass concentrations and associated standard deviations and ranges as derived 

from the two low-volume samplers are shown in Table 1. The results showed that mean 

mass concentration of PM2.5 and PM10 aerosols during the campaign were 13±3.5 μg/m3 

and 16±2.3 μg/m3, respectively. The percentages of PM2.5 mass in PM10 size fraction (Fig. 2) 

found to range from 44–99% with a mean of 83±29%. These results indicate that most of PM 

mass was in PM2.5 size fraction. High PM2.5/PM10 ratios for PM mass indicate that there is 

small contribution from soil dust, which is known to be mostly associated with PM10 

aerosols. Currently in Tanzania, the ambient air quality standard limit values for inhalable 

particulate matter are 60 to 90 μg/m3 for PM10 (TBS, 2006). The mean concentrations for 

PM10 mass at our site in Morogoro were below these average limit values. In addition, the 

current data sets were in line with levels reported in our previous studies (Mkoma et al., 

2009a,b; Mkoma et al., 2010). Nevertheless, when compared PM mass data from our rural 
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site in Tanzania are in line with few available other data sets for rural sites in Southern 

Africa (Nyanganyura et al., 2007). They are also comparable to or lower to other sites in 

Europe and Asia (Van Dingenen et al., 2004; Gu et al., 2010; Maenhaut et al., 2011; Ram & 

Sarin, 2011). 

3.2. Concentrations of carboxylates ions 

Table 1 present mean total concentrations and range of carboxylates (TCAs) which were 

23.7±6.5 ng/m3 (range: 13.3-36.5 ng/m3) in PM2.5 and 36.4±12 ng/m3 (range: 10.7-58.2 ng/m3) 

in PM10 aerosols. Oxalate and malonate were most abundant carboxylates in PM2.5 

accounting for 32.5% and 31.85% of total carboxylates, respectively, whereas in PM10 acetate 

was most abundant accounted for 62.5% of total carboxylates followed by oxalate which 

accounted for 32.6% of total carboxylates. Other studies have also reported oxalates to be 

most abundant carboxylate in aerosol samples (Mochida et al., 2003; Warneck, 2003). 

Pyruvate was also found in substantial amount and formate the least abundant counting on 

average 3% of total carboxylates in each of the aerosol fractions. Succinate and malonate 

were below detection limit in PM2.5 and PM10 aerosols, respectively. The total carboxylates 

accounted for 0.18% to total PM2.5 mass and 0.22% to PM10 mass. In comparison with other 

studies, the mean concentrations of all measured carboxylates in Tanzania were lower to 

those reported in urban and rural sites around the world (Souza et al., 1999; Kerminen et al., 

2000; Yao et al., 2003; Kawamura & Yasui, 2005). 

3.3. Water-soluble inorganic ions and ratios 

Chemical characteristics of water-soluble inorganic ions and their relative abundances in 

PM2.5 and PM10 aerosols are also shown in Table 1. In both aerosol fractions, water-soluble 

Mg2+ was the most important cation and SO42– the main anionic species. On average Mg2+ 

accounted for 44.4% of total water-soluble ions in PM2.5 and 24.7% in PM10 whereas SO42–

accounted for 22.8% and 35.2% of total ions in PM2.5 and PM10, respectively. High levels of 

crustal element Mg2+ together with Ca2+ are essentially attributable to soil/mineral dust 

dispersal. As to reasonable NH4+ levels (8% of total ions) in PM2.5, this may be due to 

presence of ammonia gas from biomass burning especially during smoldering combustion 

(Andreae & Merlet, 2001) and from agricultural activities in particular cattle raising (Street 

et al., 2003; Stone et al., 2010). Water-soluble K+, a good indicator for biomass burning, was 

second most abundant cation in PM2.5 accounted for 10.6% of total water-soluble ions.  

For SO42– the higher levels could be attributed to its efficient formation by in-cloud 

processing of SO2 (Yao et al., 2003) and from secondary formation processes (Allen et al., 

2004). As to low NO3– levels, this is likely due to the fact that the site is rural with little or no 

traffic and undoubtedly there are less anthropogenic emissions of precursor gas NOx. Also 

as to low concentrations of Na+ which is mainly derived from sea-salt, this is presumably 

due to long distance (about 200 km) from the Indian Ocean to our sampling site. The 

observed levels for water-soluble ions are comparable with those reported in our previous 

work in Morogoro (Mkoma et al., 2009a; Mkoma et al., 2010). It appears that the levels of 
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SO42−, NO3−, and NH4+ in PM10 fractions are substantially lower in Tanzania than at 

European rural sites (Putaud et al., 2004) and Asia (Aggarwal & Kawamura, 2009; Pavuluri 

et al., 2011).  

 

Species PM2.5 PM10 

 Mean SD Min. Max. Rel. Ab. Mean SD Min. Max. Rel. Ab. 

PM mass 

(μg/m3) 

13.3 3.5 8.2 19.5 - 16.2 2.3 12.5 20.5 - 

Carboxylates ions (ng/m3) 

Formate, FA 0.71 0.30 0.38 1.27 3.00 1.2 0.6 0.5 2.6 3.4 

Acetate, Ac 5.4 2.2 0.4 7.8 22.9 22.7 3.3 16.3 27.5 62.5 

Oxalate, Oxa 7.7 2.7 4.7 13.1 32.5 11.8 7.2 4.5 31.0 32.6 

Malonate, Mal 7.5 3.9 4.8 18.3 31.8 - - - - - 

Succinate, Suc - - - - - 1.6 2.4 0.2 6.5 4.5 

Pyruvate, Pyr 2.4 0.7 1.5 3.8 9.9 2.2 0.7 0.9 3.3 6.1 

Total carboxylate 23.7 6.5 13.3 36.5 - 36.4 12.0 10.7 58.2 - 

Water-soluble ions (ng/m3) 

NH4+ 37.8 11.7 21.0 66.5 8.4 26.2 12.5 10.7 54.0 4.1 

NO3– 4.5 1.6 1.2 8.0 1.0 25.1 12.4 10.5 52.0 3.9 

SO42– 102 27 69.1 160 22.8 237 125 38.8 487 36.6 

Cl– 2.3 0.4 1.6 3.1 0.5 9.6 5.7 3.3 20.2 1.5 

Na+ 15.6 2.5 13.2 21.5 3.5 98.5 42.0 41.1 174.8 15.2 

K+ 47.5 24.1 22.0 97.0 10.6 37.6 28.2 6.3 88.5 5.8 

Mg2+ 199 33.7 155 265 44.4 158 69 16.4 228 24.5 

Ca2+ 39.3 8.5 28.1 58.8 8.8 56.2 42.9 1.0 107 8.7 

Total ions 448 88 348 585 - 646 214 256 1108 - 

Rel. Ab. = Relative abundances 

Table 1. Mean concentrations, ranges and relative abundances (%) of carboxylates and water-soluble 

inorganic ions in PM2.5 and PM10 aerosols from Morogoro. 

To determine the impact of marine sources on chemical composition of aerosol particles 

in PM2.5 and PM10 fractions, sea-salt ratios were calculated for each inorganic ion using 

Na as a reference element, assuming all Na to be of marine origin. The ratios for Cl–/Na+, 

SO42–/Na+, K+/Na+, Mg2+/Na+ and Ca2+/Na+ in PM2.5 were 0.15 (0.25), 6.48 (1.81), 2.95 

(0.04), 12.97 (0.04), 2.44 (0.12), respectively. The corresponding values in PM10 were 0.10 

(0.25), 2.51 (1.81), 0.43 (0.04), 1.68 (0.04), 0.75 (0.12), respectively. Values in brackets 

represent average ratios for each ion in sea-water (Brewer, 1975). Larger ratios of ions 

indicate incorporation of non-marine constituents in aerosols. As to low mean Cl–/Na+ 

ratios than sea-water ratio indicates that a minor fraction of Na+ may be contributed from 

other sources such as mineral dust. But also low ratio could be due to modifications of 

sea-salt fraction by non-marine constituents. Chloride loss may be explained by 
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heterogeneous reaction of airborne sea-salt with acidic gases and aerosol species 

(Millero, 2006).  

3.4. Time series of PM mass and selected aerosol species 

Time series of PM mass, selected acids and ions species in PM2.5 and PM10 fractions as a 

function of sampling time are shown in Figs. 2 and 3. Nss-SO42– in Fig. 2 was hereby 

obtained by subtracting sea-salt contribution from measured SO42– data. Sea-salt 

contribution of SO42– was obtained as 0.252Na+, whereby Na+ is the measured concentration 

of Na+ and 0.252 is SO42–/Na+ ratio in the bulk seawater composition given by Riley and 

Chester (1971). As can be observed in Fig. 2, selected species in both size fractions showed 

no clear trends that can be noted but showed slightly variation during sampling period 

especially for PM10 aerosols. The observed behaviour of the species could be resulted from 

variations in sources strengths and meteorological conditions, such as mixing height. 

Additionally, high relative humidity (mean: 73%) during the campaign could serve as 

removal mechanisms hence lead to a daily variation in carboxylates levels.  

In this study, oxalate concentrations were high to a factor of 10 than those of formate during 

the sampling period and in both PM2.5 and PM10 aerosol particles. These results indicate 

that formate was mainly from photochemical oxidation, while oxalates might have other 

sources besides photochemical oxidation. On the other hand, the concentrations of acetate 

were high than those of oxalate. Acetic acid in the atmosphere has been reported to be 

produced by oxidations of longer-chain dicarboxylic acids (Kawamura et al., 1996). 

Therefore, the observed acetate levels suggest that longer-chain dicarboxylic acids were 

possibly available at our site. Unfortunately, no data for high molecular weight dicarboxylic 

acids measured for the campaign.  

 

Figure 2. Time series of PM mass, carboxylates and nss-SO42− in PM2.5 fraction at Morogoro 
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Figure 3. Time series of PM mass, carboxylates and Na+ and Cl− in PM10 fraction at Morogoro 
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emissions and crustal source could be an important source for K+ aerosols at this site with 

small impact from biomass burning activities. 

 

Figure 4. Mean contribution (%) of PM2.5 aerosols mass and selected aerosol species in PM10 fraction 

during the campaign in Morogoro.  
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Correlation coefficients of PM mass, carboxylates and source indicators, shown in Table 2 

were performed in order to understand their possible sources and formation mechanisms. 
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were possible similar sources for formate and other carboxylates (oxalate, Succinate and 

pyruvate) as verified by good correlation between them in PM2.5 and PM10 aerosols. 

Pyruvate shows good correlation with acetate (r2 = 54) and succinate (r2=51) in PM10 

aerosols. These indicate a feature of photochemical decomposition of succinic acid (Yao et 

al., 2002).  
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amount in PM10 aerosol and to slightly extent Cl−, suggesting sea spray could be one of the 

contributing sources of the aerosol components at the site. But even though Na+ correlate 

well (r2=73) with Cl−, the calculated Cl− to Na+ mass ratio to sea-salt component in aerosol 

particles had mean value between 0.15 (PM2.5) and 0.10 (PM10). This suggest that 

continental contributions was most important than marine contribution since Cl−/Na+ ratio 

in marine aerosols varies between 1.0 and 1.7 (Chesselet et al., 1972). 

Sulphate has been used as reference to investigate major formation routes of carboxylic 

acids (Yu et al., 2005). As shown in Table 2, formate and pyruvate showed good correlation 

with SO42− in PM2.5, suggesting that in-cloud and heterogeneous formations play an 

important role in the formation of carboxylates. On the other hand, poor correlation of 

malonic with SO42− in PM2.5 suggests that possibly the acid is volatile at ambient 

temperatures (Peng et al., 2001). Acetate and oxalate showed poor correlations with SO42− in 

both aerosol fractions, indicating that they mainly originated from primary emissions 

sources and/or the atmospheric processes different from those of SO42−. This is contrary to 

what have been observed in other studies that in-cloud and heterogeneous formations can 

yield a good correlation between oxalate and SO42− (Yu et al., 2005).  

Wind speed poorly correlated with most carboxylates except with acetate (r2=51) in PM10 

aerosols. This indicates that in addition to secondary formation carboxylates were mainly 

generated from local sources, while acetate might be related to long range aerosols transport 

to the sampling site. It should also be noted that primary emissions are major sources of 

precursors for most carboxylic acids (Kawamura & Yasui, 2005). 

 

Species  FA Ac Oxa Mal Suc Pyr SO42− NO3− Cl− Na+ K+ Ca2+ WS 

FA  0.26 0.10 0.19 − 0.91 0.60 0.31 0.10 − 0.38 − -0.23 

Ac 0.42  0.21 0.11 − 0.28 -0.04 0.45 0.27 − -0.09 − -0.21 

Oxa 0.77 0.29  0.31 − 0.11 0.34 0.23 0.17 − 0.30 − -0.07 

Mal − − −  − 0.17 0.17 0.51 0.33 − 0.13 − 0.08 

Suc 0.57 0.42 -0.11 −  − − − − − − − − 
Pyr 0.48 0.54 0.13 − 0.51  0.52 0.21 -0.01 − 0.31 − -0.20 

SO42− − 0.26 0.30 − 0.31 -0.10  -0.16 -0.06 − 0.93 − 0.06 

NO3− 0.88 0.17 0.74 − 0.55 0.30 0.11  0.78 − -0.41 − -0.03 

Cl− 0.55 -0.29 0.56 − 0.28 -0.11 0.05 0.81  − -0.26 − -0.12 

Na+ 0.81 0.18 0.74 − 0.39 0.36 0.23 0.87 0.73  − − − 
K+ 0.53 0.35 0.38 − 0.45 0.45 0.22 0.39 0.18 0.45  − -0.02 

Ca2+ 0.65 0.23 0.52 − 0.30 0.32 0.25 0.58 0.32 0.58 0.51  − 
WS -0.10 0.51 0.25 − -0.44 -0.23 0.28 -0.06 -0.08 -0.19 0.11 0.26  

WS = Wind speed 

Table 2. Correlation coefficients for PM mass, carboxylates, selected ions and wind speed in PM2.5 

(upper diagonal triangle) and PM10 fractions (lower diagonal triangle) in Morogoro. Correlation 

coefficients that are larger than 0.50 are indicated in bold. 
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3.6.2. Concentrations ratios 

The ratio of acetic to formic acid has been used as good indicator of contributions of primary 

(high ratio) and secondary sources (low ratio) to carboxylic acids (Talbot et al., 1988, 1990; 

Grosjean, 1992). As can be seen in Table 3, low acetate/formate ratios for both PM2.5 and 

PM10 aerosols particles indicate that secondary formation was an important contributing 

source of carboxylates at our site. This suggestion is supported by the fact that high mean 

average temperature during sampling period (mean: 26.8 oC) might be controlling factor in 

determining the contribution of primary and secondary sources to these carboxylates. 

However, there are various types of the atmospheric reactions forming carboxylic acids (e.g. 

formic, acetic, and oxalic) in urban and near urban atmospheres, which include oxidation of 

unsaturated fatty acids originating from cooking activities, ozone oxidation of olefins 

emitted from vehicular exhausts (Scheff & Wadden, 1993) and oxidation of aromatic 

hydrocarbons (Kawamura & Ikushima, 1993).  

The ratio of oxalic acid to total dicarboxylic acid (for this study oxalic, malonic, succinic 

acids) can be used to evaluate aging process of organic aerosols (Kawamura & Sakaguchi, 

1999), because diacid such as oxalic acid can be produced by oxidations of longer-chain 

dicarboxylic acids (Kawamura et al., 1996). In this study oxalate to total dicarboxylates ratios 

show low values in both aerosol fractions, indicating that aerosols emitted from various 

sources and transported to this site were less and equally aged. Since there relative humidity 

was high during the campaign (up to 73% on average), it is supposed that oxalate was also 

produced in aqueous phase. Aqueous phase chemistry in aerosol and/or cloud droplets is 

important in production of oxalic acid (Warneck, 2003). On the other hand, mean ratio of 

oxalate to K+ in PM2.5 aerosols was 0.19±0.08, somewhat close to or higher than those 

reported range (0.03−0.1) for flaming and smoldering phases in burning plumes (Yamasoe et 

al., 2000). This suggests that carboxylates might be originated from biogenic sources with 

contribution from biomass burning emissions. 

 

Ratio PM2.5 PM10 

 Mean±Stdev Range Mean±Stdev Range 

Acetate/Formate 0.24±0.31 0.07−1.07 0.05±0.03 0.03−0.10 

Oxalate/Total dicarboxylates 0.33±0.08 0.23−0.49 0.33±0.17 0.15−0.83 

Oxalate/K+ 0.19±0.08 0.07−0.36 − − 

Table 3. Mean ratios and ranges for carboxylates and K+ in PM2.5 and PM10 aerosols in Morogoro.  

4. Conclusion  

PM2.5 and PM10 aerosols samples were collected from a rural site Morogoro, Tanzania and 

analysed for low molecular weight carboxylates and water-soluble inorganic ions. Oxalate 

and malonate were dominant species in PM2.5 while acetate was most prominent species in 
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PM10 aerosols followed by oxalate. Of the ionic components, SO42−, K+, and Mg2+ in PM2.5 

and SO42−, Na+, and Mg2+ in PM10 made lager contribution to total water-soluble inorganic 

aerosol mass. Various ratios and correlations between carboxylates and ions used for 

possible source identification suggest that primary emissions, secondary formation, and to a 

slightly extent sea spray and biomass burning could be the sources for the aerosols at this 

site. The ratio of acetate to formate was used to distinguish primary and secondary sources 

of these carboxylates and was found to be close to reported value for secondary reactions, 

indicating dominance of secondary sources. Substantial concentration of carboxylates and 

water-soluble ions observed in the Morogoro atmosphere suggest that it was urgent to 

study the characteristics and sources of these species to better understand their roles in the 

Tanzania environment. However, more work is needed to determine longer-chain (high) 

molecular weight carboxylic acids and related organic compounds and their seasonal 

variations in other urban and rural sites in Tanzania. 
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