
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter 3

Weight Changes for Learning Mechanisms in Two-
Term Back-Propagation Network

Siti Mariyam Shamsuddin,
Ashraf Osman Ibrahim and Citra Ramadhena

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51776

1. Introduction

The assignment of value to the weight commonly brings the major impact towards the
learning behaviour of the network. If the algorithm successfully computes the correct value
of the weight, it can converge faster to the solution; otherwise, the convergence might be
slower or it might cause divergence. To prevent this problem occurring, the step of gradient
descent is controlled by a parameter called the learning rate. This parameter will determine
the length of step taken by the gradient to move along the error surface. Moreover, to avoid
the oscillation problem that might happen around the steep valley, the fraction of last
weight update is added to the current weight update and the magnitude is adjusted by a
parameter called momentum. The inclusion of these parameters aims to produce a correct
value of weight update which later will be used to update the new weight. The correct value
of weight update can be seen in two aspects: sign and magnitude. If both aspects are proper‐
ly chosen and assigned to the weight, the learning process can be optimized and the solution
is not hard to reach. Owing to the usefulness of two-termBP and the adaptive learning meth‐
od in learning the network, this study is proposing the weights sign changes with respect to
gradient descent in BP networks, with and without the adaptive learning method.

2. Related work

Gradient descent technique is expected to bring the network closer to the minimum error
without taking for granted the convergence rate of the network. It is meant to generate the

© 2013 Mariyam Shamsuddin et al.; licensee InTech. This is an open access article distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

slope that moves downwardsalong the error surface to search for the minimum point. Dur‐
ing its movement, the points passed by the slope throughout the iterations affect the magni‐
tude of the value of weight update and its direction. Later, the updated weight is used for
training the network at each epoch until the predefined iteration is achieved or the mini‐
mum error has been reached. Despite the general success of BP in learning, several major
deficiencies still need to be solved. The most notable deficiencies, according to reference [1],
are the existence of temporary local minima due to the saturation behaviour of activation
function. The slow rates of convergence are due to the existence of local minima and the
convergence rate is relatively slow for a network with more than one hidden layer. These
drawbacks are also acknowledged by several scholars [2-5].

Error function plays a vital role in the learning process of two-termBP algorithm. A side
from calculating the actual error from the training, it assists the algorithm in reaching the
minimum point where the solution converges by calculating its gradient and back propaga‐
tion to the network for weight adjustment and error minimization. Hence, the problem of
being trapped in local minima can be avoided and the desired solution can be achieved.

The movement of the gradient on the error surface may vary in term of its direction and
magnitude. The sign of the gradient indicates the direction it moves and the magnitude of
the gradient indicates the step size taken by the gradient to move on the error surface. This
temporal behaviour of the gradient provides insight about conditions on the error surface.
This information will then be used to perform a proper adjustment of the weight, which is
carried out by implementing a weight adjustment method. Once the weight is properly ad‐
justed, the learning process takes only a short time to converge to the solution. Hence, the
problem faced by two-termBP is solved. The term “proper adjustment of weight” here refers
to the proper assignment of magnitude and sign to the weight, since both of these factors
affect the internal learning process of the network.

Aside from the gradient, there are some factors that play an important role in the assign‐
ment of proper change to the weight specifically in term of its sign. These factors are the
learning parameters such as learning rate and momentum. Literally, learning rate and mo‐
mentum parameters hold an important role in the two-term BP training process. Respective‐
ly, they control the step size taken by the gradient along the error surface and speed up the
learning process. In a conventional BP algorithm, the initial value of both parameters is very
critical since it will be retained throughout all the learning iterations. The assignment of
fixed value to both parameters is not always a good idea,bearing in mind that the error sur‐
face is not always flat or never flat. Thus, the step size taken by the gradient cannot be simi‐
lar over time. It needs to take into account the characteristics of the error surface and the
direction of movement. This is a very important condition to be taken into consideration to
generate the proper value and direction of the weight. If this can be achieved, the network
can reach the minimum in a shorter time and the desired output is obtained.

Setting a larger value for the learning rate may assist the network to converge faster. How‐
ever, owing to the larger step taken by the gradient, the oscillation problem may occur and
cause divergence or in some cases, we might overshoot the minimum. On the other hand, if
the smaller value is assigned to the learning rate, the gradient will move in the correct direc‐

Artificial Neural Networks – Architectures and Applications54

tion and gradually reach the minimum point. However, the convergence rate is compro‐
mised owing to the smaller steps taken by the gradient. On the other hand, the momentum
is used to overcome the oscillation problem. It pushes the gradient to move up the steep val‐
ley in order to escape the oscillation problem, otherwise the gradient will bounce from one
side of the surface to another. Under this condition, the direction of gradient changes rapid‐
ly and may cause divergence. As a result, the computed weight update value and direction
will be incorrect, which affects the learning process. It is obviously seen that the use of a
fixed parameter value is not efficient. The obvious way to solve this problem is to imple‐
ment an adaptive learning method to produce the dynamic value of learning parameters.

In addition, the fact that the two-term BP algorithm uses the uniform value of learning rate
may lead to the problem of overshooting minima and slow movement on the shallow sur‐
face. This phenomenon may cause the algorithm to diverge or converge very slowly to the
solution owing to the different step size taken by each slope to move in a different direc‐
tion. In [6] has proposed a solution to these matters, called the Delta-Bar-Delta (DBD) algo‐
rithm. The method proposed by the author focuses on the setting of a learning rate value
for each weight connection. Thus, each connection will have its own learning rate. Howev‐
er, this method still suffers from certain drawbacks. The first drawback is that the method
is not efficient to be used together with the momentum since sometimes it causes diver‐
gence. The second drawback is the assignment of the increment parameter which causesa
drastic increment on the learning rate so that the exponential decrement does not bring a
significant impact to overcome a wild jump. For these reasons, [7] proposed an improved
DBD algorithm called the Extended Delta-Bar-Delta (EDBD) algorithm. EDBD implements
a similar notion of DBD and adds some modifications to it to alleviate the drawbacks faced
by DBD, and demonstrates a satisfactory learning performance. Unlike DBD, EDBD pro‐
vides a way to adjust both learning rate and momentum for individual weight connection,
and its learning performance is thus superior to DBD. EDBD is one of many adaptive learn‐
ing methods proposed to improve the performance of standard BP. The author has pro‐
ven that the EDBD algorithm outperforms the DBD algorithm. The satisfactory performance
tells us that the algorithm performssuccessfully and well in generating proper weight with
the inclusion of momentum.

[8] has proposed the batch gradient descent method momentum, by combining the momen‐
tum with the batch gradient descent algorithm. Any sample in the network cannot have an
immediate effect, however; it has to wait until all the input samples are in attendance. If that
happens, then we accumulate the sum of all errors, and finally focus on the right to modify
the weights to enhance the convergence rate accordingto the totalerror. The advantages of
this method are faster speed, fewer iterations and smoother convergence. On the other hand,
[9] has presented a new learning algorithm for a feed-forward neural network based on the
two-termBP method using an adaptive learning rate. The adaptation is based on the error
criteria where error is measured in the validation set instead of the training set to dynami‐
cally adjust the global learning rate. The proposed algorithm consists of two phases. In the
first phase, the learning rate is adjusted after each iterationso that the minimum error is
quickly attained. In the second phase, the search algorithm is refined by repeatedly revert‐
ing to previous weight configurations and decreasing the global learning rate. The experi‐

Weight Changes for Learning Mechanisms in Two-Term Back-Propagation Network
http://dx.doi.org/10.5772/51776

55

mental result shows that the proposed method quickly converges and outperforms two-
term BP in terms of generalization when the size of the training set is reduced. [10] has
improved the convergence rates of the two-term BP model with some modifications in
learning strategies. The experiment results show that the modified BP improved much bet‐
ter compared with standard BP.

Meanwhile, in [11] proposed a differential adaptive learning rate method for BP to speed up
the learning rate. The proposed method employs the large learning rate at the beginning of
training and gradually decreases the value of learning rate using differential adaptive meth‐
od. The comparison made between this method and other methods, such as two-term BP,
Nguyen-Widrow Weight Initialization and Optical BP shows that the proposed method out‐
performs the competing method in terms of learning speed.

[5] proposed a new BP algorithm with adaptive momentum for feed-forward training.
Based on the information of current descent direction and last weight increment, the mo‐
mentum coefficient is adjusted iteratively. Moreover, while maintaining the stability of the
network, the range for the learning rate is widened after the inclusion of the adaptable mo‐
mentum. The simulation results show that the proposed method is superior to the conven‐
tional BP method where fast convergence is achieved and the oscillation is smoothed.

[12] presented an improved training algorithm of BP with a self-adaptive learning rate. The
function relationship between the total quadratic training error change and the connection
weight and bias change is acquired based on the Taylor formula. By combining it with
weight and bias change in a batch BP algorithm, the equations to calculate a self-adaptive
learning rate are obtained. The learning rate will be adaptively adjusted based on the aver‐
age quadratic error and the error curve gradient. Moreover, the value of the self-adaptive
learning rate depends on neural network topology, training samples, average quadratic er‐
ror and gradient but not artificial selection. The result of the experiment shows the effective‐
ness of the proposed training algorithm.

In [13] a fast BP learning method is proposed using optimization of the learning rate for
pulsed neural networks (PNN). The proposed method optimized the learning rate so as to
speed up learning in every learning cycle, during connection weight learning and attenua‐
tion rate learning for the purpose of accelerating BP learningina PNN.The authors devised
an error BP learning method using optimization of the learning rate. The results showed
that the average number of learning cycles required in all of the problems was reduced by
optimization of the learning rate during connection weight learning, indicating the validity
of the proposed method.

In [14], the two-term BP is improvedso that it can overcome the problems of slow learning
and is easy to trap into the minimum by adopting an adaptive algorithm.The method di‐
vides the whole training process into many learning phases. The effects will indicate the di‐
rection of the network globally. Different ranges of effect values correspond to different
learning models. The next learning phase will adjust the learning model based on the evalu‐
ation effects according to the previous learning phase.

Artificial Neural Networks – Architectures and Applications56

We can infer from previous literature that the evolution of the improvement of BP learning
for more than 30 years still points towards the openness of contribution in enhancing the BP
algorithm in training and learning the network especially in terms of weight adjustments.
The modification of the weight adjustment aims to update the weight with the correct value
to obtain a better convergence rate and minimum error. This can be seen from various stud‐
ies that significantly control the proper sign and magnitude of the weight.

3. Two-TermBack-Propagation (BP) Network

The architecture of two-term BP is deliberately built in such away that it resembles the struc‐
ture of neuron. It contains several layers where each layer interacts with the upper layer
connected to it by connection link. Connection link is specifically connecting the nodes with
in the layers with the nodes in the adjacent layer that builds a highly inter connected net‐
work. The bottom-most layer, called the input layer, will accept and process the input and
pass the output to the next adjacent layer, called the hidden layer. The general architecture
of ANN is depicted in Figure1 [15].

Figure 1. ANN architecture

where,

i is the input layer.

j is the hidden layer and

k is the output layer.

The input layer has M neurons and input vector X = [x1 , x2 ,…, xM] and the output layer
has L neurons and has output vector Y=[y1 , y2 ,…, yL] while the hidden layer has Q
neurons.

Weight Changes for Learning Mechanisms in Two-Term Back-Propagation Network
http://dx.doi.org/10.5772/51776

57

The output received from the input layer will be processed and computed mathematically in
the hidden layer and the output will be passed to the output layer. In addition, BP can have
more than one hidden layer but it creates complexity in training the network. One reason for
this complexity is the existence of local minima compared with the one with one hidden lay‐
er. The learning depends greatly on the initial weight choice to lead to convergence.

Nodes in BP can be thought of a sun its that process in put to produce output. The output
produced by the node is affected largely by the weight associated with each link. In this
process, each input will be multiplied with weight associated with connection link connect‐
ed to the node and added with bias. Weight is used to determine the strength of the output
to be closer to the desired output. The greater the weight, the greater the chance of the out‐
put being closer to the desired output. The relationship between the weight, connection link
and the layers can be shown in Figure 2 in reference [16].

Figure 2. Connection links, weights and layers.

Once the output arrives at the hidden layer, it will be summed up to create a net.This is
called linear combination. The net is fed to activation function and the output will be passed
to the output layer. To ensure the learning takes place continuously, in the sense that the
derivative of error function can keep moving down hillon the error surface in searching for
the minimum, the activation function needs to be a continuous differentiable function. The
most commonly used activation function is the sigmoid function, which limits the output
between 0 and 1.

net j =∑
i

W ijOi + θi (1)

O j = 1

1 + e
-net j

 (2)

Artificial Neural Networks – Architectures and Applications58

where,

net j is the summation of the weighted input added with bias,

W ij is the weight associated at the connection link between nodes in the input layeriand no‐
des in

hidden layer j,

Oi is the input at the nodes in input layeri,

θi is the bias associated at each connection link between input layeriandhidden layerj,

O j is the output of activation functionat hidden layer j

Other activation functions that are commonly used are the logarithmic,tangent, hyperbolic
tangent functions and many more.

The output generated by activation functionis forwarded to the output layer. Similar to in‐
put and hidden layers, the connection link that connects the hidden and output layers is as‐
sociated with weight. Activated output received from the hidden layer is multiplied by
weight. Depending on the application, the number of nodes in the output layer may vary. In
a classification problem, the output layer only consists of one node to produce the result of
either yes or no or abinary numbers. All the weighted outputs are added together and this
value will be fed to the activation function togener ate the final output. Mean Square Error is
used as an error function to calculate the error at each iteration using the target output and
the final calculated output of the learning at each iteration. If the error is still larger than the
predefined acceptable error value, the training process continues to the next iteration.

net k =∑
j

W jkO j + θk (3)

Ok = 1

1 + e
-net k (4)

E = 1
2∑

k
(tk - ok)2

(5)

where,

net k is the summation of weighted output at the output layer k,

O j isthe output at nodes in hidden layer j,

W jk is the weight associated to connection link between the hidden layer j and

the output layer k,

E is the error function of the network (Mean Square Error),

Weight Changes for Learning Mechanisms in Two-Term Back-Propagation Network
http://dx.doi.org/10.5772/51776

59

t k is the target output at output layer k,

θk is the bias associated to each connection link between the hidden layer

j and the output layer k,

O k is the final output at the output layer.

A large value of error obtained at the end of each iteration denotes the deviation of learning
where the desired output has not been achieved. To solve this problem, the derivative of er‐
ror function with respect to weight is computedand back-propagated to the layers to com‐
pute the new weight value at each connection link. This algorithm is known as the delta
rule, which employs the gradient descent method. The new weight is expected to be a cor‐
rect weight that can produce the correct output. For weight associated to each connection
link between output layer k to hidden layer j, the weight incremental value is computed us‐
ing a weight adjustment equation as follows:

∆W kj(t)= - η ∂ E
∂W kj

+ β∆W kj(t - 1) (6)

where,

∆W kj(t) is the weight incremental value at tth iteration

ηis the learning rate parameter

- ∂ E
∂W kj

 is the negative derivative of error function with respect to weight

β is the momentum parameter

 ∆W kj(t - 1) is the previous weight incremental value at (t-1)th iteration

By applying the chain rule,we can simplify the negative derivative of error function with re‐
spect to weight as follows:

∂ E
∂W kj

= ∂ E
∂net k

∙
∂net k

∂W kj
 (7)

Substituting Equation (3) into Equation (6), we get,

∂ E
∂W kj

= ∂ E
∂net k

∙O j (8)

∂ E
∂net k

= δk (9)

Thus, by substituting Equation (9) into Equation (8), we get,

Artificial Neural Networks – Architectures and Applications60

∂ E
∂W kj

= δk ∙O j (10)

Simplifying Equation (9) to be as follows:

δk = ∂ E
∂net k

= ∂ E
∂Ok

∙
∂Ok

∂net k
 (11)

∂Ok

∂net k
= Ok (Ok - 1) (12)

Substituting Equation (12) into Equation (11) yields,

∂ E
∂net k

= ∂ E
∂Ok

∙Ok (Ok - 1) (13)

∂ E
∂Ok

= - (tk - Ok) (14)

Substituting Equation (14) in to Equation (13), we get error signal at output layer

δk = ∂ E
∂net k

= - (tk - Ok)∙Ok (Ok - 1) (15)

Thus, by substituting Equation (15) into Equation (6), we get the weight adjustment equa‐
tion forweight associated to each connection link between output layer k to hidden layer j
with simplified negative derivative error function with respect to weight,

∆W kj(t)= η(tk - Ok)∙Ok (Ok - 1)∙O j + β∆W kj(t - 1) (16)

On the other side, the error signal is back-propagated to bring impact to the weight between
input layer i and hidden layer j. The error signal at hidden layerjcan be written as follows:

δ j = (∑
k

δkW kj) O j
(1 - O j) (17)

Based on Equation(10) and the substitution of Equation(17) in to Equation(6),the weight ad‐
justment equation for the weights associated to each connection link between input layer I
and hidden layer j is as follows:

∆W ji(t)= η(∑
k

δkW kj)O j(1 - O j)∙Oi + β∆W ji(t - 1) (18)

Where,

Weight Changes for Learning Mechanisms in Two-Term Back-Propagation Network
http://dx.doi.org/10.5772/51776

61

 ∆W ji(t) is the weight incremental value at tth iteration,

 O i is the input at nodes in input layer i.

The values obtained from Equation (16) and Equation (18) are used to update the value of
weights at each connection link. Let t refer to tth iteration of training; the new weight value
at (t+1)th iteration associated to each connection link between output layer to hidden layer j
is calculated as follows:

W kj(t + 1)= ∆W kj(t) + W kj(t) (19)

Where,

W kj(t + 1) is the new value for weight associated to each connectionlinkbetween output lay‐
er k and hidden layer j,

W kj(t) is the current value of weight associated to each connection linkbetween output layer
k and hidden layer j at t th iteration

Meanwhile, the new weight value at (t-1)th iteration for the weight associated at each con‐
nection link between hidden layer j and the input layer i can be written as follows:

W ji(t + 1)= ∆W ji(t) + W ji(t) (20)

Where,

W ji(t + 1) is the new value for the weight associated to each connection linkbetween hidden
layer j and input layer i,

 W ji(t) is the current value of weight associated to each connection link between hidden lay‐
er j and input layer i.

The gradient of error function is expected to move down the error surface and reach the
minima point where the global minimum resides. Owing to the temporal behaviour of gra‐
dient descent and the shape of the error surface, the step taken to move down the error sur‐
face may lead to the divergence of the training. Many reasons can cause this problem but
one of the misovershooting the local minima where the desired output lies. This may hap‐
pen when the step taken by the gradient is large. However, a large step can lead the network
to converge faster but when it moves down along the narrow and steep valley, the algo‐
rithm might go in the wrong direction and bounce from one side across to the other side.In
contrast, a small step can direct the algorithm to the correct direction but the convergencer‐
ate is compromised. The learning time becomes slower since more instances of training are
needed to achieve minimum error. Thus, the difficulty of this algorithm lies in controlling
the step and direction of the gradient along the error surface. For this reason a parameter
called the learning rate is used in weight adjustment computation. The choice of learning
rate value is application-dependent and most cases are based on experiments. Once the cor‐

Artificial Neural Networks – Architectures and Applications62

rect learning rate is obtained, the gradient movement can produce the correct new weight
value to produce the correct output.

Owing to the problem of oscillation in the narrow valley, another parameter is needed to
keep the gradient moving in the correct direction so that the algorithm will not suffer from
wide oscillation. This parameter is called momentum. Momentum brings the impact of pre‐
vious weight change to the current weight change by which the gradient will move uphill
escaping the oscillation along the valley. The incorporation of two parameters in the weight
adjustment calculation produces a great impact on the convergence of the algorithm and
problem of local minima if they are tuned to the correct value.

4. Weight Sign and Adaptive Methods

The previous sections have discussed the role of parameters in producing the increment val‐
ue of weight through the implementation of a weight adjustment equation. As discussed be‐
fore, learning rate and momentum coefficient are the most commonly used parameters in
two-term BP. The use of a constant value of parameter is not always a good idea. In the case
of learning rate, setting up a smaller value to learning rate may decelerate the convergence
speed even though it can guarantee that the gradient will move in the correct direction. On
the contrary, setting up a larger value to learning rate may fasten the convergence speed but
is prone to an oscillation problem that may lead to divergence. On the other hand, the mo‐
mentum parameter is introduced to stabilize the movement of gradient descentin the steep‐
est valley by overcoming the oscillation problem. In [15] stated that assigning too small a
value to the momentum factor may decelerate the convergence speed and the stability of the
network is compromised, while too large a value for the momentum factor results in the al‐
gorithm giving excessive emphasis to the previous derivatives that weaken the gradient de‐
scent of BP. Hence, the author suggested the use of a dynamic adjustment method for
momentum. Like the momentum parameter, the value of the learning rate also needs to be
adjusted at each iteration to avoid the problem produced by having a constant value
throughout all iterations.

The adaptive parameters (learning rate and momentum) used in this study are implemented
to assist the network in controlling the movement of gradient descent on the error surface
which primarily aims to attain the correct value of the weight.

The correct increment value of weight will be used later to update the new value of weight.
This method will be implemented to two-term BP algorithmwith MSE. The adaptive method
assists in generating the correct sign value for the weight, which is the primary concern of
this study.

The choice of the adaptive method focuses on the learning characteristic of the algorithm
used in this study, which is batch learning. In [17] gave a brief definition of online learning
and the difference with batch learning. The author defined online learningas a scheme for
updating weight that updates weight after every input-output case, while batch learning ac‐

Weight Changes for Learning Mechanisms in Two-Term Back-Propagation Network
http://dx.doi.org/10.5772/51776

63

cumulates error signals over all input-output cases before updatingweight.In otherwords,
online learningupdates weight after the presentation of each input and target data. The
batch learning method reflects the true gradient descent where, asstated in reference [18],
each weight update tries to minimize the error.The author also stated that the summed gra‐
dient information for the whole pattern set provides reliable information regarding the
shape of the whole error function.

With the task of pointing out the temporal behaviour of gradient of error functionanditsrela‐
tiontothechangeofweightsign,theadaptivelearning method used in this study is adopted
from the paper written by reference [7]entitled “Back-Propagation Heuristics: A Study of the
Extended Delta-Bar-Delta Algorithm”. The author proposed an improvement of the DBD al‐
gorithm proposed in reference [6], called the Extended Delta-Bar-Delta (EDBD) algorithm,
where the improved method provide sa way of updating the value of momentum for each
weight connection a teach iteration. Since EDBD is anextension of DBD, it implements a sim‐
ilar notion to DBD. It exploits the information of the sign of past and current gradients. The
sign information of past and current gradients becomes the condition for learning rate and
momentum adaptation. Moreover,the improved algorithm also providesace iling to prevent
the value of learning rate and momentum becoming too large. The detail edequations of the
method are described below:

∆w ji(t)= - η ji(t) ∂ E (t)
∂w ji

+ β ji(t)∆w ji(t - 1) (21)

Where,

η ji is the learning rate between ith input layer and jth hidden layer a t tthiteration

β ji(t) is the momentum between ith input layer andjth hidden layer at t th iteration

The updated value for learning rate and momentum can be written as follows.

∆ η ji(t)= {kl exp (- yl
|δ ji

-
(t)|) if δ ji

-
(t - 1)δ ji(t)>0

-∅l η ji
(t) if δ ji

-
(t - 1)δ ji(t)<0

0 otherwise

} (22)

∆β ji(t)= {km exp (- ym
|δ ji

-
(t)|) if δ ji

-
(t - 1)δ ji(t)>0

-∅mβ ji
(t) if δ ji

-
(t - 1)δ ji(t)<0

0 otherwise

} (23)

δ
-

ij(t)= (1 - θ)δij(t) + θδ
-

ij(t - 1) (24)

Artificial Neural Networks – Architectures and Applications64

η ji(t + 1)=MIN ηmax, ηji(t) + ∆ηji(t) (25)

βji(t + 1)=MIN βmax, βji(t) + ∆βji(t) (26)

Where,

kl , yl , ∅l are parameters for learning rate adaptive equation,

km , ym, ∅m are parameters for momentum adaptive equation,

θis the weighting on the exponential average of the past derivatives,

δ
-

ij is the exponentially decaying trace of gradient values,

δij is gradient value between i th input layer andj th hidden layer

at t th iteration,

βmax is the maximum value of momentum,

ηmax is the maximum value of learning rate.

The algorithm calculates the exponential average of past derivatives to obtain information
about the recent history of the direction in which the error is decreasing up to iteration
t.This information together with the current gradient is used to adjust the parameters’value
based on their sign. When the current and past derivatives possess the same sign, it shows
that the gradient is moving in the same direction. One can assume that in this situation, the
gradient is moving in the flat area at which the minimum lies ahead. In contrast, when the
current and past derivatives possess an opposite sign, it shows that the gradient is moving
ina different direction.

One can assume that in this situation,the gradient has jumped over the minimuma nd
weight needs to be decreased to solve this.

The increment of learning rate value is made proportional to exponentially decaying trace so
that the learning rate will increase significantly at a flat region and decrease at a steep slope.
To prevent the unbounded increment of parameters, the maximum value for learning rate
and momentum are set to act as a ceiling to both parameters.

Owing to the excellent idea and performance of the algorithmas has been proven in refer‐
ence [7], this method is proposed to assist the network in producing proper weight sign
change and achieving the purpose of this study.

5. Weights Performance in Terms of Sign Change and Gradient Descent

Mathematically, the adaptivemethodandtheBPalgorithm, specifically the weight adjustment
method described in Equations (19) and (20) used in this study, will assist the algorithm in

Weight Changes for Learning Mechanisms in Two-Term Back-Propagation Network
http://dx.doi.org/10.5772/51776

65

producing the proper weight. Basically, the adaptive methods are the transformation of the
author’s idea of an optimization conceptinto a mathematical concept. The measurement of
the success of the method and the algorithm as a whole can be done in many ways. Some of
them are carried out by analysing the convergence rate, the accuracy of the result, the error
value it produces and the change of the weight sign as a response to the temporal behaviour
of the gradient, etc. Hence, the role of the adaptive method that is constructed by using a
mathematical concept to improve the weight adjustment computation in order to yield the
proper weights will be implemented and examined in this study to check the efficiency and
the learning behaviour of both algorithms. The efficiency can be drawn from the criteria of
the measurement of success described earlier.

A simplicitly depicted from the algorithm, the process of generating the proper weight
stems from calculating it sup date value. This process is affected by various variables start‐
ing from the parameters up to the controlled variable such as gradient, previous weight in‐
crement value and error. They all play a great part in affecting the sign of the weight
produced, especially the partial derivative of error function with respectto weight (gradi‐
ent). In reference [15] briefly described the relationship between error curvature, gradient
and weight. The author mentioned that when the error curve enters the flat region, the
change of derivative and error curve are smaller and as a result, the change of the weight
will not be optimized. Moreover, when it enters the high curvature region, the derivative
change is large especially if the minimum point exists at this region, and the adjustment of
weight value is large which sometimes overshoots the minima. This problem can be alleviat‐
ed by adjusting the step size of the gradient and this can be done by adjusting the learning
rate. The momentum coefficient can be used to control the oscillation problem and its imple‐
mentation along with the proportional factor can speed up the convergence. In addition, in
[15] also gave the proper condition for the rate of weight and the temporal behaviour of the
gradient. The author wrote that if the derivative has the same symbol as the previous one,
then the sum of the weight is in creased, which makes the weight increment value larger
and yields the increment of weight rate. On the contrary, if the derivative has the opposite
sign to the previous one, the sum of the weight is decreased to stabilize the network. In [19]
also emphasized the causes of the slow convergence which in volve the magnitude and the
direction component of the gradient vector. The author stated that when the error surface is
fairly flat along the weight dimension, the magnitude of derivative of weight is small yields
small adjustment value of weight and many steps are required to reduce the error. Mean‐
while, when the error surface is highly curved along the weight dimension, the derivative of
weight is large in magnitude yields a large value of weight which may over shoot the mini‐
mum. The author also briefly discussed the performance of BP with momentum. The author
stated that when the consecutive derivatives of a weight possess the same sign, the exponen‐
tially weighted sum grows large in magnitude and the weight is adjusted by a large value.

On the contrary, when the signs of the consecutive derivatives of the weight are opposite,
the weighted sum is small in magnitude and the weight is adjusted by a small amount.
Moreover, the author raised the implementation of local adaptive methods such as Delta-
Bar-Delta which is originally proposed in reference [6]. From the descriptiongivenin [6], the

Artificial Neural Networks – Architectures and Applications66

learning behaviour of the network can be justified as follows: The consecutive weight incre‐
ment value that possesses the opposite sign indicates the oscillation of weight value which
requires the learning rate to be reduced. Similarly, the consecutive weight increment value
that possesses the same sign requires the incremental of the value of the learning rate. This
information will be used in studying the weight sign change of both algorithms.

6. Experimental Result and Analysis

This section discusses the result of the experiment and its analysis. The detailed discussion
of the experiment process covers its initial phase until the analysis is summarized.

The point of learning occurs when the difference between the calculate do utput and the de‐
sired output exists,otherwise there is no point of learning to take place. When the difference
does exist, the error signal is propagated back into the network to be minimized. The net‐
work will then adjust itself to compensate the lost during the training to learn better. This
procedure is carried out by calculating the gradient of error which mainly aimed to adjust
the value of the weight to be used for the next feed-forward training procedure.

By looking at the feed-forward computation in Equation (1) through Equation (5), the next
data train is fed again into the network and multiplied by the new weight value. The similar
feed-forward and backward procedures are performed until the minimum value of error is
achieved. A sa result,thetraining may take fewer or more iterations depending on the proper
adjustment of weight. There is no doubt that weight plays important role intraining. Its role
lies in determining the strength of the incoming signal (input) in the learning process.This
weighted signal will be accumulated and forwarded to the next adjacent upper layer.

Based on the influence of weight, this signal can bring a bigger or smaller influence to the
learning. When the weight is negative, the weight connection inhibits the input signal, and
thus it does not bring significant influence to the learning and output. As are sult, the other
nodes with positive weight will dominate the learning and the output. On the other hand,
when the weight is positive, the weight exhibits the input signal to bring significant impact
to the learning and the output and the respective node makes a contribution to the learning
and output. If the assignment results in large error, the corresponding weight needs to be
adjusted to reduce the error. The adjustment comprises magnitude and sign change.By
properly adjusting the weight, the algorithm can converge to the solution faster.

To have the clear idea of the impact of the weight sign in the learning,the assumption is
used: Let all value of weights be negative and using the equation written below, we obtain
the negative value of net.

net =∑
i

W iO + θ (27)

Weight Changes for Learning Mechanisms in Two-Term Back-Propagation Network
http://dx.doi.org/10.5772/51776

67

 O = 1
1 + e -net (28)

Feeding net into the sigmoid activation function Equation (28), we obtain the value of O
close to 0. On the other hand, Letall value of weights be negative and using the equation
below, we obtain the positive value ofnet.

Feeding net into the sigmoid activation function at equation (28), we obtain the value of O
close to1. From the assumption above, we can infer that by adjusting the weight with the
proper value and sign, the network can learn better and faster. Mathematically, the adjust‐
ment of weight is carried out by using the weight update method in and the current weight
value as written below.

∆W (t)= η(t)∇E(W (t)) + β(t)∆W (t - 1) (29)

W (t + 1)= ∆W (t) + W (t) (30)

It can be seen from Equation (29) and (30) that the rear evarious factors which influence the
calculation of the weight update value. The most notable factor is gradient descent. Each
gradient with respect to each weight in the network will be calculated and the weight up‐
date value is computed to update the corresponding weight. The negative sign is assigned
to a gradient to force it to move downhill along the error surface in the weight space. This is
meant to find the minimum point of the error surface where the set of optimal weight re‐
sides. With this optimal value, the goal of learning can be achieved. Another factor is the
previous weight update value.

According to reference [20], the role of the previous weight update value in the weight is to
bring in the fraction of the previous weight update value into the current weight to smooth
out the new weight value.

To have a significant impact on the weight update value, the magnitude of gradient and the
previous weight update value are controlled by learning parameters such as learning rate
and momentum. As in two-termBP, the values of learning rate and parameters are acquired
through experiments.The correct tuning of learning a parameter’s value can assist in obtain‐
ing the correct value and sign of weight update. Afterwards, it effects the calculation of the
new value of weight by using the weight adjustment method in Equation (30).

In experiments,a few authors have observed that the temporal behaviour of the gradient
does make a contribution to the learning. This temporal behaviour can be seen as the chang‐
ing of the gradient’s sign during its movement on the error surface. Owing to the curvature
on the error surface, the gradient behaves differently under certain conditions. In [6] stated
that when the gradient possesses the same sign in several consecutive iterations, it indicates
that the minimum lies ahead but when the gradient changes its sign in several consecutive
iterations, it indicates that the minimum has been passed. By using this information, we can
improve our wayto update the weight.

Artificial Neural Networks – Architectures and Applications68

To sum up, based on the heuristic that has been discussed, the value of weight should be
increased when the several consecutive signs of gradient remain the same and decreased if
the opposite condition occurs. However, that is not the sole determination of the sign. Other
factors such as LR,gradient, momentum, previous weight value and current weight value al‐
so play a greater role in affecting the weight changing sign and magnitude. The heuristic
given previously is merelyan indicator and information about gradient movement on the
surface and the surface itself by which we get a better understanding about the gradient and
the error surface so that we can arrive at the enhancement on gradient movement in the
weight space.

Through a thorough study on the weight change sign processon both algorithms, it can be
concluded that the information about the sign of past and current gradient is very helpful in
guiding us to improve the training performance which in this case refers to the movement of
gradienton the error surface. However, factors like gradient, learning rate, momentum, pre‐
vious weight update value and current weight value do have greater influence on the sign
and magnitude of the new value of weight. Besides that, the assignment of initial weight
value also needs to be addressed further.The negative as sign one at fifth iteration. value of
weight may lead the weight to remain negative on consecutive occasions when the gradient
possesses a negatives ign. As a result the node will not contribute much to the learning and
output. This can be observed from the weight update equation as follows.

∆W (t)= η(t)∇E(W (t)) + β(t)∆W (t - 1) (31)

At the initial training iteration,the errort end stobe large and so does the gradient. This large
value of gradient together with its sign will dominate the weight update calculation and
thus will bring a large change to the sign and magnitude of the weight. The influence of the
gradient through the weight update value can be seen from Equation (31) and the weight
adjustment calculation below.

W (t + 1)= ∆W (t) + W (t) (32)

If the value of initial weight is smallert han the gradient, the new weight update value will
be more likely affected by the gradient. As a result, the magnitude and sign of the weight
will be changed according to the fraction of the gradient since at this initial iteration,the pre‐
vious weight update value is set to 0 and leaves the gradient to dominate the computation of
weight up date value as shown by Equation (31). The case discussed before can be viewed in
this way. Assume that the random function assigns a negative value for one of the weight
connections at the hidden layer. Afterperforming the feed-forward process, the difference
between the output at output layer with the desired output is large. Thus, theminimization
method is performed by calculating the gradient with respect to the weight at hidden layer.
Since the error is large, the value of the computed gradient becomes large also. This can be
seen in the equation below.

Weight Changes for Learning Mechanisms in Two-Term Back-Propagation Network
http://dx.doi.org/10.5772/51776

69

δk = - (tk - Ok)∙Ok (Ok - 1) (33)

∇E (W (t))= (∑
k

δkW kj)O j
(1 - O j) (34)

Assume that from Equation (34), the gradient at hidden layer has a large positive value and
since it is at the initial state, the previous weight update value is set to 0 and according to
Equation (31), it does not contribute anything to the weight update computation. As the re‐
sult, the weight update value is largely influenced by the magnitude and sign of the gradi‐
ent (including the contribution of the learning rate in adjusting the step size of the gradient).
By performing the weight adjustment method described by Equation (32), the value of
weight update which is mostly affected by gradient will dominate the change of weight
magnitude and sign. However, this can be applied also to weight adjustment in the middle
of training, where the gradient and error are still large and the previous weight update val‐
ue is set to a certain amount.

We can see that the large value of error will affect the value of gradient where it will be as‐
signed with a relatively large value. This value will be used to fix the weight in the network
by propagating back the error signal to the network. As a result, the value and the sign of
weight will be adjusted to compensate the error. Another notice able conclusion attained
from the experiment is that when for consecutive iterations the gradient retains the same
signs,the weight value over the iterations is in creased while when the gradient changes its
signs for several consecutive iterations, the weight value is decreased. However,the change
of weight sign and magnitude is still affected by the parameters and factors included in
Equation (33) and (34) as explained before.

The following examples show the change of weight affected by the sign of gradient at con‐
secutive iterations and its value.The change of the weight is represented by a Hinton dia‐
gram. The following Hinton diagram is the representation of the weights in standard BP
with adaptive learning network on a balloon dataset.

The Hinton diagram in Figure 3 illustrates the sign and magnitude of all weights connection
between hidden and input layer as well as hidden and output layer at first iteration where
the light colour indicates the positive sign of weight and the dark colour indicates the nega‐
tive sign of weight.The size of the rectangle indicates the magnitude of the weight. The fifth
rectangles in Figure 3 are the bias connection between the input layer to the hidden layer;
however, the bias connection to the first hidden layer carries a small value so that its repre‐
sentation is not clearly shown in the diagram and its sign is negative. The biases have the
value of 1. The resulting error at the first iteration is still large, which is 0.1243.

The error decreases gradually from the first iteration until the fifth iteration. The changes on
the gradient are shown in the table below.

Artificial Neural Networks – Architectures and Applications70

Figure 3. Hinton diagram of all weights connection between input layer and hidden layer at first iteration on Bal‐
loon dataset

Input node 1 Input node 2 Input node 3 Input node 4 Bias

Iteration 1 Hidden node1 0.004 0.0029 0.0019 0.004 0.0029

Hidden node2 -0.007 -0.005 -0.0033 -0.0068 -0.005

Iteration 2 Hidden node1 0.0038 0.0027 0.0017 0.0039 0.0025

Hidden node2 -0.0063 -0.0044 -0.0028 -0.0062 -0.0042

Iteration 3 Hidden node1 0.0037 0.0025 0.0015 0.0039 0.0022

Hidden node2 -0.0053 -0.0037 -0.0022 -0.0055 -0.0032

Iteration 4 Hidden node1 0.0035 0.0023 0.0012 0.0038 0.0016

Hidden node2 -0.0043 -0.0029 -0.0016 -0.0046 -0.0021

Iteration 5 Hidden node1 0.0031 0.0019 0.0009 0.0036 0.0009

Hidden node2 -0.0032 -0.0021 -0.0009 -0.0037 -0.001

Table 1. The gradient value between input layer and hidden layer at iterations 1 to 5.

Hidden node 1 Hidden node 2 Bias

Iteration 1 Output node 0.0185 0.0171 0.0321

Iteration 2 Output node 0.0165 0.0147 0.0279

Iteration 3 Output node 0.0135 0.0117 0.0222

Iteration 4 Output node 0.0097 0.008 0.0151

Iteration 5 Output node 0.0058 0.0042 0.0078

Table 2. The gradient value between hidden layer and output layer at iterations 1 to 5.

Weight Changes for Learning Mechanisms in Two-Term Back-Propagation Network
http://dx.doi.org/10.5772/51776

71

Figure 4. Hinton diagram of weightconnections between inputlayer and hidden layer at fifth iteration.

From the table above we can infer that the gradient in the hidden layer moves in a different
direction while the one in the output layer moves in the same direction. Based on the heuris‐
tic,when each gradient moves in the same iteration for these consecutive iterations, the value
of weight needs to be increased. However, it still depends on the factors that have been
mentioned before. The impact on weight is given in the diagram below.

Figure 5. Hinton diagramof weight connections between inputlayer and hidden layer at 12th iteration.

Comparing the value of the weight in the fifth iteration with the first iteration, we can
infer that most of the magnitude of weight on the connection between input and hidden
layers in the fifth iteration becomes greater compared with that inthe first iteration. This

Artificial Neural Networks – Architectures and Applications72

shows that the value of weight is increased over iterations according to the sign of gradi‐
ent that is similar over several iterations. However, it is noticeable that the sign of the
weight between input node 4 and the first hidden node as well as bias at input layer to
first hidden node changes. This is due to the influence of the result of the multiplication
of large positive gradient and LR which dominates the weight update calculation, and
hence increases its magnitude and switches the weight direction. As a result, the error
decreases to 0.1158 from 0.1243.

Atiterations 12 and 16 the error gradient moves slowly along the shallow slope in the same
direction and brings smaller changes in gradient, weight and of course error itself. The
change in the gradient is shown in the table below.

It can be seen from the sign of the gradient that it differs from the one at iterations 1-5,
which means that the gradient at bias connection moves in a different direction. The same
thing happens with the gradient at the third node of input layer to all hidden nodes where
the sign changes from the one at fifth iteration. Another change occurs at the gradient in sec‐
ond input node to the first hidden node at iteration 16.

Input node 1 Input node 2 Input node 3 Input node 4 Bias

Iteration 12 Hidden node1 0.0017 0.0007 -0.0003 0.0026 -0.0013

Hidden node2 -0.0017 -0.001 0.0001 -0.0025 0.0006

Iteration 13 Hidden node1 0.0014 0.0005 -0.0006 0.0024 -0.0017

Hidden node2 -0.0016 -0.001 0.0003 -0.0025 0.0009

Iteration 14 Hidden node1 0.0011 0.0003 -0.0009 0.0022 -0.0021

Hidden node2 -0.0015 -0.0009 0.0005 -0.0025 0.0013

Iteration 15 Hidden node1 0.0008 0.0001 -0.0012 0.0021 -0.0028

Hidden node2 -0.0012 -0.0008 0.0009 -0.0025 0.0018

Iteration 16 Hidden node1 0.0005 -0.0001 -0.0016 0.0019 -0.0035

Hidden node2 -0.001 -0.0007 0.0013 -0.0025 0.0025

Table 3. The gradient value between input and hidden layer at iterations 12 to 16.

Owing to the change of gradient sign that has been discussed before, the change on weight
at this iteration is clearly seen in its magnitude. The weights are large in magnitude com‐
pared with the one at fifth iteration since some of the gradients have moved in the same di‐
rection. The bias connection to the first hidden node is not clearly seen since its value is very
small. However,its value is negative. For some of the weights, the changes in sign of the gra‐
dient have less effect on the new weight value since its value is very small. Thus, the sign of
the weights remains the same. Moreover, although the gradient sign of the third input node
and the first hidden node changes, the weight sign remains the same since the positive
weight updateat the previous iteration and the changes of gradient are very small. Thus, it
has a smaller impact on the change of weight although the weight update value is negative
or decreasing. At this iteration, the error decreases to 0.1116.

Weight Changes for Learning Mechanisms in Two-Term Back-Propagation Network
http://dx.doi.org/10.5772/51776

73

Besides the magnitude change,the obvious change is seen in the sign of weight of the first
input node to the second hidden node. It is positive at the previous iteration, but now it
turns to negative.

Figure 6. Hinton diagram of weight connections between input layer and hidden layer at 14th iteration.

Figure 7. Hinton diagram of weight connections between input layer and hidden layer at 1st iteration.

From the experiment, the magnitude of this weight decreases gradually in small numbers
over several iterations. This is due to the negative value of gradient at the first iteration.

Artificial Neural Networks – Architectures and Applications74

Since its initial value is quite big, thus, the decrement does not have a significant effect on
the sign. Moreover, since its value is getting smaller after several iterations, the impact of the
negative gradient can be seen in the change of the weight sign. The error at this iteration
decreases to 0.1089.

The next example is the Hinton diagram representing weights in standard BP with fixed pa‐
rameters network on Iris dataset.

Figure 8. Hinton diagram of weight connections between input layer and hidden layer at 11th iteration.

Input Node 1 Input Node 2 Input Node 3 Input Node 4 Bias

Iteration 1 Hidden Node 1 -0.018303748 -0.011141395 -0.008590033 -0.002383615 -0.003356197

Hidden Node 2 0.001416033 0.000224827 0.002969737 0.001394722 2.13E-05

Hidden Node 3 -0.001842087 -0.001514775 0.000163215 0.000251155 -0.000430432

Iteration 2 Hidden Node 1 -0.01660207 -0.010163722 -0.007711067 -0.002135194 -0.00304905

Hidden Node 2 0.001824512 0.000525327 0.003040339 0.001392819 0.000106987

Hidden Node 3 -0.001355907 -0.001195881 0.000330876 0.000285222 -0.000335039

Iteration 3 Hidden Node 1 -0.014965571 -0.009227058 -0.006852751 -0.001889934 -0.002755439

Hidden Node 2 0.002207694 0.000812789 0.003095022 0.001386109 0.000188403

Hidden Node 3 -0.000932684 -0.000914026 0.000466302 0.000309974 -0.000251081

Iteration 4 Hidden Node 1 -0.013416363 -0.008340029 -0.006036264 -0.00165541 -0.002478258

Hidden Node 2 0.002525449 0.001063613 0.003111312 0.001367368 0.000258514

Hidden Node 3 -0.000557761 -0.000660081 0.000576354 0.000327393 -0.000175859

Table 4. The gradient value between input and hidden layer at iterations 1-4

Weight Changes for Learning Mechanisms in Two-Term Back-Propagation Network
http://dx.doi.org/10.5772/51776

75

Input Node 1 Input Node 2 Input Node 3 Input Node 4 Bias

Iteration 11 Hidden Node 1 -0.006205968 -0.004164878 -0.002294527 0.000583307 -0.001184916

Hidden Node 2 0.003261605 0.001956214 0.00242412 0.000995646 0.000485827

Hidden Node 3 0.000946822 0.00043872 0.00083246 0.000312944 0.000141871

Iteration 12 Hidden Node 1 -0.00559575 -0.003804835 -0.001989824 -0.000497406 -0.001074373

Hidden Node 2 0.003205306 0.001986585 0.002247662 0.000920457 0.000488935

Hidden Node 3 0.001041566 0.000519475 0.000821693 0.000299802 0.000164175

Iteration 13 Hidden Node 1 -0.005055156 -0.003484476 -0.001722643 -0.000422466 -0.000976178

Hidden Node 2 0.003122239 0.001999895 0.002060602 0.00084271 0.000486953

Hidden Node 3 0.001115805 0.000586532 0.000804462 0.000285504 0.000182402

Iteration 14 Hidden Node 1 -0.004575005 -0.003198699 -0.001487817 -0.000356958 -0.000888723

Hidden Node 2 0.003016769 0.001998522 0.001865671 0.000763285 0.000480617

Hidden Node 3 0.001172258 0.000641498 0.000782111 0.000270422 0.000197051

Table 5. The gradient value between input and hidden layer at iterations 11-14

Atiteration 11 ,the most obvious change in sign is on the weight between the second input
node and the first hidden node. Based on the table of gradient, we might know that the gra‐
dient at this connection moves in the same direction through out iterations 1-4 and 11-14.
However, due to the negative value of the gradient, the weight update value carries a nega‐
tive sign that causes the value to decrease until its sign is negative. At this iteration, the error
value decreases.

Figure 9. Hinton diagram of weight connections between input layer and hidden layer at 1st iteration.

Artificial Neural Networks – Architectures and Applications76

The next example is the Hinton diagram representing weights in standard BPwith an adap‐

tive learning parameter network on Iris dataset.

Figure 10. Hinton diagram of weight connections between input layer and hidden layer at 11th iteration.

Input Node 1 Input Node 2 Input Node 3 Input Node 4 Bias

Iteration 1 Hidden Node 1 -0.002028133 0.001177827 -0.006110183 -0.002515178 6.16E-05

Hidden Node 2 0.00327263 0.002733914 -0.000166769 -0.000344516 0.000749096

Hidden Node 3 -0.004784699 -0.003919529 -0.000360459 0.000140134 -0.001022238

Iteration 2 Hidden Node 1 -0.002754283 0.000759663 -0.006493288 -0.00262835 -7.00E-05

Hidden Node 2 0.003322116 0.002868889 -0.00034058 -0.000417257 0.000772938

Hidden Node 3 -0.003433234 -0.003331085 0.000673172 0.000468549 -0.000802899

Iteration 3 Hidden Node 1 -0.002109624 0.001068822 -0.006027406 -0.002476693 3.47E-05

Hidden Node 2 0.003299403 0.002898428 -0.00043867 -0.000457266 0.000775424

Hidden Node 3 -0.002239138 -0.002627843 0.001246792 0.000621859 -0.000583171

Iteration 4 Hidden Node 1 -0.001150779 0.001525718 -0.005325608 -0.002246529 0.000189476

Hidden Node 2 0.003268854 0.002945653 -0.000588941 -0.000519753 0.000780289

Hidden Node 3 -0.000746758 -0.001700258 0.001868946 0.000774123 -0.000301095

Table 6. The gradient value between input and hidden layer at iterations 1-4 .

Weight Changes for Learning Mechanisms in Two-Term Back-Propagation Network
http://dx.doi.org/10.5772/51776

77

Input Node 1 Input Node 2 Input Node 3 Input Node 4 Bias

Iteration 11 Hidden Node 1 0.001907574 0.002986261 -0.002973391 -0.001440144 0.00065675

Hidden Node 2 0.000812331 0.002899602 -0.004647719 -0.002073105 0.000546702

Hidden Node 3 -0.002190841 -0.000838811 -0.002332771 -0.000908119 -0.000280471

Iteration 12 Hidden Node 1 0.003681706 0.004088069 -0.002210031 -0.001245223 0.000986844

Hidden Node 2 0.002483971 0.003929436 -0.003913207 -0.001884712 0.000855605

Hidden Node 3 -0.002708979 -0.001126258 -0.002636196 -0.001002275 -0.000370089

Iteration 13 Hidden Node 1 0.00439905 0.004702491 -0.002255431 -0.001321819 0.001149609

Hidden Node 2 0.002580744 0.004096122 -0.004087027 -0.00196994 0.000891341

Hidden Node 3 -0.003069687 -0.001361618 -0.002782251 -0.001041828 -0.00043751

Iteration 14 Hidden Node 1 0.001502568 0.003228589 -0.004165255 -0.00193001 0.000663654

Hidden Node 2 -0.000869554 0.002112189 -0.005859167 -0.002472493 0.00027103

Hidden Node 3 -0.003177038 -0.001479172 -0.002727358 -0.001012298 -0.000466909

Table 7. The gradient value between input and hidden layer at iterations 11-12.

At the 11 th iteration, all weights change their magnitude and some have different signs
from before. The weight between the second input node to the first and second hidden lay‐
ers changes its sign to positive because of the positive incremental value since the gradient
moves along the same direction over time. The positive incremental value gradually change
the magnitude and sign of the weight from negative to positive.

7. Conclusions

This study is performed through experimental results achieved by constructing programs
for both algorithms which are implemented on various datasets. The dataset comprises a
small and medium dataset which will be broken down into two datasets, training and test‐
ing, with ratio percentages of 70% and 30% respectively. The result from both algorithms
will be examined and studied based on its accuracy, convergence time and error. In addi‐
tion, this study also studies the weight change sign with respect to the temporal behaviour
of gradient to study the learning behaviour of the network and also to measure the perform‐
ance of the algorithm. However, two-term BP with an adaptive algorithm works better in
producing proper change of weight so that the time needed to converge is shorter compared
with two-term BP without an adaptive learning method. This can be seen from the result of
the convergence rate of the network. Moreover, the study on weight sign change of both al‐
gorithms shows that the gradient sign and magnitude and error have greater influence on
the weight adjustment process.

Artificial Neural Networks – Architectures and Applications78

Acknowledgements

Authors would like to thanks Universiti Teknologi Malaysia (UTM) for the support in Re‐
search and Development, and Soft Computing Research Group (SCRG) for the inspiration in
making this study a success. This work is supported by The Ministry of Higher Education
(MOHE) under Long Term Research Grant Scheme (LRGS/TD/2011/UTM/ICT/03 - VOT 4L805).

Author details

Siti Mariyam Shamsuddin*, Ashraf Osman Ibrahim and Citra Ramadhena

*Address all correspondence to: mariyam@utm.my

Soft Computing Research Group, Faculty of Computer Science and Information Systems,
UniversitiTeknologi Malaysia, Malaysia

References

[1] Ng, S., Leung, S., & Luk, A. (1999). Fast convergent generalized back-propagation al‐
gorithm with constant learning rate. Neural processing letters, 13-23.

[2] Zweiri, Y. H., Whidborne, J. F., & Seneviratne, L. D. (2003). A three-term backpropa‐
gation algorithm. Neurocomputing, 305-318.

[3] Yu, C. C. B., & Liu, D. (2002). A backpropagation algorithm with adaptive learning
rate and momentum coefficient. in 2002 International Joint Conference on Neural
Networks (IJCNN 2002). May 12-May 17, 2002, Honolulu, HI, United states: Institute of
Electrical and Electronics Engineers Inc.

[4] Dhar, V. K., et al. (2010). Comparative performance of some popular artificial neural
network algorithms on benchmark and function approximation problems. Pramana-
Journal of Physics, 74(2), 307-324.

[5] Hongmei, S., & Gaofeng, Z. (2009). A new BP algorithm with adaptive momentum
for FNNs training. in 2009 WRI Global Congress on Intelligent Systems GCIS 2009.
May 19, 2009-May 21, 2009. Xiamen, China: , IEEE Computer Society.

[6] Jacobs, R. A. (1988). Increased Rates of Convergence Through Learning Rate Adapta‐
tion. Neural Networks, 1(4), 295-307.

[7] Minai, A. A., & Williams, R. D. (1990). Back-propagation heuristics: A study of the
extended Delta-Bar-Delta algorithm. in 1990 International Joint Conference on Neu‐

Weight Changes for Learning Mechanisms in Two-Term Back-Propagation Network
http://dx.doi.org/10.5772/51776

79

ral Networks- IJCNN 90. June 17, 1990-June 21, 1990, San Diego, CA, USA: Publ by
IEEE.

[8] Jin, B., et al. (2012). The application on the forecast of plant disease based on an im‐
proved BP neural network. in 2011 International Conference on Material Science and
Information Technology, MSIT2011 September 16-September 18, 2011. Singapore,
Singapore: Trans Tech Publications.

[9] Duffner, S., & Garcia, C. (2007). An online backpropagation algorithm with valida‐
tion error-based adaptive learning rate. Artificial Neural Networks-ICANN 2007 ,
249-258.

[10] Shamsuddin, S. M., Sulaiman, M. N., & Darus, M. (2001). An improved error signal
for the backpropagation model for classification problems. International Journal of
Computer Mathematics, 297-305.

[11] Iranmanesh, S., & Mahdavi, M. A. (2009). A differential adaptive learning rate meth‐
od for back-propagation neural networks. World Academy of Science, Engineering
and Technology , 38, 289-292.

[12] Li, Y., et al. (2009). The improved training algorithm of back propagation neural net‐
work with selfadaptive learning rate. in 2009 International Conference on Computa‐
tional Intelligence and Natural Computing, CINC 2009. June 6-June 7, 2009Wuhan,
China: IEEE Computer Society.

[13] Yamamoto, K., et al. (2011). Fast backpropagation learning using optimization of
learning rate for pulsed neural networks. Electronics and Communications in Japan,
27-34.

[14] Hua, Li. C., Xiangji, J., & Huang, . (2012). Spam filtering using semantic similarity ap‐
proach and adaptive BPNN. Neurocomputing.

[15] Xiaoyuan, L., Bin, Q., & Lu, W. (2009). A new improved BP neural network algo‐
rithm. in 2009 2nd International Conference on Intelligent Computing Technology
and Automation, ICICTA 2009. October 10-October 11, 2009., Changsha, Hunan, Chi‐
na: IEEE Computer Society.

[16] Yang, H., Mathew, J., & Ma, L. (2007). Basis pursuit-based intelligent diagnosis of
bearing faults. Journal of Quality in Maintenance Engineering, 152-162.

[17] Fukuoka, Y., et al. (1998). A modified back-propagation method to avoid false local
minima. Neural Networks, 1059-1072.

[18] Riedmiller, M. (1994). Advanced supervised learning in multi-layer perceptrons-
from backpropagation to adaptive learning algorithms. Computer Standards and Inter‐
faces, 16(3), 265-278.

Artificial Neural Networks – Architectures and Applications80

[19] Sidani, A., & Sidani, T. (1994). Comprehensive study of the back propagation algo‐
rithm and modifications. in Proceedings of the 1994 Southcon Conference,. March 29-
March 31, 1994Orlando, FL, USA: IEEE.

[20] Samarasinghe, S. (2007). Neural networks for applied sciences and engineering: from
fundamentals to complex pattern recognition. Auerbach Publications.

Weight Changes for Learning Mechanisms in Two-Term Back-Propagation Network
http://dx.doi.org/10.5772/51776

81

