
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter 6

Low Complexity Interpolation Filters for Motion
Estimation and Application to the H.264 Encoders

Georgios Georgis, George Lentaris and
Dionysios Reisis

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51703

1. Introduction

Techniques for image super-resolution play an important role in a plethora of applications,
which include video compression and motion estimation. The detection of the fractional dis‐
placements among frames facilitates the removal of temporal redundancy and improves the
video quality by 2-4 dB PSNR [12], [2]. However, the increased complexity of the Fractional
Motion Estimation (FME) process adds a significant computational load to the encoder and
sets constraints to real-time designs. Researchers have performed timing analysis for the
motion estimation process and they reported that FME accounts for almost half of the entire
motion estimation period, which in turn accounts for 60-90% of the total encoding time de‐
pending on the design configuration [12].

The FME bases on an interpolation procedure to increase the resolution of any frame region
by generating sub-pixels between the original pixels. In mathematics, interpolation refers to
the construction of an interpolant function whose plot covers (i.e. passes through) all re‐
quired points. Known points of a sample area are referred to as having integer interval or
displacement, depending on whether they are time or frequency-domain (TD or FD) sam‐
ples respectively. Similarly, unknown samples which have to be approximated through an
interpolant function, are said to have fractional interval or displacement respectively. In im‐
ages, the interpolation takes place in a two-dimensional frequency-domain grid, where the
problem of calculating fractional displacements can be facilitated by focusing on an area of
four initially known pixels which reside on the corners of a unit square (Fig. 1). Hence, re‐
gardless of the interpolation factor, it is adequate to calculate pixels with arbitrary displace‐
ments in the unit square and extend the calculation for every unit square, which belongs to
the frame.

© 2013 Georgis et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Most of the non-adaptive techniques presented in the bibliography, base on solving piece‐
wise polynomial functions of varying degrees in order to calculate the interpolated signal.
The resulting polynomial solution leads to sets of coefficients to be applied on consecutive
sample points in the grid, which most often extend beyond the unit square. Examples of the
above approach are first, the Bilinear interpolation [8] with first order polynomials and us‐
ing two pixels in each dimension and second, the Bicubic interpolation [9] which is derived
from third order polynomials and uses four pixels in each dimension. On the other hand,
Lanczos interpolation coefficients [10] stem from windowing a sinc function. Therefore, the
number of pixels required by the Lanczos approach depends on the choice of the order of
the interpolation function. More complex techniques applied to video encoding, employ
edge-detection, error function minimization, or super-resolution (SR) procedures originating
from theoretical signal processing methods. Among these techniques, the most commonly
used is the edge-detection, which characterizes pixels or areas in an image belonging to an
edge (luminance inconsistency). Edge-detection is also utilized for preventing aliasing fre‐
quency components to be encoded and transmitted.

Modern compression standards specify the exact filter to use in the Motion Compensation
module, a fact allowing the encoder and the decoder to create and use identical reference
frames. In particular, H.264/AVC specifies a 6-tap filter for generating sub-pixels between

the pixels of the original image, which are called half-pixels with accuracy 1
2 [3]. Also, it de‐

fines a low cost 2-tap interpolation filter for generating sub-pixels between half- and original

pixels, which are defined as quarter-pixels with accuracy 1
4 . Even though it is a common

practice among the encoder designers to integrate the standard 6-tap filter also in the Esti‐
mation module (before Compensation), the fact is that the interpolation technique used for
detecting the displacements (not computing their residual) is an open choice following cer‐
tain performance trade-offs.

Aiming at speeding up the Estimation, a process of considerably higher computational de‐
mand than the Compensation, this chapter builds on the potential to implement a lower
complexity interpolation technique instead of using the costly H.264 6-tap filter. For this
purpose, we show the results of integrating in the Estimation module several distinct interpo‐
lation techniques not included in the H.264 standard. We keep the standard H.264/AVC
Compensation and we measure the impact of the above techniques first on the time re‐
quired to process the up-sampling and second on the video quality achieved by the predic‐
tion engine.

Related results in the bibliography include techniques, which lead to avoid or replace the
standard computations [4] [5] [13], or minimize the search area [14]. Researchers in [4] calcu‐
late the number of operations required for each pixel in cases where 8-to-2-tap filters and the
Sum of Absolute Differences (SAD) metric is utilized. Then, they perform statistical analysis
in CIF sequences encoded using bitrates from 0.5 to 1Mbps, to determine the recurrence of a
motion vector when the aforementioned filter lengths are applied. The authors of [5] and
[13] initially focus on reducing the number of taps and the multiplication operations, by pro‐
posing a filter which requires only shifts and additions. Then they propose adaptive thresh‐

Design and Architectures for Digital Signal Processing138

olds to bypass the interpolation process based on the computed SAD value. Recent
developments towards replacing the H.264 / AVC (High Efficiency Video Coding or H.265
or MPEG-H part 2) [16], combine Rate-Distortion minimization and adjustments to local im‐
age characteristics [15], [17], [18], [19]. Effectively, these techniques switch between standard
and directionally adaptive interpolation kernels and they take this decision by examining
each frame either on a pixel or macroblock basis.

Conventional Super-resolution (SR) techniques are generally considered to be prohibitively
expensive when encoding video sequences. However, in many cases the learning-based su‐
per-resolution techniques are considered to be valid [20]. Consisting of a training phase,
where low and high-resolution image patches are matched and a synthesis phase, where
low resolution patches kept in the dictionary are used to oversample, learning-based SR pro‐
vides increased PSNR whilst expanding storage and memory access requirements. Re‐
searchers and engineers have also focused on methodologies for designing the H.264 6-tap
filter, which are able to efficiently support its increased memory requirements [2] [6] [7]. The
H.264 filter needs quite a number of data to be stored for its operation because its specifica‐
tions include a kernel with coefficients 1, - 5, 20, 20, - 5, 1 , which are multiplied with
six consecutive pixels of the frame either in column or row format. The resulting six prod‐
ucts are accumulated and normalized for the generation of a single half-pixel, which is pro‐
duced between the 3rd and the 4th tap. The operation described above must be repeated for
producing each “horizontal” and “vertical” half-pixel by sliding the kernel on the frame,
both in row and column order. Moreover, there exist as many “diagonal” half-pixels to be
generated by applying the kernel on previously computed horizontal or vertical half-pixels.
That is to say, depending on its position, we must process 6 or 36 frame pixels to compute a
single half-pixel. To avoid the cost of implementing the H.264 filter in the Estimation mod‐
ule, the current chapter studies a set of interpolation techniques and compares their per‐
formance. The techniques presented here are similar to the standard filter but they use less
than 6 taps [8] [9] [10]. Moreover, a subset of these techniques features the exploitation of
gradients in the image [11].

The chapter is organized as follows: Section 2 shows three commonly used interpolation
techniques, proposes three novel techniques and describes the differences among those com‐
monly used and the proposed. Section III reports the performance results achieved by the
interpolation techniques and by comparing these shows the gains of using the proposed. Fi‐
nally, Section IV concludes the chapter.

2. Interpolation techniques

The current section presents six interpolation techniques. The first three (3) are known in the
literature and are commonly used techniques. The other three (3) have been recently intro‐
duced [13] and their design targets the improvement of the interpolation process.

Low Complexity Interpolation Filters for Motion Estimation and Application to the H.264 Encoders
http://dx.doi.org/10.5772/51703

139

Figure 1. Pixels on the image grid and magnification of a 1×1 area showing sub-pixel positions (right). The symbols
facilitate the description of filters.

Each video frame consists of pixels and we consider each pixel of the original image located
at a distinct position (i, j) of a two dimensional (2D) grid with i, j ∊N denoting the vertical
and horizontal coordinates of the pixel, respectively. The sub-pixels can be generated next to

any pixel (i, j) at the positions (i+k, j+l) with k,l ∊ {0, 1
4 , 1

2 , 3
4 } .

We distinguish between quarter-pixels and half-pixels, for which k,l ∉ { 1
4 , 3

4 } . The half-pix‐
els are further categorized as half-horizontal, half-vertical, or half-diagonal (those located at

the positions given by (i + 1
2 , j + 1

2)). Fig. 1 depicts part of the original image grid and mag‐
nifies a small area while the right-hand side magnifies an interior square region to show all
sub-pixel positions (according to H.264/AVC). Moreover, Fig. 1 marks pixels and regions on
the grid to be used as references with designated letters as a notation to be followed for the
remaining of the paper.

A half-pixel is generated by an interpolation procedure operating on a set of neighboring,
integer-position pixels located around the position of interest. We study the following inter‐
polations:

2.1 Bilinear

This technique is actually the simplest of all the techniques presented in this chapter. In
practice, this technique consists of a simple averaging of the two original pixels, which are
adjacent to the half-horizontal or the half-vertical pixel to be generated (i.e., 2-tap FIR filter)
[8]. For the half-diagonal (HD), the technique computes the average of the four (4) pixels {g,
h, q, r} surrounding the half-diagonal position as shown in (Fig. 1).

Design and Architectures for Digital Signal Processing140

2.2 Bicubic

The Bicubic technique uses as a base the solution of third order polynomials [9]. In this
chapter we examine the parameterized form of the underlying equation using a ∈ [−1, 0]
to provide sharpness variance in the interpolated image. We focus on the following val‐
ues: a= −1, a= −0.75, and a=−0.5. These values result in three distinct kernels, which are
characterized by the convolution coefficients -1,5, 5, - 1 , -3,19,19, - 3 and -1,9, 9, - 1 ,
respectively. Such a quadruplet is multiplied with four (4) consecutive image pixels to gen‐
erate their intermediate half-pixel. To compute the half-diagonal pixel, the Bicubic techni‐
que requires the calculations of the corresponding four half-horizontal (a total of 16
multiplications) and then apply the coefficients on the resulting pixels to produce the tar‐
get half-diagonal. Hence, overall it uses 16 image pixels with the requirement of 20 multi‐
plications.

2.3 Lanczos

This technique is similar to the H.264/AVC interpolation and with a third order Lanczos
equation, it uses a 6-tap FIR filter. Overall, the technique bases on the Sinc function [10]. In
this chapter we examine the kernel with coefficients given by

12
50π2 , - 12

9π2 , 6
π 2 , 6

π 2 , - 12
9π2 , 12

50π2 . Lanczos half-pixels are generated by a trivial convolution

procedure, as in the case of the H.264/AVC filter (a single half-diagonal pixel depends on 36
integer pixels). Note here that, the H.264/AVC standard defines a 6-tap filter for use in mo‐
tion compensation with coefficients 1, - 5,20,20, - 5,1 .

2.4 Data-Dependent Triangulation

The first of the recently introduced techniques in [13] is actually a modification of the ap‐
proach, which was presented in [11]. The authors in [11] use an edge-detection technique for
determining the exact set of integer pixels, which will be given as input to the interpolation
function. We study here a special case of Data-Dependent Triangulation (DDT), which ex‐
amines only 4 pixels. To describe the technique, we consider the generation of the half-hori‐

zontal (HH) pixel Y D
HH at (i, j+ 1

2) and the half-vertical (HV) pixel Y D
HV at (i+ 1

2 , j) as shown
in Fig. 1.

We examine the luma differences of pixels {g, h, q, r} to determine whether an edge crosses
their enclosed region: if it holds that |Y g - Y r|> |Yh - Y q| , then we will detect an edge at hq,
else we will detect an edge at rg. In the first case, that is there is an edge at hq which is denoted
as EDh

q , we assume that pixels {g, h, q} form a homogeneous triangular and we compute:

YD
HH =Cli pdivD

R (w1Yg + w1Yh + w2Y q)
YD

HV =Cli pdivD

R (w1Yg + w1Y q + w2Yh)
(1)

Low Complexity Interpolation Filters for Motion Estimation and Application to the H.264 Encoders
http://dx.doi.org/10.5772/51703

141

Where Clipdiv D

R is a normalization function (divides by divD =2w1 + w2 , clips value in [0, 255]).

Factors w1 > w2 are used to increase the luma weights of the neighbors residing next to the

generated sub-pixel. The examination of a large number of factors has resulted in highest PSNR

for w1 = 7 and w2 = 2 (given that divD =24). The second case refers to the detection of an edge

at rg (when there is the edge EDr
g). In this case, we use the same idea as above (orientation

and weights) but we modify accordingly the luma inputs of (1). In the case of a homogene‐
ous square ghqr the technique degenerates to a simple bilinear filter (i.e. w1 =1, w2 =0).

The technique generates the half-diagonal pixel by including a second gradient check, which

follows the detection of the edge EDh
q , or the edge EDr

g . The idea is to identify the most

homogeneous triangle in the enclosed area A2 shown in the Fig. 1. Thereby, in the case of

EDh
q , we check |Y g - Y q| + |Y g - Yh |<|Y r - Y q| + |Y r - Yh | , otherwise we check

|Yh - Y g| + |Yh - Y r|<|Y q - Y g| + |Y g - Y r| to decide if the HD pixel resides above (<) or be‐

low (>) the edge. Extending our notation with abv and blw superscripts, we describe the
modified DDT (mDDT) computation as:

Where the values of the w1 , w2 and Clipdiv D

R are as described in (1).

An alternative approach uses the equation 1 to develop a simpler HD generation technique,
we call this technique mDDT' , which relies directly on the first DDT check and performs a

bilinear operation on the two pixels of the detected edge, i.e., Y D'
HD = Clip2

R(Yh + Y q) if EDh
q .

We further improve the mDDT' and produce the (mDDT') technique by modifying the final
operation to subtract the remaining two off-diagonal pixels (as a high-pass FIR), i.e.,

Y D''
HD =ClipD''

R (w1Yh + w1Y q - w2Y g - w2Y r) if EDh
q . The latter operation although it increases

the amount of calculations, it results in better PSNR compared to the mDDT' .

Design and Architectures for Digital Signal Processing142

2.5 CrossHD

The second approach is called CrossHD [13] and bases on an edge-oriented technique. The
advantages of CrossHD compared to the DDT mentioned above, is that it improves on the
locality of the aforementioned DDT detections by comparing the luminance difference of
areas –instead of single pixels. This technique computes the luma of a small square area by
adding the pixels, which are located at its four corners. For instance, for the example given
in Fig. 1, we get that: Y A1 =Y c + Y D + Y g + Yh . The technique examines the outcome of the
 |Y A4 - Y A5|>|Y A1 - Y A3| operation to decide if there exists a vertical (>) or horizontal (<)
edge crossing the area A2 . In the case of a vertical edge crossing the area A2 , we examine
independently the areas A1 , A2 , and A3 by using the simple DDT check to identify the direc‐
tions of the edges crossing each of these three (3) areas. The majority of the edge directions
found within A1 , A2 , and A3 refines the assumed edge direction within A2 , i.e., we con‐
clude if Eχ h

q or Eχ r
g . Note that, in the case of examining whether there exists a horizontal

edge, the technique will examine the areas A4 , A2 , and A5 . Finally, the HD pixel is generat‐
ed by averaging the pixels, which reside on the detected edge: Y χ

HD = Clip2
R(Yh + Y q) if Eχh

q ,

or Yχ
HD = Clip2

R(Y r + Y g) if Eχr
g . If the technique does not detect any edge (i.e., in the homo‐

geneous square A2), it will average the pixels {g, h, q, r}.

2.6 CxScale

The third approach extends the aforementioned ideas to develop a technique called CxScale
[13], which improves both the edge detection and the subsequent kernel selection. Here, the
edge detection mechanism examines the luma gradients over an area of 8 neighboring inte‐
ger pixels and the half-pixels are generated afterwards via a conditional use of bilinear and
bicubic interpolators. The technique includes three steps:

1. The detection of a horizontal or vertical edge.

2. The possible refinement of its direction to an assumed diagonal.

3. The selection of inputs to a bicubic or a bilinear function.

The specifics of these steps depend on the position of the half-pixel to be generated. Begin‐
ning with the HH pixel, we examine |(Y f + Y g) - (Yh + Y o)|<|(Y c + Yd) - (Y q + Y r)| to detect
a horizontal edge, i.e. Ec

HH
g
h . When we detect a vertical edge (when “>”), we refine its direc‐

tion by checking:

assume Ec
HH ifq

d |Yc - Yr | > |Yd - Yq | (from q to d)

assume Ec
HH ifq

d |Yc - Yr | < |Yd - Yq | (from r to c)

Low Complexity Interpolation Filters for Motion Estimation and Application to the H.264 Encoders
http://dx.doi.org/10.5772/51703

143

assume Ec
HH ifA1

A3 |Yc - Yr | =|Yd - Yq| (strictly vertical)

Else, we assume a homogeneous area. Finally, we compute

 YC
HD = {Clip32

R (-3Y f + 19Y g + 19Yh - 3Y o) if Ec
HH

g
h

Clip32
R (-3Y c + 19Yd + 19Y q - 3Y r) if Ec

HH
q
d

Clip32
R (-3Yd + 19Y c + 19Y r - 3Y q) if Ec

HH
r
c

Clip2
R(Y g + Yh) otherwise

 (3)

Similarly, the generation of the HV pixel begins by examining
|(Y c + Y g) - (Y q + Yu)| < |(Y f + Y p) - (Yh + Y r)| to detect a vertical edge Ec

HV
q
g . If we de‐

tect a horizontal edge (>), we refine its direction and we compute the pixel Y c
HV as follows:

assume Ec
HH

p
h if |Y f - Y r|>|Y p - Yh | (from p to h)

assume Ec
HH

f
r if |Y f - Y r|<|Y p - Yh | (from f to r)

assume Ec
HH

A4
A5 if |Y f - Y r|=|Y p - Yh | (strictly horizontal)

 YC
HV = {Clip32

R (-3Y c + 19Y g + 19Y q - 3Yu) if Ec
HV

g
q

Clip32
R (-3Y f + 19Yh + 19Y p - 3Y r) if Ec

HV
p
h

Clip32
R (-3Yh + 19Y f + 19Y r - 3Y p) if Ec

HV
f

r

Clip2
R(Y g + Y q) otherwise

 (4)

To conclude the CxScale description, we refer to the HD pixel generation, which begins by
examining |(Y b + Y g) - (Y r + Yw)| > |(Y e + Yh) - (Y q + Y t)| to detect an edge at Ec

HD
q
h . Oth‐

erwise, we assume Ec
HD

r
g . Then

YC
HD = {Clip32

R (-3Y e + 19Yh + 19Y q - 3Y t) if Ec
HD

q
h

Clip32
R (-3Y b + 19Y g + 19Y r - 3Yw) if Ec

HD
r
g

(5)

3. Performance Evaluation

To evaluate the performance of the interpolation techniques in the considered application,
we execute multiple motion estimation procedures and the entire application is completed
by including the standard H.264/AVC motion compensation. For the realization of each test,

Design and Architectures for Digital Signal Processing144

we let the estimation procedure to employ one of the six interpolation techniques described
in the previous Section, which will detect the fractional motion. The compensation proce‐
dure bases solely on the resulting motion vectors for constructing the frame-predictors ac‐
cording to the standard 6-tap filter. Hence, we use a setup, which ensures that the encoder
and the decoder will still be able to use identical reference frames for their predictions, i.e.,
we avoid the accumulation of errors introduced to the coding process due to the encoder
and the decoder. More specifically, the estimation algorithm computes the Sum of Absolute
Differences (SAD) for comparing 4×4 pixel candidates and it operates in two phases:

1. A “Diamond Search” matches the block to the best integer position candidate,

2. An exhaustive search in the vicinity of the integer match detects fractional motion by

examining 8 candidate blocks located at distance ± 1
2 pixels.

Overall, the only parameter varying in this scheme is the interpolation technique used in the
second phase of the algorithm, and thus, the quality variations among the output sequences
(predictor frames) depend only on the efficiency of the interpolation. The results are shown
in the following test reports, which display the PSNR of the output sequences and in partic‐
ular, the DPSNR for each interpolation technique.

We have performed the simulations to measure the quality and the processing time by test‐
ing a variety of well-known videos and up to five (5) frame resolutions for each. The simula‐
tions setup with videos, number of frames and resolution has been: The car-phone with 90 frames,
the foreman with 400 frames, the container with 300 frames in QCIF, the coastguard, foreman,
news with 300 frames each in CIF and finally, the blue sky, pedestrian, riverbed, rush-hour with
100 each in SD1, 720p and 1080p. Our prediction engine is written in C, it uses 1 reference

Filter: H.264 Nearest

Neighbor

Bicubic Lanczos CxScale DDT

Resolution a=-1 a=-0.5 a=-0.75

QCIF 35.0379 -2.2069 -0.0142 -0.0214 -0.0105 0.0009 -0.3359 -0.2265

CIF 34.2930 -1.4229 -0.0150 -0.0340 -0.0166 -0.0042 -0.3697 -0.1994

SD1 33.1775 -0.5483 -0.0170 -0.0192 -0.0118 -0.0030 -0.2071 -0.1249

720p 32.3743 -0.3316 -0.0130 -0.0151 -0.0096 -0.0029 -0.1021 -0.0866

1080p 33.0837 -0.2084 -0.0122 -0.0172 -0.0123 -0.0042 -0.0810 -0.0697

total 33.4971 -0.8843 -0.0144 -0.0209 -0.0120 -0.0027 -0.2116 -0.1372

Table 1. PSNR of the H.264/AVC filter and DPSNR of other techniques when estimating in HH+HV positions (with H.
264 compensation).

frame and it is designed to efficiently substitute any filter. We begin by distinguishing be‐
tween horizontal/vertical and diagonal interpolation. Table 1 reports the PSNR results of the
algorithm examining fractional displacements only at the horizontal and vertical directions
(4 candidates). The table shows the results of two 6-tap filters (H.264/AVC, Lanczos), three

Low Complexity Interpolation Filters for Motion Estimation and Application to the H.264 Encoders
http://dx.doi.org/10.5772/51703

145

4-tap filters (Bicubic), and two edge-detection based techniques (DDT, CxScale). Moreover,
for sake of comparison, we include the PSNR results achieved by the Nearest Neighbor
(NN) technique [8]. The table 1 shows the low PSNR results of the Nearest Neighbor (NN)
technique [8], which evades interpolation computations by simply forwarding the value of
the integer pixel next to the HH/HV position. This technique practically, does not involve
fractional motion detection.

The NN results point out that, even with only 4 HH/HV candidates, the algorithm improves
its prediction quality by up to 2 dB at low frame resolutions. Using another technique, the
Lanczos 6-tap filter, results in almost equivalent quality with the standard H.264 filter. We
approximated the Lanczos coefficients by integer values to achieve low complexity operations.

The exact values of the coefficients were set after extensive testing to 3, - 17,78,78, - 17,3 .
The performance of the remaining filters lies between the above two extremes of six taps
(Lanczos) and zero taps (NN). More precisely, the best quality was achieved with the Bicu‐
bic filters. We have examined the performance of several Bicubic kernels, with parameters

-a∈ { 7
8 , 6

8 , 5
8 , 4

8 , 3
8 , 2

8 } and we report the most prominent of these in Table 1. As it is shown,
for most frame resolutions the kernel with coefficients -3,19,19, - 3 maximizes the quality
and limits the expected PSNR degradation to almost 0.01 dB compared to the H.264 filter.
That is, although the kernel with coefficients -1,5, 5, - 1 seems –intuitively– a better ap‐
proximation of the 1, - 5,20,20, - 5,1 kernel of H.264 (approximation achieved by merging
the marginal taps, i.e., by assuming equal values for the corresponding pixels), the experi‐
mental results are in favor of a=−0.75. For this reason, CxScale adopts the kernel with coeffi‐
cients -3,19,19, - 3 for its Bicubic filtering. Edge-detection based techniques degrade the
quality by 0.1 dB, a fact indicating that their induced error surface deviates from the 6-tap
filters error surface. However, we note that if we omit the H.264 compensation, these edge-
detection based techniques prevail in terms of PSNR, as well as subjective criteria, up to 0.1
dB even when they are compared to 6-taps filters and especially in high-definition videos.
Table 1 shows

Filter: H.264 Nearest

Neighbor

Bicubic Lanczos

Resolution a=-1 a=-0.5 a=-0.75

QCIF 34.7318 -1.8864 -0.0288 -0.0436 -0.0143 0.0004

CIF 33.9850 -1.1102 -0.0145 -0.0423 -0.0148 -0.0016

SD1 33.1292 -0.4790 -0.0247 -0.0241 -0.0117 -0.0032

720p 32.3766 -0.3178 -0.0176 -0.0188 -0.0092 -0.0031

1080p 33.0869 -0.1979 -0.0146 -0.0223 -0.0119 -0.0045

total 33.3785 -0.7512 -0.0202 -0.0292 -0.0121 -0.0004

Table 2. PSNR of the H.264/AVC filter and DPSNR of Nearest Neighbor, Bicubic and Lanczos when estimating in HD
positions (with H.264 compensation).

Design and Architectures for Digital Signal Processing146

Filter: CxScale mDDT [11] CrossHD mDDT’

Resolution

QCIF -0.1010 -0.1728 -0.1095 -0.1299 -0.1595

CIF -0.0740 -0.1731 -0.1219 -0.1414 -0.1595

SD1 -0.0396 -0.1217 -0.0860 -0.0972 -0.1070

720p -0.0294 -0.0816 -0.0636 -0.0696 -0.0760

1080p -0.0420 -0.0746 -0.05889 -0.0637 -0.0725

total -0.0495 -0.1220 -0.0864 -0.0984 -0.1121

Table 3. DPSNR of CxScale, mDDT, [11], CrossHD and mDDT' when estimating in HD positions (with H.264
compensation).

that the performance of the DDT and the CxScale techniques improves as the frame resolu‐
tion increases.

Next, we consider the report of results regarding the efficiency of the techniques interpolat‐
ing half-diagonal pixels, which are more computationally demanding than the interpolation
of HH/HV pixels. We program the search procedure to examine only 4 HD candidates. Tables
2 and 3 present the resulting PSNR for the techniques of Table 1, plus four edge-detection
based techniques: CrossHD, the proposed HD generation based on DDT (mDDT), its first
alternative (mDDT'), and the technique of [11] using bilinear filtering at its last stage. We can
mention here that, when compared to the HH/HV candidates, the HD candidates add slight‐
ly less quality to the algorithm, especially in low resolution videos (e.g., as reported in the NN
results). Qualitatively, we draw similar conclusions with Table 1 verifying that the Bicubic
filtering, especially the kernel with values -3,19,19, - 3 prevails the over edge-detection based
techniques. However, the latter show different behavior when compared to the HH/HV case.
More precisely, we deduce that the HD part of CxScale employs an effective

Interpolation

technique

PSNR(dB) Time (μsec)per

MBQCIF SD1 1080p

H.264/AVC 35.4263 33.3687 33.1513 46.0

Lanczos -0.0032 -0.0050 -0.0076 46.0

Bicubic, a=-0.75 -0.0215 -0.0177 -0.0202 30.6

DDT⊕ mDDT -0.3513 -0.1782 -0.1018 21.3

DDT⊕ mDDT’ -0.3341 -0.1642 -0.0980 16.0

CxScale -0.3801 -0.1798 -0.0904 45.6

DDT⊕ CrossHD -0.3192 -0.1618 -0.0932 32.4

DDT⊕ CxSc(HD) -0.3061 -0.1302 -0.0839 28.3

DDT⊕ [11](HD) -0.2913 -0.1492 -0.0889 53.6

Table 4. Quality vs. Time when estimating in HH+HV+HD positions.

Low Complexity Interpolation Filters for Motion Estimation and Application to the H.264 Encoders
http://dx.doi.org/10.5772/51703

147

gradient check, which is combined with the Bicubic kernel to improve the quality of
CxScale. Table 3 shows that it is the prevailing edge-detection based technique among these
in the paper. In cases where the filters are using less taps, the CrossHD technique performs
better than the DDT techniques.

We complete the evaluation by examining all 8 candidates and taking into account the ex‐
amination of all pixels at HH, HV, and HD positions. For each technique, Table 4 reports the
PSNR results and the time required (as a complexity measure) for generating 16×16 arbitrary
half-pixels (averaging over HH, HV, and HD positions) as measured on a Core 2 x86-64 GPP
architecture at 3GHz. Furthermore, we combine distinct HH/HV techniques and HD techni‐
ques by adopting the prevailing edge-detection mechanisms given in Tables 1, 2 and 3 (in
Table 4, “A⊕ B” stands for “use technique A in HH/HV interpolation and technique B in
HD”). Overall, Bicubic reduces the 6-tap filtering time by 33% and keeps the PSNR level as
close as 0.02 dB to the maximum. DDT techniques reduce time by 65% (primarily due to the
fast HD generation) with a cost of 0.1 dB. CxScale and [11], involve the time consuming gra‐
dient checks. However, the HD part of CxScale combined with DDT (for HH/HV) results in
a hybrid technique featuring best PSNR among the edge-detection based techniques with al‐
most 40% time improvement.

Figure 2. Comparison of objective quality for 5 distinct interpolation procedures. Objective quality is shown both for
conventional H.264 and custom motion compensated prediction frames.

Design and Architectures for Digital Signal Processing148

In Fig. 2 we show the results of the Objective quality both for conventional H.264 and cus‐
tom motion compensated prediction frames. Custom motion compensation utilizes the in‐
terpolation filter used by the estimation procedure, whereas, conventional compensation
uses the H.264 6-tap filter. Several videos of varying resolution were used (QCIF to 1080p).
Moreover, Fig. 3 shows how the aforementioned techniques perform with respect to the exe‐
cution time. Fig.2 shows that best results are achieved by the DDT (in computing HH and
HV) with CrossHD (in computing HV). The fastest technique among all presented here, is
the DDT with CxScale, which also results in the best PSNR when it is used with the H.264
standard compensation.

Figures 4 show interpolated images of the foreman cif sequence (352x288). We use four dis‐
tinct interpolation methods at 4x in both directions to subjectively compare the quality of
their results. In all four cases, the quarter pixels are calculated with a simple 2-tap bilinear
(averaging) filter, which takes as input the two neighboring integer- or half-pixels (comput‐
ed in a previous iteration by one of the four methods under evaluation).

Figure 3. Comparison of execution time for 5 distinct interpolation procedures. Custom motion compensation utilizes
the interpolation filter used by the estimation procedure, whereas, conventional compensation uses the H.264 6-tap
filter. Several videos of varying resolution were used (QCIF to 1080p).

Low Complexity Interpolation Filters for Motion Estimation and Application to the H.264 Encoders
http://dx.doi.org/10.5772/51703

149

Figure 4.-5. Comparison of the H.264 filter (up) to the DDT ⊕ CxScale (down) on the “foreman” sequence. The exam‐
ple shows the two frames at their increased size (1408x1152) after interpolation from cif (352x288). DDT ⊕ CxScale
(down) alleviates aliasing effects.

Figure 6 compares the 6-tap H.264 filter (up) to the combination of DDT and CxScale
(down). Clearly, the latter produces much better images in terms of aliasing artifacts: the
marquee indents on the wall look much sharper on the image below and the helmet is less
jagged. Even though DDT ⊕ CxScale uses less taps, it achieves such aliasing reduction due
to the employed edge detection mechanism. However, using a small number of taps and a
large area as input to the proposed low-complexity comparison-based mechanism could ob‐
scure some finer details. Overall, DDT ⊕ CxScale improves the subjective quality of the en‐
larged image by using less execution time compared to the examined 6-tap filters. Figures 6
compare the combination of DDT ⊕ CrossHD (up) to the combination of DDT ⊕ [11]
(down). Subjectively, the DDT ⊕ CrossHD method uses half the execution time of DDT ⊕
[11] to output images with very similar quality. Both methods reduce the aliasing artifacts
compared to the examined 6-tap filters.

Design and Architectures for Digital Signal Processing150

Figure 6.-7. Comparison of the DDT ⊕ CrossHD filter (up) to the DDT ⊕ [11] (down). Frames are shown at their in‐
creased size (1408x1152) after interpolation from “foreman” cif (352x288). DDT ⊕ CrossHD produces very similar sub‐
jective quality results to DDT ⊕ [11] in considerably less execution time.

4. Conclusion

Aiming at a significant complexity reduction under negligible video quality degradation,
the paper proposed three novel interpolation techniques for use in the estimation process
preceding the standard H.264/AVC motion compensation module of the encoder. Moreover,
we evaluated their performance and compared their efficiency to three commonly used
techniques. The results showed that the techniques using 4-tap Bicubic kernels constitute the
most prominent substitute of the standard 6-tap filter. Further reduction of the estimation
time was achieved via combinations of simple edge-detection based techniques. Future
work includes parallelized implementations in VLSI/FPGA and cost-performance analysis.

Low Complexity Interpolation Filters for Motion Estimation and Application to the H.264 Encoders
http://dx.doi.org/10.5772/51703

151

Author details

Georgios Georgis, George Lentaris and Dionysios Reisis*

*Address all correspondence to: dreisis@phys.uoa.gr

Electronics Laboratory, Physics Deparment, National and Kapodistrian University of Athens
(NKUA), Greece

References

[1] Yu-Wen, Huang, Bing-Yu, Hsieh, Shao-Yi, Chien, Shyh-Yih, Ma, & Liang-Gee, Chen.
(2006). Analysis and Complexity Reduction of Multiple Reference Frames Motion Es‐
timation in H.264/AVC. IEEE Transactions on Circuits and Systems for Video Technology,
doi :10.1109/TCSVT.2006.872783, 16(4), 507-522.

[2] Tung-Chien, Chen, Yu-Wen, Huang, & Liang-Gee, Chen. (2004). Fully utilized and
reusable architecture for fractional motion estimation of H.264/AVC. IEEE Intl. Conf.
on Acoustics, Speech, and Signal Processing (ICASSP), doi : 10.1109/ICASSP.
2004.1327034, 9-12.

[3] ITU, Telecommunication Standardization Sector. (2010). Advanced Video Coding for
Generic Audiovisual Services. ITU-T, 167-169, Mar.

[4] Gupta, P. S. S. B. K., & Korada, R. (2004). Novel algorithm to reduce the complexity
of quarter-pixel motion estimation. Proc. of Visual Communications and Image Process‐
ing, 5308, 31-36, Jan, doi: 10.1117/12.532336.

[5] Hyun, C. J., & Sunwoo, M. H. (2009). Low Power Complexity-Reduced ME and Inter‐
polation Algorithms for H.264/AVC. J. of Signal Processing Systems, 56(2), 285-293,
Sept, doi : 10.1007/s11265-008-0224-4.

[6] Changqi, Yang, Goto, S., & Ikenaga, T. (2006). High performance VLSI architecture of
fractional motion estimation in H.264 for HDTV. IEEE Intl. Symposium on Circuits and
Systems (ISCAS), September, doi : 10.1109/ISCAS.2006.1693157.

[7] Chao-Yang , Kao, Cheng-Long, Wu, & Lin, Youn-Long. (2010). A high performance
three-engine architecture for H.264/AVC fractional motion estimation. IEEE Tran. On
Very Large Scale Integration Systems, April, doi : 10.1109/ICME.2008.4607389, 18(4),
662-666.

[8] Dodgson, N. A. (1997). Quadratic Interpolation for Image Resampling. IEEE Trans. on
Image Processing, 6(9), 1322-1326, Sept, doi: 10.1109/83.623195.

[9] Keys, R.G. (1981). Cubic Convolution Interpolation for Digital Image Processing.
IEEE Transactions on Acoustics, Speech and Signal Processing, Dec, doi : 10.1109/TASSP.
1981.1163711, 29(6), 1153-1160.

Design and Architectures for Digital Signal Processing152

[10] Burger, W., & Burge, M. (2008). Digital Image Processing, an Algorithmic approach
using Java. 1st ed. New York, USA: Springer.

[11] Su, D., & Willis, P. (2004). Image Interpolation by Pixel-Level Data-Dependent Trian‐
gulation. Computer Graph. For., doi : 10.1111/j.1467-8659.2004.00752.x, 23(2), 189-201.

[12] Chen, Tung-Chien, Huang, Yu-Wen, & Chen, Liang-Gee. (2004). Analysis and design
of macroblock pipelining for H.264/AVC VLSI architecture. IEEE Intl. Symp. on Cir‐
cuits and Systems (ISCAS), 273-276, doi : 10.1109/ISCAS.2004.1329261.

[13] Hyun, C. J., Kim, S. D., & Sunwoo, M. H. (2006). Efficient memory reuse and sub-pix‐
el interpolation algorithms for ME/MC of H.264/AVC. IEEE Workshop on Signal Proc‐
essing Systems Design and Implementation, October, doi : 10.1109/SIPS.2006.352612,
377-38.

[14] Song, Y., Ma, Y., Liu, Z., Ikenaga, T., & Goto, S. (2008). Hardware-oriented direction-
based fast fractional motion estimation algorithm in H.264/AVC. IEEE International
Conference on Multimedia and Expo, 1009-1012, June, doi : 10.1109/ICME.2008.4607608.

[15] Vatis, Y, & Ostermann, J. (2009). Adaptive Interpolation Filter for H.264/AVC. Cir‐
cuits and Systems for Video Technology, IEEE Transactions on, 19(2), 179-192, Feb., doi:
10.1109/TCSVT.2008.2009259.

[16] Hsueh-Ming, Hang, Peng, Wen-Hsiao, Chia-Hsin, Chan, & Chun-Chi, Chen. (2010).
Towards the Next Video Standard: High Efficiency Video Coding. Proceedings of the
Second APSIPA Annual Summit and Conference, 609-618, Biopolis, Singapore, 14-17 De‐
cember.

[17] Dmytro, Rusanovskyy, Ugur, Kemal, Hallapuro, Antti, Lainema, Jani, & Gabbouj,
Moncef. (2009). Video Coding With Low-Complexity Directional Adaptive Interpola‐
tion Filters. IEEE Transactions on Circuits and Systems for Video Technology, 19(8), Au‐
gust, doi : 10.1109/TCSVT.2009.2022708.

[18] Fuldseth, A., Bjontegaard, G., Rusanovskyy, D., Ugur, K., & Lainema, J. (2008). Low
complexity directional interpolation filter. Berlin, Germany, ITU-T Q.6/SG16, VCEG-
AI12, July.

[19] Zhang, Kai, Guo, Xun, An, Jicheng, Huang, Yu-Wen, Lei, S., & Gao, Wen. (2012). A
Single-Pass-Based Localized Adaptive Interpolation Filter for Video Coding. Circuits
and Systems for Video Technology, IEEE Transactions on, 22(1), 43-55, Jan., doi: 10.1109/
TCSVT.2011.2157194.

[20] Cho, Jaehyun, Lee, Dong-Bok, Cheol, Shin Jeong, & Song, Byung Cheol. (2011).
Block-adaptive interpolation filter for sub-pixel motion compensation. 19th European
Signal Processing Conference (EUSIPCO), 2156-2160.

[21] Georgis, G, Lentaris, G, & Reisis, D. (2012). Study of Interpolation Filters for Motion
Estimation with Application in H.264/AVC Encoders. IEEE Intl. Conference on Circuits
and Systems (ICECS), 9-12, Beirut, doi : 10.1109/ICECS.2011.6122201, 9-12.

Low Complexity Interpolation Filters for Motion Estimation and Application to the H.264 Encoders
http://dx.doi.org/10.5772/51703

153

